Rethinking
Systems Software for
Emerging Data Center Hardware

Antonio Barbalace

1 June 2023

Antonio Barbalace - Bio

* The University of Edinburgh, Scotland (9/2019 — present)

e Senior Lecturer at the School of Informatics

Stevens Institute of Technology, NJ (2018/8 —2019/12)

* Assistant Professor in Computer Science

* Huawei German Research Center, Germany (2016/9 — 2018/7)

* Principal Research Scientist and Manager

Virginia Tech, VA (2011/11 — 2016/8)
e Postdoc in Computer Engineering
e Research Assistant Professor in Computer Engineering

University of Padova, Italy (2002/9 — 2011/10)

e BS/MS in Computer Engineering
* PhD in Industrial Engineering (Nuclear Fusion)
* Research Staff Member (CNR)

icsa Institute for Computing
Systems Architecture

https://barbalace.it/antonio/ '

abarbala@ed.ac.uk

https://barbalace.it/antonio/
mailto:abarbala@ed.ac.uk

Antonio Barbalace — Research Interests

Real-time Systems

* Systems

Network
L[

fan,
"
........
aay
.....

e

........

..

e (S N | s
Systems . =l

Antonio Barbalace — Research Focus

 System Software

OS/Application co-design

Middleware/Framwork

What functionalities?
What structure? - -~
What algorithms?

HW/SW (OS) co-design «-=-====2rr=="""" - .

Hardware

Antonio Barbalace — Research Team

e Postdoc/RA

 Maxime France-Pillois — FPGA,
Runtime, Compiler

e PhD
* Nikos — Compilers
e Raven** — Runtime, Compilers
* Karim —0S
* Tong — OS, Virtualization
e Pei— Compilers, Databases
e Alan —Data Center
* Amir—0S
e Xiangyu — Quantum OS

* Minf/Honors UG

e Utsav Agarwal (Minf)
Karoly Lovasz (Minf)
Dale Huang (Minf)
Stephen Huang (UG)
Vladimir Hanin (UG)
e Sergio Dominguez (UG)

* Others UG
* Yang — FPGA
e Cong — Virtualization
* Nicholas — Applications

Systems Nuts Research Group
O https://github.com/systems-nuts

https://github.com/systems-nuts

Traditional Computer Hardware

* CPU, memory, disk, network
e Central processor
* Hierarchy of memory
* Slow interconnects and IOs

* Cannot satisfy applications’ demands

* Hardware is (radically) changing

e Circumventing limitations
* Moore law
* Dennard scaling
* Physical limits
e etc.

ardware Trend: Parallelism

Thousands of

‘ cores

Hundreds of
cores

Samsung
Lv

nnNe
L./\yllud 0CTA

Each image is Copyright of the respective ompany or Manufacturer. Images are used here for educational purposes.

-
X80 | Ara
Samsung - -

59
J W0

Developing -bit ARM
cores alongsi. aew
64-bit x86 cores

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

Hardware Trend: Integration

Samsung
EXYNOS

\

D LI
(. -
Developing 64-bit ARM

cores alongside new
64-bit x86 cores

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

ol A 4 SEmts
Sl

Intel® QuickPath
Interconnect

AMBA 5 CHI

‘Die/ Package
Inter-

Ncore
connect

OpenPiian

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educatior

PCI-SIG BANDWIDTH 1992-2019

Hardware Trend: Near Data Processing

Near/In-Memoryg"t
Memory Processing

Central In-Storage
Processing Storage Computing

......

On-Stream
Network Processing

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

Coherent shm

Today’s New Computer Hardware

MPU

\ Accel I

TPU y Gpu CPU CPU CPU CPU

X N | 8 = — | =

{Memory \Y/1V)

How to program?

How to fully exploit
resources?

