
Rethinking
Systems Software for
Emerging Data Center Hardware
Antonio Barbalace

1 June 2023

Antonio Barbalace - Bio

• The University of Edinburgh, Scotland (9/2019 – present)
• Senior Lecturer at the School of Informatics

• Stevens Institute of Technology, NJ (2018/8 – 2019/12)
• Assistant Professor in Computer Science

• Huawei German Research Center, Germany (2016/9 – 2018/7)
• Principal Research Scientist and Manager

• Virginia Tech, VA (2011/11 – 2016/8)
• Postdoc in Computer Engineering
• Research Assistant Professor in Computer Engineering

• University of Padova, Italy (2002/9 – 2011/10)
• BS/MS in Computer Engineering
• PhD in Industrial Engineering (Nuclear Fusion)
• Research Staff Member (CNR)

https://barbalace.it/antonio/
abarbala@ed.ac.uk

https://barbalace.it/antonio/
mailto:abarbala@ed.ac.uk

Antonio Barbalace – Research Interests

• Systems

Distributed
Systems

Real-time Systems

Network

Computer Architecture

Software

Antonio Barbalace – Research Focus

• System Software

System Software

Middleware/Framework

Application

Hardware

Hypervisor

Operating System Kernel

Runtime LibrariesCompilerWhat functionalities?
What structure?

What algorithms?
…

OS/Application co-design

HW/SW (OS) co-design

Antonio Barbalace – Research Team

• Postdoc/RA
• Maxime France-Pillois – FPGA,

Runtime, Compiler

• PhD
• Nikos – Compilers
• Raven** – Runtime, Compilers
• Karim – OS
• Tong – OS, Virtualization
• Pei – Compilers, Databases
• Alan – Data Center
• Amir – OS
• Xiangyu – Quantum OS

• Minf/Honors UG
• Utsav Agarwal (Minf)
• Karoly Lovasz (Minf)
• Dale Huang (Minf)
• Stephen Huang (UG)
• Vladimir Hanin (UG)
• Sergio Dominguez (UG)

• Others UG
• Yang – FPGA
• Cong – Virtualization
• Nicholas – Applications

https://github.com/systems-nuts

Systems Nuts Research Group

https://github.com/systems-nuts

Traditional Computer Hardware

• CPU, memory, disk, network
• Central processor
• Hierarchy of memory
• Slow interconnects and IOs

• Cannot satisfy applications’ demands

• Hardware is (radically) changing
• Circumventing limitations

• Moore law
• Dennard scaling
• Physical limits
• etc.

MemoryMemoryMemory

CPU

DiskNetwork Disk

Memory

Tens of
cores

Hundreds of
cores

Thousands of
cores

Hardware Trend: Parallelism

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

AMD
Hardware Trend: Heterogeneity

Reconfigurable

Special
purpose

Fully
general
purpose

OS-capable

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

Hardware Trend: Integration

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

Same
machine

Same
chip

AMD

Hardware Trend: Coherency

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

AMBA 5 CHI

Ncore

Die/Package
Inter-
connect

Device
Inter-
connect

Commercial
Prototypes

Hardware Trend: Near Data Processing

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

Central
Processing

Unit
Storage

In-Storage
Computing

Memory

Near/In-Memory
Processing

Network
On-Stream
Processing

Today’s New Computer Hardware

CPUCPUCPUCPU

MemoryMemory

CPU

MemoryMemoryMemory

CPU

DiskNetwork Disk

Memory

MemoryMemoryMemoryMemory

Memory

MemoryTPU

Accel
X

GPU

Memory NPU MemorySPU

MPU

GPU
Accel

X
TPU

MemoryMemory MPU

C
o

h
e

re
n

t
sh

m

How to program?

How to fully exploit
resources?

