ORACLE

2
E

Improving Inference Performance of ML

with the Divide-and-Conquer Principle

Alex Kogan
Oracle Labs

ML models are everywhere ...

it

Image Recogni_tion Speech Recognition Predictive Analytics
for x-ray labeling for voice search for drug development

Video Processing Text Generation
for traffic monitoring for chatbot interaction

2 Copyright © 2023, Oracle and/or its affiliates

... and they are often deployed on CPUs

Deep Learning inferencing at scale with Oracle
Cloud A1 Compute with Elotl Luna

October 5, 2022 | 13 minute read

Kailas Jawadekar
Director of Produict Marketing Oracle Cloud Infrastructure Blog

How We Scaled Bert To Serve 1+
Billion Daily Requests on CPUs

S R LB LE X
12 minread - May 27,2020

3 Copyright © 2023, Oracle and/or its affiliates

Accelerating Stable Diffusion Inference on Intel CPUs

Published March 28, 2023

Update on GitHub

juliensimon echarlaix - Hugging Face
Julien Simon Ella Charlaix

Optimizing BERT model for Intel CPU
Cores using ONNX runtime default
execution provider

March 1, 2021 + 5 min read @ Microsoft Open Source Blog |

ML models scale poorly when deployed on CPUs. Why?

On a high-level: ML frameworks are geared towards high performance training, less so inference

4 Copyright © 2023, Oracle and/or its affiliates

ML models scale poorly when deployed on CPUs. Why?

On a high-level: ML frameworks are geared towards high performance training, less so inference

« Not “enough” work
 trained with large batches of large inputs, deployed with small batches of small inputs

5 Copyright © 2023, Oracle and/or its affiliates

ML models scale poorly when deployed on CPUs. Why?

On a high-level: ML frameworks are geared towards high performance training, less so inference

« Not “enough” work

 trained with large batches of large inputs, deployed with small batches of small inputs
* Non-Scalable operators

« some have inherently bottlenecks, others are plain implementation bugs

6 Copyright © 2023, Oracle and/or its affiliates

ML models scale poorly when deployed on CPUs. Why?

On a high-level: ML frameworks are geared towards high performance training, less so inference

« Not “enough” work

 trained with large batches of large inputs, deployed with small batches of small inputs
* Non-Scalable operators

- some have inherently bottlenecks, others are plain implementation bugs
* Framework “tax”

« small overhead per every op adds up ...

7 Copyright © 2023, Oracle and/or its affiliates

ML models scale poorly when deployed on CPUs. Why?

On a high-level: ML frameworks are geared towards high performance training, less so inference

Not “enough” work

 trained with large batches of large inputs, deployed with small batches of small inputs
Non-Scalable operators

« some have inherently bottlenecks, others are plain implementation bugs

Framework “tax”

« small overhead per every op adds up ...

Model architecture

« when one phase of a pipeline does not scale, the entire pipeline underperforms

8 Copyright © 2023, Oracle and/or its affiliates

Pipeline model architecture

» Popular inimage/video processing domains

PaddleOCR

= i 9 MOEES (EeE
T B U ! |

ODM OEM

(00 — tam .- io ms]
== (ODM OEM|
Text Detection Detection Boxes Rectify Text Recognition
m s (db_mv3_slim, 1.4M) - (dir_cls_mv3_slim, 0.5M) i (crnn_mv3_slim, 1.6M) mad OutPut

* From Du et. al., “PP-OCR: A practical ultra lightweight OCR system”. CoRR, abs/2009.09941, 2020.

9 Copyright © 2023, Oracle and/or its affiliates E

PaddleOCR performance

700 ‘ , . . .
I Detection I Recognition

600 | I Classification I Other
500 |
7))
£ 400 |
>
£ 300
8 .
8 200 |

100 |

0
1 2 4 8 12 16
threads

10 Copyright © 2023, Oracle and/or its affiliates

ML models scale poorly when deployed on CPUs. Why?

On a high-level: ML frameworks are geared towards high performance training, less so inference

Not “enough” work

 trained with large batches of large inputs, deployed with small batches of small inputs
Non-Scalable operators

« some have inherently bottlenecks, others are plain implementation bugs

Framework “tax”

« small overhead per every op adds up ...