Current Softwar for Heterogeneous Hardware

—— e
- ‘\

-
— -

Compiler GPU DevDrv GPU
Compiler Accel XSt DevDrv Accel X W
Compiler TPU DevDrv TPU
Compiler MPU DevDrv MPU
Compiler SPU | DevDrv SPU

91eM1}0S

<
Compiler NPU DevDrv NPU

alempJieH

Current Software for Heterogeneous Hardware

App Software runs on CPUs
Other processing units

cannot run the same Middleware ™ .,
software as the CPUs

* Different ISA Compiler System

 No shared memory Drv

Programmer (strictly)
partitions the application
Each partition runs only on
a predefined processing unit
Supporting drivers,

runtime, compilers

Current Software for Heterogeneous Hardware

void full verify(void) prd void full_verify(void) =2
{ o (Y
INT TYPE i, 3; o w
— cl kernel k fv0, k fvl; T
. . . wn - - - wn
for(i=0; 1<NUM KEYS; i++) w ¢l mem m 35 Gl AnE cesels o
key buff2[i] = key array[i];) - - -
- INT_TYPE *g_3j; ©
-—
for(i=0; i<NUM KEYS; i++) Q INT TYPE § = 0, i; g
key array[-- - }) ‘e)
key_buff_ptr_global [key_buffZ [l]]] g size_t j_size; size_t fv0 1lws([1], £fv0 gws[1]; size_t fvl lws[1l], fvl gws[1l]; -
= key buff2[i]; - (7,)
.. © >
} o) j_size = sizeof (INT TYPE) * (FV2_GLOBAL SIZE / FV2_ GROUP_SIZE); _5'
)
P m_j = clCreateBuffer (context, CL_MEM READ WRITE, j_size, NULL, &ecode); ge)
)
-+
k_fvl = clCreateKernel (program, "full verifyl", &ecode);
k_fv0 = clCreateKernel (program, "full verifyO", &ecode);
Benchmark m ecode = clSetKernelArg(k_fv0, 0, sizeof(cl_mem), (void*)&m_key array);
ecode |= clSetKernelArg(k_fv0, 1, sizeof(cl_mem), (void*)&m_key buff2);
Senal LOC 506 163 606 £v0_lws[0] = work_item sizes[0];
fv0_gws[0] = NUM_KEYS;
0, 0, 0,
OpenCL added 303/0 164/0 143/0 ecode = clEnqueueNDRangeKernel (cmd_queue, k_fv0, 1, NULL, fv0_gws, fv0_lws,

0, NULL, NULL);

serial and OpenCL version of SNU NPB

ecode = clSetKernelArg(k_fvl, 0, sizeof(cl_mem), (void*)s&m_key buff2);
ecode |= clSetKernelArg(k_fvl, 1, sizeof(cl_mem), (void*)s&m_key buffl);
[1] “Popcorn: bridging the programmability gap in heterogeneous-ISA TR S R S e 1Tl
platforms” A. Barbalace et al., EuroSys ‘15 fvl_gws[0] = NUM_KEYS;

ecode = clEnqueueNDRangeKernel (cmd queue, k fvl, 1, NULL, fvl gws, fvl lws,
0, NULL, NULL); - - - a

[)

- Drv Drv
Middleware = p,,

What Are the Problems? S

Compiler SYSte m i

Drv

rnime Software -

* For each new hardware component YT
* A new support software &) _

* Nightmare for application’s programmers

* Hard to program (lot of boilerplate code)
 Several APIs/programming models exist

» Difficult to port to a new platform Solved by middleware?