Current Software for Heterogeneous Hardware

DPU

Middleware

Application

System
Software

DevDrv GPU

DevDrv Accel X

DevDrv TPU

DevDrv MPU

DevDrv SPU

DevDrv NPU

Compiler GPU

Compiler Accel X

Compiler TPU

Compiler MPU

Compiler SPU

Compiler NPU

Sys
SoftW/
FirmW

Sys
SoftW/
FirmW

Sys
SoftW/
FirmW

MiddleMiddleMiddle

App AppAppApp App App App

Mem

MPU

Mem Mem Mem Mem Mem Mem

GPU TPU
Accel

X
NPUSPUMPU

Mem Mem

CPUCPUCPUCPU

H
ard

w
are

So
ftw

are

Current Software for Heterogeneous Hardware

• App Software runs on CPUs
• Other processing units

cannot run the same
software as the CPUs
• Different ISA
• No shared memory

• Programmer (strictly)
partitions the application

• Each partition runs only on
a predefined processing unit

• Supporting drivers,
runtime, compilers

CPUCPUCPUCPU

System
Software

Middleware

Application

GPU
Accel

X

Drv Drv
Drv

Drv

Drv

Drv

Runtime

Compiler

DPU

App App Func

FW

Current Software for Heterogeneous Hardware
void full_verify(void)

{

INT_TYPE i, j;

for(i=0; i<NUM_KEYS; i++)

key_buff2[i] = key_array[i];

for(i=0; i<NUM_KEYS; i++)

key_array[--

key_buff_ptr_global[key_buff2[i]]]

= key_buff2[i];

...

}

void full_verify(void)

{

cl_kernel k_fv0, k_fv1;

cl_mem m_j; cl_int ecode;

INT_TYPE *g_j;

INT_TYPE j = 0, i;

size_t j_size; size_t fv0_lws[1], fv0_gws[1]; size_t fv1_lws[1], fv1_gws[1];

j_size = sizeof(INT_TYPE) * (FV2_GLOBAL_SIZE / FV2_GROUP_SIZE);

m_j = clCreateBuffer(context, CL_MEM_READ_WRITE, j_size, NULL, &ecode);

k_fv1 = clCreateKernel(program, "full_verify1", &ecode);

k_fv0 = clCreateKernel(program, "full_verify0", &ecode);

ecode = clSetKernelArg(k_fv0, 0, sizeof(cl_mem), (void*)&m_key_array);

ecode |= clSetKernelArg(k_fv0, 1, sizeof(cl_mem), (void*)&m_key_buff2);

fv0_lws[0] = work_item_sizes[0];

fv0_gws[0] = NUM_KEYS;

ecode = clEnqueueNDRangeKernel(cmd_queue, k_fv0, 1, NULL, fv0_gws, fv0_lws,
0, NULL, NULL);

ecode = clSetKernelArg(k_fv1, 0, sizeof(cl_mem), (void*)&m_key_buff2);

ecode |= clSetKernelArg(k_fv1, 1, sizeof(cl_mem), (void*)&m_key_buff1);

fv1_lws[0] = work_item_sizes[0];

fv1_gws[0] = NUM_KEYS;

ecode = clEnqueueNDRangeKernel(cmd_queue, k_fv1, 1, NULL, fv1_gws, fv1_lws,
0, NULL, NULL);

N
P

B
 IS O

p
e

n
C

L sn
ip

p
et

Benchmark CG EP FT IS MG

Serial LOC 506 163 606 454 852

OpenCL added 303% 164% 143% 177% 189%

serial and OpenCL version of SNU NPB

N
P

B
 IS se

rial sn
ip

p
et

[1] “Popcorn: bridging the programmability gap in heterogeneous-ISA
platforms” A. Barbalace et al., EuroSys ‘15

What Are the Problems?

