
OFence: Pairing Barriers to
Find Concurrency Bugs in the
Linux Kernel

Baptiste Lepers
Josselin Giet
Julia Lawall
Willy Zwaenepoel

2/582/58

Linux is a highly concurrent system

Driver

Scheduler

VMA

Syscalls

3/583/58

Linux is a highly concurrent system

Driver

Scheduler

VMA

Syscalls

SHARED

STATE

➔

unplanned

interactions

4/584/58

How to find concurrency bugs?

1. Dynamic analysis

(test & observe)
Race reported on correct code

Limited coverage

5/585/58

How to find concurrency bugs?

1. Dynamic analysis

(test & observe)
Race reported on correct code

Limited coverage

2. Static analysis)
Limited to

lock-based code

6/586/58

Limitation of the state-of-the-art

Traditional approach: locksets.

If 2 functions use the same lock

Then they likely run concurrently

If a variable is modified in a critical

section and read outside ➔ bug

Lockless code not analyzed.

1. lock(&identifier)
2. shared_var = xxx;
3. unlock(&identifier)

1. lock(&identifier)
2. …
3. unlock(&identifier)
4. if(shared_var) {…}

7/587/58

This talk

Analyze concurrent lockless code.

First step: infer concurrency.

8/588/58

How to analyze lockless code?

Observation 1: lockless code (often) uses barriers.

1. write a
2. mfence
3. write b

CPU must write a before writing b

9/589/58

Idea: use barriers

Problem: barriers do not have an identifier

1. write a
2. mfence
3. write b

10/5810/58

Idea: pair barriers

Observation 2: barriers run in pairs.

1. struct type *s = …;
2. s.field = …;
3. mfence
4. s.initialized = 1;

1. if(!s.initialized)
2. return;
3. mfence
4. f(s.field);

11/5811/58

Idea: pair barriers

Observation 2: barriers run in pairs.

1. struct type *s = …;
2. s.initialized = 1;
3. s.field = …;

1. if(!s.initialized)
2. return;
3. mfence
4. f(s.field);

12/5812/58

Idea: pair barriers using shared objects

Observation 3: avoid aliasing using types

1. struct type *s = …;
2. s.field = …;
3. mfence
4. s.init = 1;

1. if(!x.initialized)
2. return;
3. mfence
4. f(x.field);

2. write (type, field)
3. mfence
4. write (type, init)

1. read (type, init)
3. mfence
4. read (type, field)

We call (type of struct, field name) a « shared object ».

13/5813/58

Idea: pair barriers using closest shared objects

Observation 4: code related to a barrier is close to the barrier.

Less likely related

More likely related

Less likely related

14/5814/58

Implementation

1. Keep files with barriers 2. Produce Control Flow Graphs
Limit to 10 statements before and 10

statement after each barrier

3. Extract shared objects

4. Sort shared objects by distance
Distance = number of statements to/from barrier

Per barrier Per barrier

15/5815/58

Implementation: pairing

1. Have 2 shared objects o1 and o2 in common?

2. Objects are ordered by at least 1 barrier?

3. Pair with weight:

weight = o1.distance(barrier1) * o2.distance(barrier1)

+ o1.distance(barrier2) * o2.distance(barrier2)

4. If a barrier is paired with 2 barriers, keep the pairing with lowest weight.

Barrier 1

Barrier 2

16/5816/58

Use case: check ordering constraints

A barrier is only useful if:

before(barrier 1, a)  after(barrier 2, a)

New b Old b

New a ✓ ✓

Old a ✓

1. write a
2. mfence
3. write b

1. read b
2. mfence
3. read a

1. mfence
2. read b
3. read a

17/5817/58

Use case: remove unneeded barriers

If a barrier is unpaired, is it needed?

1. write a
2. mfence
3. compare_and_swap(…)

1. write a
2. mfence
3. function_with_barrier_semantics(…)

18/5818/58

Evaluation

Entire Linux code base

12 new bugs found & fixed

Could have led to serious and hard-to-debug crashes

50 uneeded barriers detected

Patches have been merged.

19/5819/58

Misplaced access in the RPC interface

1 void xprt_complete_rqst (...) {
2 req->rq_private_buf.len =;
3 smp_wmb();
4 req->rq_reply_bytes_recvd = copied;
5 }
6
7 static void call_decode (...) {
8 + if (!req->rq_reply_bytes_recvd)
9 + goto out;
10 smp_rmb();
11 - if (!req->rq_reply_bytes_recvd)
12 - goto out;
13 req->rq_rcv_buf.len = req->rq_private_buf.len;

20/5820/58

Racy re-read in the socket interface
1 int reuseport_add_sock(...) {
2 reuse->socks[reuse->num_socks] = sk ;
3 smp_wmb();
4 reuse->num_socks++;
5 }

