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Antonio Barbalace – Research Focus

• System Software
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Traditional Computer Hardware

• CPU, memory, disk, network
• Central processor
• Hierarchy of memory
• Slow interconnects and IOs

• Cannot satisfy applications’ demands 

• Hardware is (radically) changing
• Circumventing limitations 

• Moore law
• Dennard scaling
• Physical limits
• etc.
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Tens of       
cores

Hundreds of 
cores

Thousands of 
cores

Hardware Trend: Parallelism

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.



AMD
Hardware Trend: Heterogeneity

Reconfigurable

Special 
purpose

Fully 
general 
purpose

OS-capable

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.



Hardware Trend: Integration

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.
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Hardware Trend: Coherency

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.
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Hardware Trend: Near Data Processing

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.
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Today’s New Computer Hardware
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How to program?

How to fully exploit 
resources?



Current Software for Heterogeneous Hardware
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Current Software for Heterogeneous Hardware

• App Software runs on CPUs
• Other processing units 

cannot run the same 
software as the CPUs
• Different ISA
• No shared memory

• Programmer (strictly) 
partitions the application

• Each partition runs only on 
a predefined processing unit

• Supporting drivers, 
runtime, compilers

CPUCPUCPUCPU

System 
Software

Middleware

Application

GPU
Accel 

X

Drv Drv
Drv

Drv

Drv

Drv

Runtime

Compiler

DPU

App App Func

FW



Current Software for Heterogeneous Hardware
void full_verify( void )

{

INT_TYPE    i, j;

for( i=0; i<NUM_KEYS; i++ )

key_buff2[i] = key_array[i];

for( i=0; i<NUM_KEYS; i++ )

key_array[--

key_buff_ptr_global[key_buff2[i]]]

= key_buff2[i];

...

}

void full_verify( void )

{

cl_kernel k_fv0, k_fv1;

cl_mem m_j; cl_int ecode;

INT_TYPE *g_j;

INT_TYPE j = 0, i;

size_t j_size; size_t fv0_lws[1], fv0_gws[1]; size_t fv1_lws[1], fv1_gws[1]; 

j_size = sizeof(INT_TYPE) * (FV2_GLOBAL_SIZE / FV2_GROUP_SIZE);

m_j = clCreateBuffer(context, CL_MEM_READ_WRITE, j_size, NULL, &ecode);

k_fv1 = clCreateKernel(program, "full_verify1", &ecode);

k_fv0 = clCreateKernel(program, "full_verify0", &ecode);

ecode = clSetKernelArg(k_fv0, 0, sizeof(cl_mem), (void*)&m_key_array);

ecode |= clSetKernelArg(k_fv0, 1, sizeof(cl_mem), (void*)&m_key_buff2);

fv0_lws[0] = work_item_sizes[0];

fv0_gws[0] = NUM_KEYS;

ecode = clEnqueueNDRangeKernel(cmd_queue, k_fv0, 1, NULL, fv0_gws, fv0_lws, 
0, NULL, NULL);

ecode = clSetKernelArg(k_fv1, 0, sizeof(cl_mem), (void*)&m_key_buff2);

ecode |= clSetKernelArg(k_fv1, 1, sizeof(cl_mem), (void*)&m_key_buff1);

fv1_lws[0] = work_item_sizes[0];

fv1_gws[0] = NUM_KEYS;

ecode = clEnqueueNDRangeKernel(cmd_queue, k_fv1, 1, NULL, fv1_gws, fv1_lws, 
0, NULL, NULL);
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[1] “Popcorn: bridging the programmability gap in heterogeneous-ISA 
platforms” A. Barbalace et al., EuroSys ‘15



What Are the Problems?