• For each new hardware component
• A new support software

• Nightmare for application’s programmers
• Hard to program (lot of boilerplate code)

• Several APIs/programming models exist

• Difficult to port to a new platform

• Rigid, poor resource utilization
• Performance, energy efficiency, determinism

• One programmer focuses on one application
• Many applications run at the same time

Solved by middleware?
But software lock-in …

New Software for Heterogeneous Hardware

CPUCPUCPUCPU GPU
Accel

X

• The OS extends among
all processing units

• The compiler builds
applications software to
run among all
processing units

• The runtime supports
all processing units

• Programmers don’t
have to partition the
application, which may
run everywhere,
transparently

Middleware

Application

System
Software

DPU

Operating System Kernel
(OS krn)

OS
part

OS
krn

OS
krn

Middleware

Application

RuntimeCompiler

Key Idea:
Forget Offloading, Program like SMP

DPU

Middleware

Application

System
Software

Mem

MPU

Mem Mem Mem Mem Mem Mem

GPU TPU
Accel

X
NPUSPUMPU

Mem Mem

CPUCPUCPUCPU

H
ard

w
are

So
ftw

are

Middleware

Application

Operating System Kernel
(OS krn)

OS
part

OS
part

OS
part

FW
OS
krn

RuntimeCompiler

OS
rtm

OS
krn

Same OS
interface

Program like SMP
don’t care about heterogeneity

Multiple
communicating
OS krn/rtm/FW

Multi-ISA
Unified Addr Space/ABI
Compiler & Runtime

C
o

h
e

re
n

t
sh

m

Taming pervasive
CPU Heterogeneity
(earlier work)
Introducing pervasive
Coherent Shared Memory
(current work)

Popcorn Linux and Compiler Framework
Family of Projects
• Started at Virginia Tech, Blacksburg, VA, mid-2012

• Several Linux kernel/LLVM versions exists – upstream attempted

• Targets platforms with multiple groups of general-purpose PUs
• Non-cache-coherent groups
• Microarchitectural or ISA heterogenous

• Initial goal(s)
• Extend the multiple kernel OS design (Barrelfish, DragonFly BSD) to Linux
• Provide the same OS and programming environment among (diverse) processing units

• OS + compiler transparently provide SMP environment on non-SMP platforms

Popcorn Linux and Compiler Framework

• Runtime
• Runtime ISA execution migration

• State transformation

• Based on musl C library

• Compiler Framework
• Offline analysis

• Model-based code optimization

• One binary per ISA
• Based on gcc/LLVM

• Replicated-kernel Operating System
• One kernel per ISA
• Distributed systems services

• Single system Image

• Based on Linux

cpu1

Linux krn0

cpu0

ISA B
ARM

ISA A
x86

cpu1

Linux krn0

cpu0 cpu2 cpu3

Linux krn1

Single System Image

Het-ISA Application Binary

Application State

Source
Code

Analyzed
Source

Per-ISA
Code

ISA a ISA A specific
code

ISA B specific
code

runtime
migration

Popcorn Linux – Operating System

ISA B
ARM

Linux krn0

• Single System Image
• Based on Popcorn namespaces (NS)

• Extends Linux namespaces

• Creates a single operating environment
• Migrating app sees the same OS

• Distributed OS Services
• Task (thread and process) migration

• Native code migration

• Distributed memory management (DSM)
• Distributed file system

• Inter-kernel Communication Layer
• Performance critical component

• low-latency and high-throughput

• Exclusively kernel-space
• Single format among ISAs

Popcorn Communication Layer

ISA A
x86

Linux krn0 Linux krn1

PCIe
TCP/IP
RDMA
etc.