— — . But software lock-in ...
* Rigid, poor resource utilization
* Performance, energy efficiency, determinism

* One programmer focuses on one application
* Many applications run at the same time

New Software for Heterogeneous Hardware

* The OS extends among
all processing units

* The compiler builds
applications software to Middleware
run among all
processing units

* The runtime supports Operating System Kernel
all processing units

* Programmers don’t
have to partition the
application, which may
run everywhere,
transparently

% Compiler B Runtime

Key ldea:
Forget Offloading, Program like SMP

Multi-I1SA Program like SMP
Unified Addr Space/ABI =2 don’t care about heterogeneity

| Compiler & Runtime

Middleware

Multiple —— (Same OS
communicating Compiler Runtime interface

OS krn/rtm/FW\
TN .
Operating System Kernel 0S 0S 0S
part part part

91eM1}0S

........... A e ,I:::.J

i

vViem E
%)

alempJieH

Coherent shm

Taming pervasive

CPU Heterogeneity
(earlier work)

Introducing pervasive
Coherent Shared Memory
(current work)

Popcorn Linux and Compiler Framework
Family of Projects
 Started at Virginia Tech, Blacksburg, VA, mid-2012

 Several Linux kernel/LLVM versions exists — upstream attempted

e Targets platforms with multiple groups of general-purpose PUs

* Non-cache-coherent groups
* Microarchitectural or ISA heterogenous

* |nitial goal(s)
* Extend the multiple kernel OS design (Barrelfish, DragonFly BSD) to Linux
* Provide the same OS and programming environment among (diverse) processing units

* OS + compiler transparently provide SMP environment on non-SMP platforms

Popcorn Linux and Compiler Framework

runtime

migration Runtime
— * Runtime ISA execution migration
» State transformation

Application State . Ba?ed on musl C library
Compiler Framework

> code code .
* Model-based code optimization
Source Analyzed Per-ISA * One binary per ISA

Code Source Code Single System Image * Based on gcc/LLVM
Replicated-kernel Operating System
* One kernel per ISA

e Distributed systems services
* Single system Image
* Based on Linux

Popcorn Linux — Operating System

Single System Image

Popcorn
Linux krnO Services

Popcorn

Popcorn NS I Popcorn NS

Popcorn Communication Layer

Single System Image

* Based on Popcorn namespaces (NS)
* Extends Linux namespaces

* Creates a single operating environment
* Migrating app sees the same OS

Distributed OS Services

* Task (thread and process) migration

* Native code migration
* Distributed memory management (DSM)
* Distributed file system

Inter-kernel Communication Layer

* Performance critical component
* |ow-latency and high-throughput

* Exclusively kernel-space

* Single format among ISAs

Popcorn Linux — Task Migration

* Thread Migration

e Selected threads are transferred
 Threads' state is transferred

e Kernels coordinate to maintain
application state consistent

* Process Migration

* Whole application is transferred
e All threads, user- & kernel-state

* No dependecies are left on the
origin kernel

Single System Image

Single System Image Single System Image Single System Image

krn0 (o vices krn1 krnO-! cervices krnl

krn0 o rvices krnl krnO services krnl

Popcorn Linux — Thread Migration’s DSM

* Replicated virtual address space
* Kept consistent among kernels

e Page coherency protocol

* Based on Modified-Shared-Invalid
(MSI) cache coherency protocol

* Memory page granularity instead
of cache line granularity

* Additional states to improve
performance

e Scaled from two kernels to
multiple kernels

Fetch_Meg /
Copy_Msg

App_Write |
Eroadcast:
Invalld_Msg

N

Invallid_Msg

App_Read or
App_Write /

Broadeast:
Felch_Msg

Fateh_MEg /
EIJP"'_MEJ;

Fatch_Meg /
Copy_\old_Msg

Invalld_Msg

Popcorn Linux — Compiler/Runtime

runtime

migration
O @

Application State

% @_E ISA a ISA A specific ISA B specific
‘ oot code code
Source Analyzed Per-ISA .
! ! : intel) appiiec
Code = Source | Code ISAA [y, e\ ISAB
‘] ‘ x86 ARM
Profiler Complle.r Runtime
- Toolchain Framework

* Profiler
* Performance and power profiles
* Function and sub-function granularity