• For each new hardware component
• A new support software

• Nightmare for application’s programmers
• Hard to program (lot of boilerplate code)

• Several APIs/programming models exist

• Difficult to port to a new platform

• Rigid, poor resource utilization
• Performance, energy efficiency, determinism

• One programmer focuses on one application
• Many applications run at the same time

Solved by middleware? 
But software lock-in …



New Software for Heterogeneous Hardware
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• The OS extends among 
all processing units

• The compiler builds 
applications software to 
run among all 
processing units

• The runtime supports 
all processing units

• Programmers don’t 
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run everywhere, 
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Key Idea: 
Forget Offloading, Program like SMP
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Taming pervasive
CPU Heterogeneity
(earlier work)
Introducing pervasive
Coherent Shared Memory
(current work)



Popcorn Linux and Compiler Framework 
Family of Projects
• Started at Virginia Tech, Blacksburg, VA, mid-2012

• Several Linux kernel/LLVM versions exists – upstream attempted

• Targets platforms with multiple groups of general-purpose PUs
• Non-cache-coherent groups
• Microarchitectural or ISA heterogenous

• Initial goal(s)
• Extend the multiple kernel OS design (Barrelfish, DragonFly BSD) to Linux
• Provide the same OS and programming environment among (diverse) processing units

• OS + compiler transparently provide SMP environment on non-SMP platforms



Popcorn Linux and Compiler Framework

• Runtime
• Runtime ISA execution migration

• State transformation

• Based on musl C library

• Compiler Framework 
• Offline analysis

• Model-based code optimization

• One binary per ISA
• Based on gcc/LLVM

• Replicated-kernel Operating System
• One kernel per ISA
• Distributed systems services

• Single system Image

• Based on Linux
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Popcorn Linux – Operating System

ISA B
ARM

Linux krn0

• Single System Image
• Based on Popcorn namespaces (NS)

• Extends Linux namespaces

• Creates a single operating environment
• Migrating app sees the same OS

• Distributed OS Services
• Task (thread and process) migration

• Native code migration

• Distributed memory management (DSM)
• Distributed file system

• Inter-kernel Communication Layer
• Performance critical component

• low-latency and high-throughput

• Exclusively kernel-space
• Single format among ISAs

Popcorn Communication Layer

ISA A
x86

Linux krn0 Linux krn1

PCIe
TCP/IP
RDMA
etc.

Popcorn 
Services

Popcorn 
Services

Single System Image

Popcorn NS Popcorn NS



Popcorn Linux – Task Migration

• Process Migration

• Whole application is transferred
• All threads, user- & kernel-state

• No dependecies are left on the 
origin kernel
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• Thread Migration

• Selected threads are transferred
• Threads' state is transferred

• Kernels coordinate to maintain 
application state consistent 



Popcorn Linux – Thread Migration’s DSM

• Replicated virtual address space 

• Kept consistent among kernels 

• Page coherency protocol
• Based on Modified-Shared-Invalid 

(MSI) cache coherency protocol
• Memory page granularity instead 

of cache line granularity
• Additional states to improve 

performance
• Scaled from two kernels to 

multiple kernels



Popcorn Linux – Compiler/Runtime

• Profiler
• Performance and power profiles
• Function and sub-function granularity
• Output performance and power code 

indicators 
• Affinity estimations with cost model

• Compiler Toolchain
• Output heterogenous-ISA binary 

(native)
• Common address space (including TLS)
• Add migration points (func boundaries)
• Add state transformation metadata

• Runtime Framework
• Support task migration
• Implements state transformation

• Stack-transformation (rewriting)
• Register-transformation
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Popcorn Linux – Compiler

• Produces program binaries for each ISA
• Common address space

• Common type system (and alignments)

• Each symbol at same virtual address on any ISA

• No address space conversion!

• Common thread-local storage (TLS) layout   
• x86_64 layout forced

• No TLS conversion!