469 struct sock *reuseport_select_sock(...) {
470 int socks = READ_ONCE(reuse->num_socks);
471 if (likely(socks)) {
472 smp_rmb();
…
487 reuseport_select_sock_by_hash(reuse);

21/5821/58

Racy re-read in the socket interface
1 int reuseport_add_sock(...) {
2 reuse->socks[reuse->num_socks] = sk ;
3 smp_wmb();
4 reuse->num_socks++;
5 }

469 struct sock *reuseport_select_sock(...) {
470 int socks = READ_ONCE(reuse->num_socks);
471 if (likely(socks)) {
472 smp_rmb();
…
487 reuseport_select_sock_by_hash(reuse);

1 static struct sock *reuseport_select_sock_by_hash(…) {
…
5 while (reuse->socks[i]->sk_state == …) {
6 i++;
7 if (i >= reuse->num_socks)
8 i = 0;
… …
… }
… }

22/5822/58

Racy re-read in the socket interface
1 int reuseport_add_sock(...) {
2 reuse->socks[reuse->num_socks] = sk ;
3 smp_wmb();
4 reuse->num_socks++;
5 }

469 struct sock *reuseport_select_sock(...) {
470 int socks = READ_ONCE(reuse->num_socks);
471 if (likely(socks)) {
472 smp_rmb();
…
487 reuseport_select_sock_by_hash(reuse);

1 static struct sock *reuseport_select_sock_by_hash(…, socks){
…
5 while (reuse->socks[i]->sk_state == …) {
6 i++;
7 if (i >= socks)
8 i = 0;
… …
… }
… }

23/5823/58

Removing unneeded barrier

1 static int rq_qos_wake_function (...) {
2 data->got_token = true ;
3 - smp_wmb();
4 wake_up_process(data->task);
5 }

24/5824/58

Influence of tuning parameters

0

50

100

150

200

250

300

350

400

450

500

1 3 5 10 20

N
u

m
b

er
 o

f
Pa

ir
in

gs

Number of explored statements around barriers

Number of pairings vs. number of explored statements

Correct Pairings Incorrect Pairings

25/5825/58

Extension #1: avoid reports on benign races

1 static int __pollwake (...) {
2 smp_wmb();
3 - pwq->triggered = 1;
4 + WRITE_ONCE(pwq->triggered, 1);
5 return ...;
6 }
7
8 static int poll_schedule_timeout (...) {
9 - if (!pwq->triggered)
10+ if (!READ_ONCE(pwq->triggered))
11 rc = schedule_hrtimeout_range (...);
12 smp_store_mb(…); // equivalent to smp_mb
13 }

Dynamic analysers report races on correct code. We mark the code as safe.

26/5826/58

Extension #2: avoid load/store tearing

1 void xprt_complete_rqst (...) {
2 req->rq_private_buf.len = …;
3 smp_wmb();
4 - req->rq_reply_bytes_recvd = copied;
5 + WRITE_ONCE(req->rq_reply_bytes_recvd,copied);
6 }

Reads/writes on some shared objects have to be atomic.

Without WRITE_ONCE, the compiler could do:
write 1st 32b of copied to rq_reply_bytes

write 2nd 32b of copied to rq_reply_bytes

(Actually happens with clang on arm64 CPUs!)

… resulting in readers reading possibly

partially written values.

27/5827/58

Conclusion (of the 1st part of the talk)

It is possible to infer concurrency by pairing barriers
• Shared objects

• Distance

Lockless code is error prone

Proof of concept: orderings – 12 bugs

Use it to check other concurrency bugs! (Use-after-free, …)

Questions (before the 2nd part)?

Provable Multicore Schedulers
with Ipanema: Application to
Work-Conservation

Baptiste Lepers
Redha Gouicem
Damien Carver
Jean-Pierre Lozi
Nicolas Palix
Virginia Aponte
Willy Zwaenepoel
Julien Sopena
Julia Lawall
Gilles Muller

29/5829/58

Work conservation

“No core should be left idle when a core is overloaded”

Core 0 Core 1 Core 2 Core 3

Non work-conserving situation:
core 0 is overloaded, other cores are idle

30/5830/58

Problem

Linux (CFS) suffers from work conservation issues

Core is mostly idle

C
o
re Core is mostly overloaded

[Lozi et al. 2016]

0

8

16

24

32

40

48

56

Time (second)

31/5831/58

Problem

FreeBSD (ULE) suffers from work conservation issues

Core is idle

C
o
re

Core is overloaded

[Bouron et al. 2018]

Time (second)

32/5832/58

Problem

Work conservation bugs are hard to detect

No crash, no deadlock. No obvious symptom.

137x slowdown on HPC applications
23% slowdown on a database.