Popcorn
Services

Popcorn
Services

Single System Image

Popcorn NS Popcorn NS

Popcorn Linux – Task Migration

• Process Migration

• Whole application is transferred
• All threads, user- & kernel-state

• No dependecies are left on the
origin kernel

cpu1

krn0

cpu0

services krn1

cpu2 cpu3

Single System Image

Application

t1

t2 t3

cpu1

krn0

cpu0

services krn1

cpu2 cpu3

Single System Image

Application

t1

t2 t3

services

Application

t1

t2 t3

cpu1

krn0

cpu0

services krn1

cpu2 cpu3

Single System Image

Application

t1

t2 t3

cpu1

krn0

cpu0

krn1

cpu2 cpu3

Single System Image

Application

t1

t2 t3

services

t2 t3

• Thread Migration

• Selected threads are transferred
• Threads' state is transferred

• Kernels coordinate to maintain
application state consistent

Popcorn Linux – Thread Migration’s DSM

• Replicated virtual address space

• Kept consistent among kernels

• Page coherency protocol
• Based on Modified-Shared-Invalid

(MSI) cache coherency protocol
• Memory page granularity instead

of cache line granularity
• Additional states to improve

performance
• Scaled from two kernels to

multiple kernels

Popcorn Linux – Compiler/Runtime

• Profiler
• Performance and power profiles
• Function and sub-function granularity
• Output performance and power code

indicators
• Affinity estimations with cost model

• Compiler Toolchain
• Output heterogenous-ISA binary

(native)
• Common address space (including TLS)
• Add migration points (func boundaries)
• Add state transformation metadata

• Runtime Framework
• Support task migration
• Implements state transformation

• Stack-transformation (rewriting)
• Register-transformation

Source
Code

Analyzed
Source

Profiler

Per-ISA
Code

ISA a

Compiler
Toolchain

ISA B
ARM

ISA A
x86

Het-ISA Application Binary

Application State

runtime
migration

ISA A specific
code

ISA B specific
code

Runtime
Framework

Popcorn Linux – Compiler

• Produces program binaries for each ISA
• Common address space

• Common type system (and alignments)

• Each symbol at same virtual address on any ISA

• No address space conversion!

• Common thread-local storage (TLS) layout
• x86_64 layout forced

• No TLS conversion!

• Migration points
• Cannot migrate at any instruction

• State-transformation meta-data in binaries
• E.g., var properties, stack frame offsets

ISA A
x86

ISA B
ARM

(Merged) Virtual

Address Space

Program
Binary

Popcorn Linux – Runtime

x86_64 Stack aarch64 Stack

aarch64 Register State

x86_64 Register State

Stack Transformation

Popcorn Linux Results

[2] “Breaking the Boundaries in Heterogeneous-ISA Datacenters” A.
Barbalace et al., ASPLOS '17

• Ease programmability
• Enable portability (and legacy support)
• Improve resource utilization

• Runtime decisions (vs static)
• On heterogeneous-ISA [1]

• Up to 3.5x more performant
than other heterogeneous
frameworks

• On fully heterogeneous-ISA [2]
• Up to 66% better energy

consumption for bursty arrivals

[1] “Bridging the Programmability Gap in Heterogeneous-ISA Platforms”
A. Barbalace et al., EuroSys '15

Homogeneous System Heterogeneous System

66%
30%

H-Containers

cpu1

Linux krn0

cpu0

ISA B
ARM

ISA A
x86

cpu1

Linux krn0

cpu0 cpu2 cpu3

Linux krn1

System Image

• Runtime
• OS Process-level

Checkpoint/Restart
• Based on CRIU and Popcorn

Runtime (muslc-based)

• Transpiler Framework
• Binary decompiled to LLVM IR
• LLVM IR to per-ISA Binary
• Based on McSema/Remill and

Popcorn Compiler (LLVM)

• Vanilla Operating System
• Based on Linux, Linux containers

• Namespaces, cgroups

runtime
migration

System Image

Het-ISA Application Binary

Application State

Single-ISA
Binary

Per-ISA
Binary

ISA a ISA A specific
code

ISA B specific
code

LLVM IR

H-Container – Runtime
Checkpoint/Restart Migration

Origin Machine (ISA A) Destination Machine (ISA A)

App

C
h

e
ckp

o
in

t

Tran
sfe

r

R
e

sto
re

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

ContainerContainer

App

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

(Application state) (Application state)