• Migration points
• Cannot migrate at any instruction

• State-transformation meta-data in binaries 
• E.g., var properties, stack frame offsets

ISA A
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ISA B
ARM

(Merged) Virtual

Address Space

Program
Binary



Popcorn Linux – Runtime
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Popcorn Linux Results

[2] “Breaking the Boundaries in Heterogeneous-ISA Datacenters” A. 
Barbalace et al., ASPLOS '17

• Ease programmability 
• Enable portability (and legacy support)
• Improve resource utilization

• Runtime decisions (vs static)
• On heterogeneous-ISA [1]

• Up to 3.5x more performant 
than other heterogeneous 
frameworks

• On fully heterogeneous-ISA [2]
• Up to 66% better energy 

consumption for bursty arrivals

[1] “Bridging the Programmability Gap in Heterogeneous-ISA Platforms” 
A. Barbalace et al., EuroSys '15

Homogeneous System Heterogeneous System

66%
30%



H-Containers
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• Transpiler Framework
• Binary decompiled to LLVM IR
• LLVM IR to per-ISA Binary
• Based on McSema/Remill and 

Popcorn Compiler (LLVM)

• Vanilla Operating System
• Based on Linux, Linux containers
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H-Container – Runtime
Checkpoint/Restart Migration
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H-Containers – Transpiler

Disassembl
er

Lifter Fixer
Migration 

Points
Aligner

Compiler 
and Linker

User
Source Code

Non-LLVM
Compiler

LLVM
Compiler

User provided 
LLVM IR

LLVM IR

User provided 
Binary

H-Container
De-Compiler

Native
Exec 

Binary

McSema/Remill

Native 
Exec 

Binary

H-Container
Compiler

Cross-ISA Migratable 
Binaries

Popcorn Compiler



H-Containers Results

• Fully-working implementation
• Docker support

• True dependency-free 
• No need of source code
• Works on any Linux kernel

• Minimal overheads [1]
• Multiple benchmarks
• Application run time is the same 

or lower
• State transform contribute to less 

than 1% to migration
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[1] “Edge Computing: the Case for Heterogeneous-ISA Container 
Migration” A. Barbalace et al., VEE ‘20



Introducing pervasive
Coherent Shared Memory
(current work)

Taming pervasive
CPU Heterogeneity
(earlier work)



Heterogeneous-ISA CPUs with 
Coherent Shared Memory Projects

• Started at Huawei, Germany, mid-2017 [1]
• CCIX SmartNICs, SmartSSD, Smart Memory nodes, etc.

• Targets platforms with multiple groups of general-
purpose processing units
• Coherent Shared Memory, or a mix of coherencies
• Microarchitectural or ISA heterogeneous

• Initial goal(s)
• Exploring alternatives to offloading

• Driven by huge-memory applications use cases
• SMP environment on het-ISA coherent shared memory

• Extend OS/Compiler to support emerging hardware
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[1] “It's Time to Think About an Operating System for Near Data Processing 
Architectures” A. Barbalace et al., HotOS ‘17



Amash Linux and Compiler Framework

• Runtime
• Runtime ISA execution migration

• State transformation

• Based on musl C library

• Compiler Framework 
• Offline analysis

• Model-based code optimization

• One binary per ISA
• Based on gcc/LLVM

• Fused-kernel Operating System
• One kernel per ISA
• Distributed/Shm systems services

• Single system Image

• Based on Linux
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Amash Linux – Operating System

ISA B
ARM

Linux krn0

• Single System Image
• Based on Popcorn namespaces (NS)

• Extends Linux namespaces

• Creates a single operating environment
• Migrating app sees the same OS

• Distributed/shm OS Services
• Distributed OS services (msg passing)
• Global OS services (shared memory)
• E.g., task (thread and process) migration

• Native code migration

• Inter-kernel Communication
• Performance critical component

• low-latency and high-throughput

• Exclusively kernel-space
• Message passing & Shared memory
• Single format among ISAs

Popcorn Communication Layer

ISA A
x86

Linux krn0 Linux krn1
Amash

Services
Amash

Services

Single System Image

Amash NS Amash NS

(Coherent) Shared Memory

PCIe/CXL

Amash Shared Data Structures

Design Principles

• For inter-kernel communication
• Avoid or minimize software message passing
• Prefer hardware-implemented coherent

shared memory 
• For data on shared memory 

• Use common data format, avoid data conversions



Amash Linux – Multiple-kernel vs Fused-kernel
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Amash Linux – VFS/Page Cache

• Distributed VFS 
• Based on Popcorn Linux

• Seek pointers on (CC) SHM

• Global page cache on (CC) SHM
• Uses Global Memory Allocator

• Data pages migrated to pooled 
memory on demand
• Pages can be accessed by any kernel

• Data pages flushed to storage on 
demand

Pooled Memory



Amash Linux – Platform Simulator 
and Future Work
• Simulator based on QEMU (with UCSD)

• Interconnects two QEMUs

• Supports diverse memory latencies and consistencies
• Same SoC, NUMA, CXL, etc.