* Qutput performance and power code
indicators

» Affinity estimations with cost model

 Compiler Toolchain

* OQutput heterogenous-ISA binary
(native)
* Common address space (including TLS)
* Add migration points (func boundaries)
* Add state transformation metadata

e Runtime Framework

e Support task migration

* Implements state transformation
* Stack-transformation (rewriting)
* Register-transformation

Popcorn Linux — Compiler

* Produces program binaries for each ISA 86 .2
e Common address space
text |Ox400 Foo 0x400 Foo
* Common type system (and alignments) 0x480 Main | « » [0x480 main
) 0x5a0 Rand | < » [0x5a0 Rand
* Each symbol at same virtual address on any ISA Ox5b8 Malloc | < » [0x5b8 Malloc
. rodata | QOx600 tmask Ox600 tmask
* No address space conversion! 0x608 states | < » [0x608 sies
¢ Common thread-local storage (TLS) layout e T D s
° bss | 0x800 _bss start 0x800 __bss start
x86_64 layout forced e . foxsTo— s
* No TLS conversion! Ox8a4 = “ > |0x8ad4 -
.]) 0x8d8 myid | « » [0xBd8 myid
* Migration points arrayh

1

Foo ()
* Cannot migrate at any instruction Program [‘]‘ I 1
. . . . Bi
* State-transformation meta-data in binaries e e

* E.g., var properties, stack frame offsets

(Merged) Virtual
Address Space

Popcorn Linux — Runtime
Stack Transformation
x86_64 Stack

.dealler's frame)...

aarch64 Stack

.Acallar's frama)...

Additional Arguments Additional Argumenis
(couldn't pass in regs) {couldn't pass in regs)

Return Address Return Address

Caller's Frame pninter% Caller's Frame pointer

Data Structure “bar"

Data Structure "bar”
Variable "baz" I y ! arg 1
' arg 2
arg 1 |
arg 2 1
L Variable bal’ _________ Variable "baz"
Variable "bat"
x86_64 Register State

aarch64 Register State

Popcorn Linux Results

* Ease programmability Homogeneous System Heterogeneous System
* Enable portability (and legacy support)

* Improve resource utilization

1 balanced x86
balanced ARM

Il static x86(1)
[static x86(2

* Runtime decisions (vs static) oo ————" — o)
T 0
e On heterogeneous-ISA [1] R T M A G
= _
* Up to 3.5x more performant < 150 et
= | \
than other heterogeneous 2 =
T~ oo W 1 (N 0 N I Y A O 4 o Y O O U U) IS 0 U I 8 IO
frameworks SE
e On fully heterogeneous-ISA [2] c y
CHEY| BN EEN NN pi NEN NEN NN REN NEN NEEE
* Up to 66% better energy
consumption for bursty arrivals 4 Al NN Al Al NN AN Al AN A |} .
set-0 set-1 set-2 set-3 set-4 set-5 set-6 set-7 set-8 set-9 avg
[1] “Bridging the Programmability Gap in Heterogeneous-ISA Platforms” [2] “Breaking the Boundaries in Heterogeneous-ISA Datacenters” A.

A. Barbalace et al., EuroSys '15 Barbalace et al., ASPLOS '17

H-Containers

runtime

LLVM IR

o> &

Single-ISA
Binary

f Runtime (muslc-based)
ISA a ISA A specific ISA B specific
> > code code
* LLVM IR to per-ISA Binary
* Vanilla Operating Syste
m * Based FITOX, LiInux containers
Bk * Namespaces, cgroups

migration e Runtime

——

-— * OS Process-level

Checkpoint/Restart
* Transpiler Framework
.
. . Y s * Based on McSema/Remill and
B\ScGere\ ISA B

Application State * Based on CRIU and Popcorn
* Binary decompiled to LLVM IR
Linux krnO Linux krn1 Popcorn Compiler (LLVM)
ARM

H-Container — Runtime
Checkpoint/Restart Migration

Origin Machine (ISA A) Destination Machine (ISA B)
-)

Image =
- File
N 4

(Application state)