Model architecture

« when one phase of a pipeline does not scale, the entire pipeline underperforms

11 Copyright © 2023, Oracle and/or its affiliates

ML models scale poorly when deployed on CPUs. Why?

On a high-level: ML frameworks are geared towards high performance training, less so inference

Not “enough” work
 trained with large batches of large inputs, deployed with small batches of small inputs
* Non-Scalable operators
« some have inherently bottlenecks, others are plain implementation bugs
* Framework “tax”
« small overhead per every op adds up ...
« Model architecture
« when one phase of a pipeline does not scale, the entire pipeline underperforms
« Wasted work due to padding
« batchingis a double-edged sword

12 Copyright © 2023, Oracle and/or its affiliates

What can be done?

* Rewrite ML models
« requires domain-specific expertise, retraining (time, cost)
* no guarantee that performance will improve

or

« Optimize and tune ML framework
* no changes to the model implementation
« requires extensive profiling and engineering effort

or

« Break the problem into smaller pieces of work, and run them in parallel
« simple idea that works well
« requires minimal code changes

Divide-and-Conquer Principle

13 Copyright © 2023, Oracle and/or its affiliates

Divide-and-Conquer Principle (DACP) design

Given a computation job J = {j1, jo, -.., jx}

« s.t.eachindependent part j; can be executed in parallel with other parts
Assume we have an oracle assigning relative weight w; € [0,1] to j;

« e.g., corresponding to the number of FLOPS

 or single-thread latency

Assume we have C cores

Assignci=max {1, Lw;*C | }toj;
* allocate c; worker threads (=cores) for j;

14 Copyright © 2023, Oracle and/or its affiliates

DACP design

Assignci=max {1, Lw;*C | }toj;
» allocate c; worker threads (=cores) for j;

What if 5¢; > C?
« might happen if k (number of job parts) > C
* not an issue — some jobs will run after others

What if 5S¢, < C?

« might happendueto [|

 sort all job parts by their remaining unallocated wight: w; * C - [w; * C |

« assign one core to each part, in the descending order, until all cores are allocated

15 Copyright © 2023, Oracle and/or its affiliates

DACP design

Given a computation job J = {j4, j2, .., Jx}

« s.t.eachindependent part j; can be executed in parallel with other parts
Assume we have an oracle assigning relative weight w; € [0,1] to j;

« e.g., corresponding to the number of FLOPS

 or single-thread latency

Assume we have C cores

Assignc=max{1, Lw;*C | }toj

* allocate c; worker threads (=cores) for j;

Sort all job parts by their remaining unallocated wight: w; * C - Lw; * C |

Assign one core to each part, in the descending order, until all cores are allocated

16 Copyright © 2023, Oracle and/or its affiliates

How to implement the “weight assignment” oracle?

ldea 1: Employ profiling and lightweight classification
 run profiling during the warm-up phase and tune up the weights
 associate job parts of similar shapes/features to the weight obtained during profiling

|dea 2: Set the weight proportional to input tensor sizes

+ let s;be the size of input tensors for j;

o setw;=s;/ 55

« (simplistically) assume linear correlation between FLOPS and input tensor size
* no profiling is required

17 Copyright © 2023, Oracle and/or its affiliates

Implementing DACP in OnnxRT

« Extend InferenceSession API with prun
« similar to run, but accepts a list of inputs and returns a list of outputs

* Internally, prun implements the DACP design

« create one worker thread per input
* and run those threads in parallel

« each worker thread creates a thread pool ...
« set the size of the pool according to w;

« ... andinvokes the session’s run method with that pool
« ~200 lines of code

18 Copyright © 2023, Oracle and/or its affiliates

User code changes

19

1
2
3
4
5
6

0 -

0

10

11

12

13

14

15

16

class TextRecognizer(object):
def __init__(self, args):

self.predictor = ort.InferenceSession(args.file_path)

self.postprocess_op = build_post_process(args)

def __call__(self, img_list):
img_num = len(img_list)
for beg_img_no in range(@, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)

inputs = prepare(img_list, beg_img_no, end_img_no)
outputs = self.predictor.run(inputs)

preds = outputs[@]

rec_result = self.postprocess_op(preds)

all_results.add(rec_result)

return all_results

Listing 2. Original (shortened and edited for clarity)
TextRecognizer class implementation from PaddleOCR

Copyright © 2023, Oracle and/or its affiliates

User code changes

20

1 class TextRecognizer (object):

