: Pairing Barriers to
Find Concurrency Bugs in the
Linux Kernel

Linux is a highly concurrent system

Driver

¢

Scheduler

Syscalls

VMA

2/58 2/58

Linux is a highly concurrent system

Driver

SHARED

& STATE
= Scheduler
Syscalls unplanned

interactions VMA

3/58 3/58

How to find concurrency bugs?

Q: AP

dlm.%

. Dynamic analysis

(tesi & observe)
Race reported on correct code

Limited coverage
4/58

4/58

How to find concurrency bugs?

Q: AP

d.m.‘b

. Dynamic analysis

(tesi & observe)
Race reported on correct code

Limited coverage
5/58

2. Static analysis)

Limited to
lock-based code

5/58

Limitation of the state-of-the-art

lock(&identifier) Traditional approach: locksets.
shared var = Xxxx;

unlock(&identifier) If 2 functions use the same lock

Then they likely run concurrently
lock(&identifier)

If a variable is modified in a critical

unlock(&identifier)

section and read outside = bug

Lockless code not analyzed.

6/58 6/58

This talk

W\

- Analyze concurrent lockless code.

First step: infer concurrency.

7/58 7/58

How to analyze lockless code?

Observation 1: lockless code (often) uses barriers.

CPU must write o writing b

8/58 8/58

ldea: use barriers

Problem: barriers do not have an identifier

write

mfence
write

9/58 9/58

Idea: pair barriers

Observation 2: barriers run in pairs.

struct type *s = . : sl @
= ..} . return;

mfence . mfence

f(I

10/58 10/58

Idea: pair barriers

Observation 2: barriers run in pairs.

struct type *s = . : sl @

return;
mfence

f(I

11/58 11/58

Idea: pair barriers using shared objects

Observation 3: avoid aliasing using types

struct type *s = .; . if(!x
S = .} . return;

mfence . mfence
f(x)5

write (type, field) . read (type, init)
mfence . mfence

write (type, init) . read (type, field)

We call (type of struct, field name) a « shared object ».

12/58 12/58

Idea: pair barriers using closest shared objects

Observation 4: code related to a barrier is close to the barrier.

Less likely related

More likely related

Less likely related

13/58 13/58

Implementation

Per barrier Per barrier
D. . A
-o-) -
C
0 -
1. Keep files with barriers 2. Produce Control Flow Graphs 4. Sort shared objects by distance
Limit to 10 statements before and 10 Distance = number of statements to/from barrier

statement after each barrier

3. Extract shared objects

14/58 14/58

Implementation: pairing

Barrier 1
L
1. Have 2 shared objects ol and 02 in common?
W 2. Objects are ordered by at least 1 barrier?
E 3. Pair with weight:
weight = ol.distance(barrier1) * o2.distance(barrierl)
+ ol.distance(barrier2) * o2.distance(barrier2)
Barrier 2
. 4. If a barrier is paired with 2 barriers, keep the pairing with lowest weight.
A
N
k]

16/58

Use case: check ordering constraints

A barrier is only useful if:
before(barrier 1, a) <& after(barrier 2, a)

write 1. read 1. mfence
mfence 2. mfence read
write 3. read 3. read

New a v Vv
Old a Vv

16/58

Use case: remove unneeded barriers

If a barrier is unpaired, is it needed?

write
e
compare_and_swap(...)

write
e
function_with barrier_semantics(...)

17/58 17/58

Evaluation

r@ Entire Linux code base

®

) 12 new bugs found & fixed
Could have led to serious and hard-to-debug crashes

50 uneeded barriers detected

i ! Patches have been merged.

18/58 18/58

Misplaced access in the RPC interface

void xprt complete rgst (...) {
reg->rq_private buf.len =;
smp_wmb();
reg->rqg _reply bytes recvd = copied;

¥

static void call decode (...) {
+ if (!reg->rqg_reply bytes recvd)
-+ goto out;

smp_rmb();

1
2
3
4
5
6
7/
8
9

reg->rq_rcv_buf.len reg->rq _private buf.len;

19/58 19/58

Racy re-read in the socket interface

int reuseport add sock(...) {
reuse->socks|[reuse->num_socks] = sk ;
smp_wmb();
reuse->num_socks++;

¥

469 struct sock *reuseport select sock(...) {
470 int socks = READ ONCE(reuse->num_socks);
471 if (likely(socks)) {

472 smp_rmb();

487 reuseport select sock by hash();