Julod)d9y)d
culdojsued]

lllllll‘awm-l.llllllll

4

(Application state) k
Container Container

*New Components

H-Containers — Transpiler

Non-LLVM o ~ o PR W N LLVM
Compller Compller
User
Source Code '
User provided User provided Cross-ISA Migratable
Binary LLVM IR Binaries
Native
Exec H-Container | LLVM IR Q H-Container Native
Binary De-Compiler |l Compiler | Exec
. . . . Binary
7 o McSema/Remill N 7 o Popcorn Compiler ~<_ - 7
Disassembl . : R : Migration : Compiler
or » Lifter > Fixer Points —> Aligner * and Linker

H-Containers Results

* Fully-working implementation
* Docker support

* True dependency-free

* No need of source code
* Works on any Linux kernel

* Minimal overheads [1]
* Multiple benchmarks

* Application run time is the same
or lower

e State transform contribute to less
than 1% to migration

[1] “Edge Computing: the Case for Heterogeneous-ISA Container
Migration” A. Barbalace et al., VEE ‘20

kmeans-10000
kmeans-1000
npb-is-C
npb-is-B
npb-is-A
dhrystone
linpack

kmeans-10000
kmeans-1000
npb-is-C
npb-is-B
npb-is-A
dhrystone
linpack

P 86 Checkpoint
S i .
s (Migrate to ARM)
0 10 20

ARM Checkpoint
(migrate to x86)

0 50 100
time (ms)

M dump_ freezing ™ dump other dump_transform

B dump_mem B dump _memwrite B dump_rest

Taming pervasive
CPU Heterogeneity
(earlier work)

Introducing pervasive

Coherent Shared Memory
(current work)

Heterogeneous-ISA CPUs with

Coherent Shared Memory Projects

 Started at Huawei, Germany, mid-2017 [1]
e CCIX SmartNICs, SmartSSD, Smart Memory nodes, etc.

* Targets platforms with multiple groups of general-
purpose processing units
* Coherent Shared Memory, or a mix of coherencies
* Microarchitectural or ISA heterogeneous

* |nitial goal(s)
* Exploring alternatives to offloading

* Driven by huge-memory applications use cases
* SMP environment on het-ISA coherent shared memory

» Extend OS/Compiler to support emerging hardware

[1] “It's Time to Think About an Operating System for Near Data Processing
Architectures” A. Barbalace et al., HotOS ‘17

host
CPUA
complex

host
CPUA
complex

host
CPUA
complex

host
CPUA
complex

CPUD
complex

host
CPUB
complex

switch

diyd/ININIC

Alowa N

921Aap |edaydiiad

1ews

1ews

Amash Linux and Compiler Framework

runtime

migration
@ @

Application State

From Popcorn

Runtime

* Runtime ISA execution migration
» State transformation

e Based on musl C library

* Compiler Framework
* Offline analysis

* Model-based code optimization
* One binary per ISA
* Based on gcc/LLVM

* Fused-kernel Operating System
* One kernel per ISA

* Distributed/Shm systems services
* Single system Image
Based on Linux

_

kNo; ISA A specific ISA B specific
/T > code code
Source Analyzed Per-ISA

Code Source Code Single System Image

ISA B

Amash Linux — Operating System

* Single System Image
1 on Popcorn namespaces (NS)

Design Principles xtends Linux namespaces
* For inter-kernel communication es a single operating environment
Single * Avoid or minimize software message passing Nigrating app sees the same OS
Ing * Prefer hardware-implemented coherent ted/shm OS Services

shared memory
* For data on shared memory
* Use common data format, avoid data conversions

buted OS services (msg passing)
1l OS services (shared memory)

-ask (thread and process) migration
* Native code migration

* Inter-kernel Communication
ISA A ‘ ISAB Performance critical component
x86 [' . ARM * low-latency and high-throughput
=) — * Exclusively kernel-space
 Message passing & Shared memory