2 def __init__(self, args):

3

4 self.predictor = ort.InferenceSession(args.file_path)
5 self.postprocess_op = build_post_process(args)

6

7 def __call__(self, img_list):

8 img_num = len(img_list)

9 for beg_img_no in range(@, img_num, batch_num):

10 end_img_no = min(img_num, beg_img_no + batch_num)
1 inputs = prepare(img_list, beg_img_no, end_img_no)
12 outputs = self.predictor.run(inputs)

13 preds = outputs[@]

14 rec_result = self.postprocess_op(preds)

15 all_results.add(rec_result)

16 return all_results

Listing 2. Original (shortened and edited for clarity)
TextRecognizer class implementation from PaddleOCR

Copyright © 2023, Oracle and/or its affiliates

class TextRecognizer(object):
def __init__(self, args):

1

2

3

4 self.predictor = ort.InferenceSession(args.file_path)
5 self.postprocess_op = build_post_process(args)

6

7 def __call__(self, img_list):

8 img_num = len(img_list)

9 for beg_img_no in range(®, img_num, batch_num):

10 end_img_no = min(img_num, beg_img_no + batch_num)
1 inputs = prepare(img_list, beg_img_no, end_img_no)
12 all_inputs.append(inputs)

13 all_outputs = self.predictor.prun(all_inputs)

14 for outputs in all_outputs:

15 preds = outputs[@]

16 rec_result = self.postprocess_op(preds)

17 all_results.add(rec_result)

18 return all_results

Listing 3. Modified TextRecognizer class implementation
(uses prun). Added or modified lines are in red

DACP evaluation: PaddleOCR (recap)

B)

ST

=, 30 N3O [ODM OEM|
CEECTETIED

= k3 r

e e ODM OEM
Text Detection Detection Boxes Rectify Text Recognition
m_’ (db_mv3_slim, 1.4M) el (dir_cls_mv3 slnm, OSM) mml (crnn_mv3_siim, 1.6M) el CVtPUt
700 ‘ : : : :
Il Detection I Recognition
600 | I Classification I Other
. 500
n
£ 400
>
c
5 300
©
- 200
100 |
0
1 2 4 8 12 16

threads

21 Copyright © 2023, Oracle and/or its affiliates

DACP evaluation: PaddleOCR / Text Recognition

one core per box equal number of cores per box
~

_—

900

base
goQ | | /

Emmm Prun-1
700 .] prun—def
600 | s Prun-eq

500 |
400 |
300 |
200 |
100 |

0

Latency (ms)

2 3 4 5 §) 7 8 9 10+
detected boxes

22 Copyright © 2023, Oracle and/or its affiliates

DACP evaluation: PaddleOCR / End-to-End Inference

1200
mmmmm Dase
1000 | memmmmm Prun-1
w800 |
£
> 600 |
-
e
o 400 |
-
200 |
0

2 3 4 5 §) 7 8 9 10+
detected boxes

23 Copyright © 2023, Oracle and/or its affiliates

DACP evaluation: Transformers
Batching of Heterogeneous Inputs

60 16
I Pad-batch "
E 50 | prun 14 :j"
E 10 prun 12 g
v I 10 ‘fh
o o
— 30 | 8 %
S
o -]
§) Q
S 20 | n
S 4 3
= -
c
< 10 2 8
>
0 0

0 1 2 3 5 9 12 15
of short sequences in a batch

24 Copyright © 2023, Oracle and/or its affiliates

DACP evaluation: Transformers
Batching of Homogeneous Inputs

90
80 |
70 |
60 |
50 |
40 |
30 |
20 |
10 |
0

Throughput (queries/s)

128 256 512
sequence length in a batch

25 Copyright © 2023, Oracle and/or its affiliates

Summary

« ML frameworks are optimized for large batches with long inputs
« but batches are small and inputs are short during inference

« Optimize / reimplement the model or the framework

or

« Use DACP!
« process input “chunks” in parallel (vs. processing the entire input with all available resources)
« over 2x latency and throughput improvement

« only minor user code changes
« future work: apply DACP w/o user code changes

* more details: https://arxiv.org /abs/2301.05099

Thank youl!
Any guestions?

26 Copyright © 2023, Oracle and/or its affiliates

https://arxiv.org/abs/2301.05099