Origin Machine (ISA A) Destination Machine (ISA B)

App

N
o

tify*

C
h

e
ckp

o
in

t

Tran
sfo

rm
*

Tran
sfe

r

R
e

sto
re

App

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

ContainerContainer

*New Components

(Application state) (Application state)

H-Containers – Transpiler

Disassembl
er

Lifter Fixer
Migration

Points
Aligner

Compiler
and Linker

User
Source Code

Non-LLVM
Compiler

LLVM
Compiler

User provided
LLVM IR

LLVM IR

User provided
Binary

H-Container
De-Compiler

Native
Exec

Binary

McSema/Remill

Native
Exec

Binary

H-Container
Compiler

Cross-ISA Migratable
Binaries

Popcorn Compiler

H-Containers Results

• Fully-working implementation
• Docker support

• True dependency-free
• No need of source code
• Works on any Linux kernel

• Minimal overheads [1]
• Multiple benchmarks
• Application run time is the same

or lower
• State transform contribute to less

than 1% to migration

0 10 20

linpack
dhrystone

npb-is-A
npb-is-B
npb-is-C

kmeans-1000
kmeans-10000

time (ms)

x86 Checkpoint
(migrate to ARM)

0 50 100

linpack
dhrystone

npb-is-A
npb-is-B
npb-is-C

kmeans-1000
kmeans-10000

time (ms)

ARM Checkpoint
(migrate to x86)

[1] “Edge Computing: the Case for Heterogeneous-ISA Container
Migration” A. Barbalace et al., VEE ‘20

Introducing pervasive
Coherent Shared Memory
(current work)

Taming pervasive
CPU Heterogeneity
(earlier work)

Heterogeneous-ISA CPUs with
Coherent Shared Memory Projects

• Started at Huawei, Germany, mid-2017 [1]
• CCIX SmartNICs, SmartSSD, Smart Memory nodes, etc.

• Targets platforms with multiple groups of general-
purpose processing units
• Coherent Shared Memory, or a mix of coherencies
• Microarchitectural or ISA heterogeneous

• Initial goal(s)
• Exploring alternatives to offloading

• Driven by huge-memory applications use cases
• SMP environment on het-ISA coherent shared memory

• Extend OS/Compiler to support emerging hardware

host
CPU A

complex

c
a
c
h
e

mem
CPU D

complex

Sm
art

M
em

o
ry

D
IM

M
/C

h
ip

host
CPU A

complex

PCIe
root

c
a
c
h
e

mem

host
CPU B

complex

PCIe
root

c
a
c
h
e

mem

PCIe
switch

PCIe
EP

mem

host
CPU A

complex

CPU C
complex

PCIe
root

c
a
c
h
e

PCIe
EP

c
a
c
h
e

mem mem

PCIe
switch

host
CPU A

complex

CPU C
complex

PCIe
root

c
a
c
h
e

PCIe
EP

c
a
c
h
e

mem mem

Sm
art

Perip
h

eral d
evice

Mem
Ctrl

Memory node

Smart
Memory node

[1] “It's Time to Think About an Operating System for Near Data Processing
Architectures” A. Barbalace et al., HotOS ‘17

Amash Linux and Compiler Framework

• Runtime
• Runtime ISA execution migration

• State transformation

• Based on musl C library

• Compiler Framework
• Offline analysis

• Model-based code optimization

• One binary per ISA
• Based on gcc/LLVM

• Fused-kernel Operating System
• One kernel per ISA
• Distributed/Shm systems services

• Single system Image

• Based on Linux

Linux krn0Linux krn0 Linux krn1

Single System Image

Het-ISA Application Binary

Application State

Source
Code

Analyzed
Source

Per-ISA
Code

ISA a ISA A specific
code

ISA B specific
code

runtime
migration

From Popcorn

Pooled
Memory

cpu1cpu0 cpu2 cpu3

ISA A
x86

ISA B
ARM

Amash Linux – Operating System

ISA B
ARM

Linux krn0

• Single System Image
• Based on Popcorn namespaces (NS)