* Single format among ISAs

" PCle/CXL

User/App

State-of-the-art: Multiple Kernels OS
Shared-nothing

Example distributed protocol: DSM

. . . . User/App
Application Space Application Space
1 |:| [] Multiple-kernel
hared Data
. . Kernel/
Multiple-kernel SMP 11 CJICICT | | Runtime
Operating 0os/ Code Code Space
System Runtime I Priv Data Priv Data
Krn ISA A Krn ISA B € 1 . > Krn ISA B KrnISAC |
shared- shared- shared- shared-
\ nothing something mostly everything
® | CPUSISAA | | CPUSISAB | | CPUSISAB | | CPUSISAC |
Private Private riivawc riivawc Private Private
Memory Memory Memory Memory Memory Memory
GIoI%/ Addressable Memory Globally Addressable (Coherent) Memory

7

Amash Linux: Fused-kernel OS

Shared-mostly
Example shared data: VFS/Page Cache (prototype built)

Amash Linux — VFS/Page Cache

e Distributed VFS

* Based on Popcorn Linux
» Seek pointers on (CC) SHM

* Global page cache on (CC) SHM
* Uses Global Memory Allocator

* Data pages migrated to pooled
memory on demand
* Pages can be accessed by any kernel
e Data pages flushed to storage on
demand

MNode A

Q Process

Userspace 2 \

Mode B

/7

|
+

\'w

Process

=

\ASH

Kernel space ,|'f D.‘iscm—?'L
3
’Ll Mount 1
_EDK
@"H‘@ /
/
NV /
3
] =< X
A
/
Memory A Pooled Memory | | Memory B
Page '.51

migration !

AP Ef

™
Disk |

Amash Linux — Platform Simulator
and Future Work

» Simulator based on QEMU (with UCSD)

| ISAB
* Interconnects two QEMUs -
 Supports diverse memory latencies and consistencies @ == ?mtﬁn@vﬂa%ﬂ Fe
| E —
« Same SoC, NUMA, CXL, etc. 2

. . . smmu i—
Based on Multicachesim dev dev dev dev dev dev

QEMUA ' QEMUB

/

e Future Work (sketched in [1])

* Transparent data sharing between kernel instances
* Typed-shared memory supportin
e Compiler
* Operating system

[1] “Rethinking Communication in Multiple-kernel OSes for New Shared
Memory Interconnects” A. Barbalace et al., PLOS ‘19

Amash Linux Results

400%

300%

0% “ “ “ “ “ “ n

102400bytes 10240bytes 1024bytes 512bytes 300bytes 32bytes 3bytes
Request Payload

= PING_INLINE_shm = PING_BULK_shm
GET_shm SET_shm

BT SP EP IS cG MG

mTCP/IP m. Amash Amash_NO_MSG

* On Cache-coherent het-ISA SoC [1]

* Improve performance

 Amash faster than Popcorn

* Shared memory faster than msg
passing

* Removes distributed protocols
overheads (where possible)

N
(=]
=]
X

in Redis server
(=9
[=]
[=]
=

250%

200%

* Proof of feasibility

e Shared memory data structures
between heterogeneous-ISA CPUs

e Like in (homogeneous-ISA) SMP

=
5.
(=]
B

in NPB benchmarks
g 8
R =

Q
ES

[1] “Amash: Exploring Coherent Shared Memory Heterogeneous-ISA
Platforms” T. Xing et al., TO BE SUBMITTED

Speedup over TCP/IP message layer Speedup over TCP/IP message layer

Unificum Compiler Framework

runtime
migration

<>

Application State

ISA A specific
code

ISA B specific
code

_ weomD [ispal|
: sl >
o LY 3

Source: Analyzed Per-ISA

\ aQD"‘g?
Code Source @ Code | Shm . ISA B
Profiler Complle.r Runtime
- Toolchain Framework