• Based on Multicachesim

• Future Work (sketched in [1])
• Transparent data sharing between kernel instances

• Typed-shared memory support in
• Compiler

• Operating system

QEMU A QEMU B

[1] “Rethinking Communication in Multiple-kernel OSes for New Shared 
Memory Interconnects” A. Barbalace et al., PLOS ‘19



Amash Linux Results

• On Cache-coherent het-ISA SoC [1]

• Improve performance
• Amash faster than Popcorn

• Shared memory faster than msg 
passing

• Removes distributed protocols 
overheads (where possible)

• Proof of feasibility
• Shared memory data structures 

between heterogeneous-ISA CPUs
• Like in (homogeneous-ISA) SMP

[1] “Amash: Exploring Coherent Shared Memory Heterogeneous-ISA 
Platforms” T. Xing et al., TO BE SUBMITTED Amash Amash_NO_MSG



Unificum Compiler Framework

• Profiler
• Performance and power profiles
• Function and sub-function granularity
• Output performance and power code 

indicators 
• Affinity estimations with cost model

• Compiler Toolchain
• Output heterogenous-ISA binary 

(native)
• Unified address space

• Including TLS, heap, and stack

• Add migration points (func boundaries)

• Runtime Framework
• Support for task migration
• Minimal state transformation

• Register remapping
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Unificum Compiler

• Produces program binaries for each ISA
• Common address space

• Common type system (and alignments)
• Each symbol at the same virtual address on any ISA
• No address space conversion!

• Common thread-local storage (TLS) layout
• x86_64 layout forced
• No TLS conversion!

• Common stack layout
• Based on commonalities among ISAs
• No stack transformation, no additional metadata!

• Migration points
• Cannot migrate at any instruction

• Extension to the LLVM compiler backend



Unificum versus Popcorn Compiler Frmwrk

• Popcorn Compiler Framework
• “One ABI per ISA”

• Unificum
• “Single ABI across ISAs”

NPB BT exec time



Unificum Results

• Fully-working implementation
• Migration uses H-Containers

• No metadata in binaries
• Fixed ISA-Register mapping
• No other transformation
• Minimal size increase for paddings

• Minimal overheads [1]
• Multiple benchmarks 
• Single ABI restrictions introduce 

<2% overheads on avg
• FT case needs more work
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[1] “The Unificum Approach to Multiple ISA Shared Memory Compilation” 
N. Mavrogeorgis et al., UNDER SUBMISSION
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More on Heterogeneous-ISA CPUs with 
Coherent Shared Memory
• Work for new memory interconnects

• Operating systems (current)
• Redesign memory subsystem in traditional OSes

• Automatic memory tiering
• Provide memory caching/coherency where not supported
• Security/partition/control

• New OS abstractions 
• To connect/open a block of memory
• To address a block of memory

• Compiler (future)
• A la Twizzler/my_plos_paper pointers
• Rethinking Compilation/Linking



Conclusion

• Today’s new (heterogeneous) hardware 
• Requires New systems software for “better”

• Programmability
• Exploitability
• … but also accessibility, security, fault-tolerance, etc.

• Key Idea: SMP programming among heterogeneous-ISA processing units
• With or without coherent shared memory
• Is possible, and enables flexible resource exploitation

• New OS designs and abstractions
• Multiple-kernel and fused-kernel proved to extend traditional OSes to het-ISA CPUs

• New Compilers backends
• Multi-ISA, “single ABI”, compilation for zero-cost task migration among het-ISA CPUs

abarbala@ed.ac.uk
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