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ML models are everywhere …

Image Recognition
for x-ray labeling

Speech Recognition
for voice search

Predictive Analytics
for drug development 

Video Processing
for traffic monitoring

Text Generation
for chatbot interaction
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… and they are often deployed on CPUs
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On a high-level: ML frameworks are geared towards high performance training, less so inference

• Not “enough” work
• trained with large batches of large inputs, deployed with small batches of small inputs

• Non-Scalable operators
• some have inherently bottlenecks, others are plain implementation bugs

• Framework “tax”
• small overhead per every op adds up …

• Model architecture
• when one phase of a pipeline does not scale, the entire pipeline underperforms

ML models scale poorly when deployed on CPUs. Why?
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Pipeline model architecture

• Popular in image/video processing domains

* From Du et. al., “PP-OCR: A practical ultra lightweight OCR system”. CoRR, abs/2009.09941, 2020. 

PaddleOCR
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PaddleOCR performance
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On a high-level: ML frameworks are geared towards high performance training, less so inference

• Not “enough” work
• trained with large batches of large inputs, deployed with small batches of small inputs

• Non-Scalable operators
• some have inherently bottlenecks, others are plain implementation bugs

• Framework “tax”
• small overhead per every op adds up …

• Model architecture
• when one phase of a pipeline does not scale, the entire pipeline underperforms

• Wasted work due to padding
• batching is a double-edged sword

ML models scale poorly when deployed on CPUs. Why?
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• Rewrite ML models
• requires domain-specific expertise, retraining (time, cost)
• no guarantee that performance will improve

  or

• Optimize and tune ML framework
• no changes to the model implementation
• requires extensive profiling and engineering effort

  or

• Break the problem into smaller pieces of work, and run them in parallel
• simple idea that works well
• requires minimal code changes

What can be done?

Divide-and-Conquer Principle
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Given a computation job J = {j1, j2, …, jk}
• s.t. each independent part ji can be executed in parallel with other parts
Assume we have an oracle assigning relative weight wi ∈ [0,1] to ji
• e.g., corresponding to the number of FLOPS
• or single-thread latency
Assume we have C cores

Assign ci = max { 1, ⎿wi * C ⏌} to ji
• allocate ci worker threads (=cores) for ji

Divide-and-Conquer Principle (DACP) design
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Assign ci = max { 1, ⎿wi * C ⏌} to ji
• allocate ci worker threads (=cores) for ji

What if ∑ci > C?
• might happen if k (number of job parts) > C
• not an issue – some jobs will run after others

What if ∑ci < C?
• might happen due to ⎿ ⏌
• sort all job parts by their remaining unallocated wight: wi * C  -⎿wi * C ⏌
• assign one core to each part, in the descending order, until all cores are allocated

DACP design
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Idea 1: Employ profiling and lightweight classification
• run profiling during the warm-up phase and tune up the weights
• associate job parts of similar shapes/features to the weight obtained during profiling

Idea 2: Set the weight proportional to input tensor sizes
• let si be the size of input tensors for ji
• set wi=si / ∑si 
• (simplistically) assume linear correlation between FLOPS and input tensor size
• no profiling is required

How to implement the “weight assignment” oracle?
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• Extend InferenceSession API with prun
• similar to run, but accepts a list of inputs and returns a list of outputs

• Internally, prun implements the DACP design
• create one worker thread per input
• and run those threads in parallel

• each worker thread creates a thread pool …
• set the size of the pool according to wi

• … and invokes the session’s run method with that pool
• ~200 lines of code

Implementing DACP in OnnxRT
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User code changes
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User code changes
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DACP evaluation: PaddleOCR (recap)

Copyright © 2023, Oracle and/or its affiliates



22

DACP evaluation: PaddleOCR / Text Recognition

equal number of cores per boxone core per box
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DACP evaluation: PaddleOCR / End-to-End Inference
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DACP evaluation: Transformers
Batching of Heterogeneous Inputs 
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DACP evaluation: Transformers
Batching of Homogeneous Inputs 
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• ML frameworks are optimized for large batches with long inputs
• but batches are small and inputs are short during inference

• Optimize / reimplement the model or the framework 
or 
• Use DACP!

• process input “chunks” in parallel (vs. processing the entire input with all available resources)
• over 2x latency and throughput improvement
• only minor user code changes
• future work: apply DACP w/o user code changes

• more details: https://arxiv.org/abs/2301.05099

Summary

Thank you!
Any questions?
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