From Popcorn

Profiler

Performance and power profiles
Function and sub-function granularity

Output performance and power code
indicators

Output heterogenous-ISA binary
(native)
* Unified address space
Including TLS, heap, and stack
* Add migration points (func boundaries)

Runtime Framework

Support for task migration

Minimal state transformation
* Register remapping

Unificum Compiler

IR

Addressing Modes
Instruction Immediate Encoding
Selection Materializing Values

* Produces program binaries for each ISA

« Common address space IS Maigment (Bt Zayout
* Common type system (and alignments) rogister (PoILIE Sp!ciﬂcations
* Each symbol at the same virtual address on any ISA Allocation pasilaas
* No address space conversion! post-Register Remteffjlc"’ization
« Common thread-local storage (TLS) layout Friosamen ot
* x86_64 layout forced —
* No TLS conversion! v
 Common stack layout o tten Callsite Padding
* Based on commonalities among ISAs o virtmal Register
* No stack transformation, no additional metadata! Time emery Fe
* Migration points X6 AR = xadar ::Fz
* Cannot migrate at any instruction layout 3| i i | Remp1
2 [otare | | | ree
* Extension to the LLVM compiler backend At

Unificum versus Popcorn Compiler Frmwrk

* Popcorn Compiler Framework e Unificum
* “One ABI per ISA” * “Single ABI across ISAs”

Registers Usage
x86 ARM
x86_64 Stack aarch64 Stack
Callee-saved
...(caller's frame)... ...(caller's frame)...
rsp SP Stack pointer
AdditiOI"laI Arguments Additior‘\al Arguments _ r30 Link register
(couldn't pass in regs) (couldn't pass in regs) rbp r29 Frame pointer
Return Address Return Address rbx, ri5 rig, r2e General purpose NPB BT exec tl me
Caller's Frame pointer — ﬁ Caller's Frame pointer Caller-saved
Data Structure "bar® I Data Structure “bar" rax, rdx rs, r2 Return 18001 .'. ® Dbase
| I rdi ro Func arg #1/return . 15 resrist
Variable "baz* | . g:g ; rsi,rdx,rcx,r8,r9 ri-r5 Func args #2-#6 1600 1 ¢ remove Loregisters
I LR W — .
3! \ ¥ [r10-ri14 ré,r7,r16-r18 Temp registers
arg 2 1 - el Xmmo@—xmm1 vo-vi FP args/return 1400+
d - — | 1 Xmm2—xmm?7 v2-v7 FP args
< | A l r xmmg-xmm15 v8-v15 Temp FP registers — 12001
Variable "bat” l "~ Variable "baz" E 1000 4
= “%
[800
Variable "bat"
x86_64 Register State 600
aarch64 Register State 4001 b
=]
200 1 ®
1 2 4+ 6 8

Threads

Unificum Results

{- Code[| Datal | Debug I Metadata]

Lo bt cg ep ft
009t
. . . 0.8t
* Fully-working implementation 2 o7/ o
: : : % oel Binary size
* Migration uses H-Containers 5 oal (x86_64)
50.3: -
* No metadata in binaries g0
H . H O'Ouu:' VU CcE VLU C ¢ U U Cc ¢
* Fixed ISA-Register mapping E585 £585 £585 £58§
* No other transformation 5 €5 & €5 & €5 & &5
* Minimal size increase for paddings
e o 195 Input Class
* Minimal overheads [1] CIY_LI=¢:
. 1.00F T —
. Multlple bench-ma-\rks | <, O OO OO (C (o P B | Exec time
* Single ABI restrictions introduce = NPB
<2% overheads on avg & (x86_64)
* FT case needs more work
0.00 bt lu mg sp ua cg ep ft is Geomean

[1] “The Unificum Approach to Multiple ISA Shared Memory Compilation”
N. Mavrogeorgis et al., UNDER SUBMISSION

More on Heterogeneous-ISA CPUs with
Coherent Shared Memory

* Work for new memory interconnects

e Operating systems (current)

Redesign memory subsystem in traditional OSes
* Automatic memory tiering
* Provide memory caching/coherency where not supported
 Security/partition/control
New OS abstractions
* To connect/open a block of memory
* To address a block of memory
Compiler (future)
A la Twizzler/my_plos_paper pointers

Rethinking Compilation/Linking

Conclusion Thanks! Questions?