20/58 20/58

Racy re-read in the socket interface

int reuseport add sock(...) {
reuse->socks|[reuse->num_socks] = sk ;
smp_wmb();
reuse->num_socks++;

¥

469 struct sock *reuseport select sock(...) {
470 int socks = READ ONCE(reuse->num_socks);

471
ol I static struct sock *reuseport select sock by hash(..) {

287 | ° while (reuse->socks[i]->sk state == ..) {
6 i++;

7 if (i >= reuse->num_socks)

8

i = 0;

Racy re-read in the socket interface

int reuseport add sock(...) {
reuse->socks|[reuse->num_socks] = sk ;
smp_wmb();
reuse->num_socks++;

¥

469 struct sock *reuseport select sock(...) {
470 int socks = READ ONCE(reuse->num_socks);

471
272 1 1 static struct sock *reuseport select sock by hash(.., socks){

487 while (reuse->socks[i]->sk state == ..) {
14+
if (i >= socks)
i = 0;

Removing unneeded barrier

1 static int rqg_qgos wake function (...) {
2 data->got token = true ;

wake up_ process(data->task);

5}

23/58 23/58

Influence of tuning parameters

Number of pairings vs. number of explored statements

500

450
400
100
I
1 3 5 10 20

Number of explored statements around barriers

o un
o O

Number of Pairings
= N N w w
o u
o o

Ul
o

o

o

B Correct Pairings M Incorrect Pairings

24/58 24/58

Extension #1: avoid reports on benign races

Dynamic analysers report races on correct code. We mark the code as safe.

static int _ pollwake (...) {
smp_wmb();
pwqg->triggered =
WRITE_ONCE(pwqg->triggered, 1);
return ...;

static int poll schedule timeout (...) {
if (!pwg->triggered)
if (!READ_ONCE(pwg->triggered))
rc = schedule hrtimeout range (...);
smp_store mb(..); // equivalent to smp mb

1
2
3
4
5
)
7/
8
9

25/58 25/58

Extension #2: avoid load/store tearing

Reads/writes on some shared objects have to be atomic.

void xprt_complete rgst (...) {
req->rq_private buf.len = ..;
smp_wmb();

reg->rq_reply bytes recvd = copied;
WRITE ONCE(req->rqg_reply bytes recvd,copied);

Without WRITE_ONCE, the compiler could do:

write 15 32b of copied to rq_reply_bytes
write 2" 32b of copied to rq_reply_bytes
(Actually happens with clang on armé64 CPUs!)

... resulting in readers reading possibly
26/58 26/58

partially written values.

Conclusion (of the 15 part of the talk)

@ It is possible to infer concurrency by pairing barriers

Shared objects
Distance

A Lockless code is error prone

@ Proof of concept: orderings — 12 bugs

Q Use it to check other concurrency bugs! (Use-after-free, ...)

Questions (before the 2" part)?

27/58 27/58

Provable Multicore Schedulers
with Application to
Work-Conservation

L

-,

5
. -
“ .
- e e
- s

THE UNIVERSITY OF QSORBONNE i g
SYDNEY) UNIVERsITE P :

beisi Loe cnam ORACLE

i Alpes

Work conservation

““No core should be left idle when a core is overloaded”’

29/58

Y N
I
N
[]
(.)))
Core O Core 1 Core 2 Core 3

=

Non work-conserving situation:

core O is overloaded, other cores are idle

29/58

Problem

Linux (CFS) suffers from work conservation issues

Number of threads in run queue:

72z «—— Core is mostly idle

T 1T

r=ap——rrErEk Ty . L.

o I T <= Core is mostly overloaded
U]
Oms 17.5¢
Time (second)
30/58

[Lozi et al. 2016] 30/58

Problem

FreeBSD (ULE) suffers from work conservation issues

10 -
<« Core is idle

Core

20 -

30 A

Time (second)

[Bouron et al. 2018]

31/58 31/58

Problem

Work conservation bugs are hard to detect
No crash, no deadlock. No obvious symptom.

137x slowdown on HPC applications

23% slowdown on a database.
[Lozi et al. 2016]

32/58 32/58

r ’ »
y ' II
\ LK J
.1’\(—
X \\
. \\

L))

Formally prove work-conservation

Work Conservation Formally

(3c . O(c)) = (Vc'. Tl(c"))

I

|
Core O Core 1l

34/58 \ 34/58

Work Conservation Formally

(3c . O(c)) = (Vc'. Tl(c"))

Does not work for realistic schedulers!