• Extends Linux namespaces

• Creates a single operating environment
• Migrating app sees the same OS

• Distributed/shm OS Services
• Distributed OS services (msg passing)
• Global OS services (shared memory)
• E.g., task (thread and process) migration

• Native code migration

• Inter-kernel Communication
• Performance critical component

• low-latency and high-throughput

• Exclusively kernel-space
• Message passing & Shared memory
• Single format among ISAs

Popcorn Communication Layer

ISA A
x86

Linux krn0 Linux krn1
Amash

Services
Amash

Services

Single System Image

Amash NS Amash NS

(Coherent) Shared Memory

PCIe/CXL

Amash Shared Data Structures

Design Principles

• For inter-kernel communication
• Avoid or minimize software message passing
• Prefer hardware-implemented coherent

shared memory
• For data on shared memory

• Use common data format, avoid data conversions

Amash Linux – Multiple-kernel vs Fused-kernel

Private
Memory

CPUs ISA A CPUs ISA B CPUs ISA C

Operating
System
Krn ISA A

Kernel/
Runtime
SpaceOS/

Runtime
Krn ISA B

OS/
Runtime
Krn ISA C

Application
User/App
Space

Private
Memory

Private
Memory

Globally Addressable Memory

State-of-the-art: Multiple Kernels OS
Shared-nothing

Code
Priv Data
Krn ISA A

Multiple-kernel
Shared Data

Code
Priv Data
Krn ISA B

Code
Priv Data
Krn ISA C

Application

Private
Memory

Private
Memory

Private
Memory

Globally Addressable (Coherent) Memory

Kernel/
Runtime
Space

User/App
Space

Amash Linux: Fused-kernel OS
Shared-mostly

CPUs ISA A CPUs ISA B CPUs ISA C

Example shared data: VFS/Page Cache (prototype built)Example distributed protocol: DSM

shared-
nothing

shared-
something

shared-
everything

Multiple-kernel SMP

shared-
mostly

Amash Linux – VFS/Page Cache

• Distributed VFS
• Based on Popcorn Linux

• Seek pointers on (CC) SHM

• Global page cache on (CC) SHM
• Uses Global Memory Allocator

• Data pages migrated to pooled
memory on demand
• Pages can be accessed by any kernel

• Data pages flushed to storage on
demand

Pooled Memory

Amash Linux – Platform Simulator
and Future Work
• Simulator based on QEMU (with UCSD)

• Interconnects two QEMUs

• Supports diverse memory latencies and consistencies
• Same SoC, NUMA, CXL, etc.

• Based on Multicachesim

• Future Work (sketched in [1])
• Transparent data sharing between kernel instances

• Typed-shared memory support in
• Compiler

• Operating system

QEMU A QEMU B

[1] “Rethinking Communication in Multiple-kernel OSes for New Shared
Memory Interconnects” A. Barbalace et al., PLOS ‘19

Amash Linux Results

• On Cache-coherent het-ISA SoC [1]

• Improve performance
• Amash faster than Popcorn

• Shared memory faster than msg
passing

• Removes distributed protocols
overheads (where possible)

• Proof of feasibility
• Shared memory data structures

between heterogeneous-ISA CPUs
• Like in (homogeneous-ISA) SMP

[1] “Amash: Exploring Coherent Shared Memory Heterogeneous-ISA
Platforms” T. Xing et al., TO BE SUBMITTED Amash Amash_NO_MSG

Unificum Compiler Framework

• Profiler
• Performance and power profiles
• Function and sub-function granularity
• Output performance and power code

indicators
• Affinity estimations with cost model

• Compiler Toolchain
• Output heterogenous-ISA binary

(native)
• Unified address space

• Including TLS, heap, and stack

• Add migration points (func boundaries)