* Today’s new (heterogeneous) hardware

Requires New systems software for “better”
* Programmability
* Exploitability
* ... but also accessibility, security, fault-tolerance, etc.
Key Idea: SMP programming among heterogeneous-ISA processing units
* With or without coherent shared memory
* Is possible, and enables flexible resource exploitation
New OS designs and abstractions
e Multiple-kernel and fused-kernel proved to extend traditional OSes to het-ISA CPUs

New Compilers backends
* Multi-ISA, “single ABI”, compilation for zero-cost task migration among het-ISA CPUs

abarbala@ed.ac.uk

mailto:abarbala@ed.ac.uk

	Default Section
	Folie 1: Rethinking Systems Software for Emerging Data Center Hardware

	bio, research, group
	Folie 2: Antonio Barbalace - Bio
	Folie 3: Antonio Barbalace – Research Interests
	Folie 4: Antonio Barbalace – Research Focus
	Folie 5: Antonio Barbalace – Research Team

	new hardware
	Folie 6: Traditional Computer Hardware
	Folie 7: Hardware Trend: Parallelism
	Folie 8: Hardware Trend: Heterogeneity
	Folie 9: Hardware Trend: Integration
	Folie 10: Hardware Trend: Coherency
	Folie 11: Hardware Trend: Near Data Processing
	Folie 12: Today’s New Computer Hardware

	state of the art
	Folie 13: How to program? How to fully exploit resources?
	Folie 14: Current Software for Heterogeneous Hardware
	Folie 15: Current Software for Heterogeneous Hardware
	Folie 16: Current Software for Heterogeneous Hardware
	Folie 17: What Are the Problems?
	Folie 18: New Software for Heterogeneous Hardware
	Folie 19: Key Idea: Forget Offloading, Program like SMP

	Popcorn
	Folie 20: Taming pervasive CPU Heterogeneity (earlier work)
	Folie 21: Popcorn Linux and Compiler Framework Family of Projects

	Het-Popcorn
	Folie 22: Popcorn Linux and Compiler Framework
	Folie 23: Popcorn Linux – Operating System
	Folie 24: Popcorn Linux – Task Migration
	Folie 25: Popcorn Linux – Thread Migration’s DSM
	Folie 26: Popcorn Linux – Compiler/Runtime
	Folie 27: Popcorn Linux – Compiler
	Folie 28: Popcorn Linux – Runtime
	Folie 29: Popcorn Linux Results

	H-Containers
	Folie 30: H-Containers
	Folie 31: H-Container – Runtime
	Folie 32: H-Containers – Transpiler
	Folie 33: H-Containers Results

	New Stuff
	Folie 34: Introducing pervasive Coherent Shared Memory (current work)
	Folie 35: Heterogeneous-ISA CPUs with Coherent Shared Memory Projects

	Amesh
	Folie 36: Amash Linux and Compiler Framework
	Folie 37: Amash Linux – Operating System
	Folie 38: Amash Linux – Multiple-kernel vs Fused-kernel
	Folie 39: Amash Linux – VFS/Page Cache
	Folie 40: Amash Linux – Platform Simulator and Future Work
	Folie 41: Amash Linux Results

	Unificum
	Folie 42: Unificum Compiler Framework
	Folie 43: Unificum Compiler
	Folie 44: Unificum versus Popcorn Compiler Frmwrk
	Folie 45: Unificum Results

	Other Current Work
	Folie 46: More on Heterogeneous-ISA CPUs with Coherent Shared Memory

	Conclusion
	Folie 47: Conclusion