I

Core O Core \

35/58 \ 35/58

Challenge #1

Concurrent events & optimistic concurrency

36/58 36/58

37/58

Challenge #1

Concurrent events & optimistic concurrency

Q Obse FVE (state of every core)

6 Lock (one core — less overhead)

time

‘-;:'} AC f (e.g., steal threads from locked core)

Based on possibly outdated observations!

37/58

38/58

2R

Challenge #1

Concurrent events & optimistic concurrency

2R

)

[
1]
—

)

Core O

Core 1

Core 2

Core 3

O

Runs load
balancing

38/58

39/58

2R

Challenge #1

Concurrent events & optimistic concurrency

)

)

Core O

Core 1

Core 2

Core 3

Q

Observes load
(no lock)

39/58

Ideal
scenario

40/58

Challenge #1

Concurrent events & optimistic concurrency

N Y N
[]
N
_ ./ ./
Core O Core 1l Core 2 Core 3

o

Locks busiest

40/58

Possible scenario:

41/58

o

Challenge #1

Concurrent events & optimistic concurrency

R Y Y

h :l

[]
N ./ . N
Core O Core 1l Core 2 Core 3

o

Locks “busiest”
Busiest might have no thread left!

41/58

Challenge #1

Concurrent events & optimistic concurrency

S S S
h -
1
Core O Core 1l Core 2 Core 3
(Fail to)

42/58

Steal from busiest

42/58

Challenge #1

Concurrent events & optimistic concurrency

Q QObserve
& © Lock
= é’;‘Acf

Based on possibly outdated observations!

43/58 43/58

Concurrent Work Conservation Formally

Definition of overloaded with « failure cases »:

dc . (O(c) A fork(c) A T'unblock(c) ...)

N

44/58 44/58

Concurrent Work Conservation Formally

Jc . (O(c) A Tfork(c) A l'unblock(c) ...)
=
Ve'. (I(c') A ...)

45/58 45/58

Challenge #2

Existing scheduler code is hard to prove

@ Schedulers handle millions of events per second
Historically: low level C code.

46/58 46/58

Challenge #2

Existing scheduler code is hard to prove

@ Schedulers handle millions of events per second
Historically: low level C code.

47/58 47/58

Challenge #2

Existing scheduler code is hard to prove

@ Schedulers handle millions of events per second
Historically: low level C code.

=

48/58 48/58

DSL advantages

Trade expressiveness for expertise/knowledge:
: (static) verification of properties
: explicit shared variables

: efficient compilation

49/58 49/58

DSL-based proofs

WhyML code Proof
m Kernel module

DSL: close to C
Easy learn and to compile to WhyML and C

DSL Policy

50/58 50/58

DSL-based proofs

Proof on all possible
interleavings

51/58 51/58

DSL-based proofs

Core O

Proof on all possible

interleavings

Split code in blocks
(1 block = 1 read or write to a
shared variable)

time

52/58 52/58

DSL-based proofs

Core O Core 1 ... Core N

Proof on all possible

interleavings

Split code in blocks
(1 block = 1 read or write to a
shared variable)

time

load balancing
Simulate execution of concurrent
blocs on N cores ek
Concurrent WC must hold at the “

end of the load balancing

53/58 53/58

DSL-based proofs

load balancing

DSL = few shared variables = tractable

- load balancing

fork

fork

55/58

Evaluation

CFS-CWC (365 LOCQ)
Hierarchical CFS-like scheduler

CFS-CWC-FLAT (222 LOC)
Single level CFS-like scheduler

ULE-CWC (244 LOC)
BSD-like scheduler

55/58

Core

Core

Less idle time

160 =

1401 %

1201 =

1001
801
60
401
201

)

160
1401 -
120
1001
801
60
401
201 &

0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time in seconds
Execution with vanilla CFS.

O T B o] 7 1|

0 0.1 | 0.2 0.3 0.4 | 0.5 0.6
Time in seconds

Execution with CFS-CWC. 56/58

Execution time in

Comparable or better performance

B CFS [ULE B CFS-CWC [CFS-CWC-FLAT I ULE-CWC

il]
BT.B CG.C EP.C FT.C 15.A Lu.B SP.B UA.B MG.D

NAS benchmarks (lower is better)

57/58 57/58

Conclusion

Work conservation: not straighforward!
... hew formalism: concurrent work conservation!

Complex concurrency scheme
...proofs made tractable using a DSL.

Performance: similar or better than CFS.