[Lozi et al. 2016]

33/5833/58

This talk
Formally prove work-conservation

34/5834/58

Work Conservation Formally

(∃c . O(c)) ⇒ (∀c′ . ¬I(c′))

If a core is overloaded, no core is idle

Core 0 Core 1

35/5835/58

Work Conservation Formally

(∃c . O(c)) ⇒ (∀c′ . ¬I(c′))

If a core is overloaded, no core is idle

Core 0 Core 1

Does not work for realistic schedulers!

36/5836/58

Challenge #1

Concurrent events & optimistic concurrency

37/5837/58

Challenge #1

Concurrent events & optimistic concurrency

Observe (state of every core)

Lock (one core – less overhead)

Act (e.g., steal threads from locked core)

Based on possibly outdated observations!

ti
m

e

38/5838/58

Challenge #1

Concurrent events & optimistic concurrency

Core 0 Core 1 Core 2 Core 3

Runs load
balancing

39/5839/58

Challenge #1

Concurrent events & optimistic concurrency

Core 0 Core 1 Core 2 Core 3

Observes load
(no lock)

40/5840/58

Challenge #1

Concurrent events & optimistic concurrency

Core 0 Core 1 Core 2 Core 3

Locks busiest

Ideal
scenario: no
change since
observations

41/5841/58

Challenge #1

Concurrent events & optimistic concurrency

Core 0 Core 1 Core 2 Core 3

Locks “busiest”
Busiest might have no thread left!

Possible scenario:

42/5842/58

Challenge #1

Concurrent events & optimistic concurrency

Core 0 Core 1 Core 2 Core 3

(Fail to)
Steal from busiest

43/5843/58

Challenge #1

Concurrent events & optimistic concurrency

Definition of Work Conservation must take
concurrency into account!

Observe

Lock

Act
Based on possibly outdated observations!

ti
m

e

44/5844/58

Concurrent Work Conservation Formally

If a core is overloaded
(but not because a thread was concurrently created)

∃c . (O(c) ∧ ¬fork(c) ∧ ¬unblock(c) …)

Definition of overloaded with « failure cases »:

45/5845/58

Concurrent Work Conservation Formally

∃c . (O(c) ∧ ¬fork(c) ∧ ¬unblock(c) …)
⇒

∀c′ . ¬(I(c′) ∧ …)

46/5846/58

Challenge #2

Existing scheduler code is hard to prove

Schedulers handle millions of events per second
Historically: low level C code.

47/5847/58

Challenge #2

Existing scheduler code is hard to prove

Schedulers handle millions of events per second
Historically: low level C code.

Code should be easy to prove AND efficient!

48/5848/58

Challenge #2

Existing scheduler code is hard to prove

Schedulers handle millions of events per second
Historically: low level C code.

Code should be easy to prove AND efficient!
⇒

Domain Specific Language (DSL)

49/5849/58

DSL advantages

Trade expressiveness for expertise/knowledge:

Robustness: (static) verification of properties

Explicit concurrency: explicit shared variables

Performance: efficient compilation

50/5850/58

DSL-based proofs

DSL Policy

WhyML code

C code

Proof

Kernel module

DSL: close to C
Easy learn and to compile to WhyML and C

51/5851/58

DSL-based proofs

Proof on all possible
interleavings

52/5852/58

DSL-based proofs

load balancing

Core 0

load balancingti
m

e

Proof on all possible
interleavings

Split code in blocks
(1 block = 1 read or write to a

shared variable)

53/5853/58

DSL-based proofs

fork

Core 1 … Core N

terminate

fork

fork

Proof on all possible
interleavings

Split code in blocks
(1 block = 1 read or write to a

shared variable)

Simulate execution of concurrent
blocs on N cores

Concurrent WC must hold at the
end of the load balancing

load balancing

Core 0

load balancingti
m

e

54/5854/58

DSL-based proofs

fork

Core 1 … Core N

terminate

fork

fork

Proof on all possible
interleavings

Split code in blocs
(1 bloc = 1 read or write to a

shared variable)

Simulate execution of concurrent
blocs on N cores

Concurrent WC must always hold!

load balancing

Core 0

load balancingti
m

eDSL ➔ few shared variables ➔ tractable

55/5855/58

Evaluation

CFS-CWC (365 LOC)
Hierarchical CFS-like scheduler

CFS-CWC-FLAT (222 LOC)
Single level CFS-like scheduler

ULE-CWC (244 LOC)
BSD-like scheduler

56/5856/58

Less idle time
FT.C (NAS benchmark)

57/5857/58

Comparable or better performance

NAS benchmarks (lower is better)

58/5858/58

Conclusion

Work conservation: not straighforward!
… new formalism: concurrent work conservation!

Complex concurrency scheme
…proofs made tractable using a DSL.

Performance: similar or better than CFS.