• Runtime Framework
• Support for task migration
• Minimal state transformation

• Register remapping

Source
Code

Analyzed
Source

Profiler

Per-ISA
Code

ISA a

Compiler
Toolchain

Het-ISA Application Binary

Application State

runtime
migration

ISA A specific
code

ISA B specific
code

Runtime
Framework

ISA B
ARM

ISA A
x86

From Popcorn

Shm

Unificum Compiler

• Produces program binaries for each ISA
• Common address space

• Common type system (and alignments)
• Each symbol at the same virtual address on any ISA
• No address space conversion!

• Common thread-local storage (TLS) layout
• x86_64 layout forced
• No TLS conversion!

• Common stack layout
• Based on commonalities among ISAs
• No stack transformation, no additional metadata!

• Migration points
• Cannot migrate at any instruction

• Extension to the LLVM compiler backend

Unificum versus Popcorn Compiler Frmwrk

• Popcorn Compiler Framework
• “One ABI per ISA”

• Unificum
• “Single ABI across ISAs”

NPB BT exec time

Unificum Results

• Fully-working implementation
• Migration uses H-Containers

• No metadata in binaries
• Fixed ISA-Register mapping
• No other transformation
• Minimal size increase for paddings

• Minimal overheads [1]
• Multiple benchmarks
• Single ABI restrictions introduce

<2% overheads on avg
• FT case needs more work

U
n

if
ic

u
m

U
n

if
ic

u
m

U
n

if
ic

u
m

U
n

if
ic

u
m

[1] “The Unificum Approach to Multiple ISA Shared Memory Compilation”
N. Mavrogeorgis et al., UNDER SUBMISSION

Binary size
(x86_64)

Exec time
NPB
(x86_64)

More on Heterogeneous-ISA CPUs with
Coherent Shared Memory
• Work for new memory interconnects

• Operating systems (current)
• Redesign memory subsystem in traditional OSes

• Automatic memory tiering
• Provide memory caching/coherency where not supported
• Security/partition/control

• New OS abstractions
• To connect/open a block of memory
• To address a block of memory

• Compiler (future)
• A la Twizzler/my_plos_paper pointers
• Rethinking Compilation/Linking

Conclusion

• Today’s new (heterogeneous) hardware
• Requires New systems software for “better”

• Programmability
• Exploitability
• … but also accessibility, security, fault-tolerance, etc.

• Key Idea: SMP programming among heterogeneous-ISA processing units
• With or without coherent shared memory
• Is possible, and enables flexible resource exploitation

• New OS designs and abstractions
• Multiple-kernel and fused-kernel proved to extend traditional OSes to het-ISA CPUs

• New Compilers backends
• Multi-ISA, “single ABI”, compilation for zero-cost task migration among het-ISA CPUs

abarbala@ed.ac.uk

mailto:abarbala@ed.ac.uk

	Default Section
	Folie 1: Rethinking Systems Software for Emerging Data Center Hardware

	bio, research, group
	Folie 2: Antonio Barbalace - Bio
	Folie 3: Antonio Barbalace – Research Interests
	Folie 4: Antonio Barbalace – Research Focus
	Folie 5: Antonio Barbalace – Research Team

	new hardware
	Folie 6: Traditional Computer Hardware
	Folie 7: Hardware Trend: Parallelism
	Folie 8: Hardware Trend: Heterogeneity
	Folie 9: Hardware Trend: Integration
	Folie 10: Hardware Trend: Coherency
	Folie 11: Hardware Trend: Near Data Processing
	Folie 12: Today’s New Computer Hardware

	state of the art
	Folie 13: How to program? How to fully exploit resources?
	Folie 14: Current Software for Heterogeneous Hardware
	Folie 15: Current Software for Heterogeneous Hardware
	Folie 16: Current Software for Heterogeneous Hardware
	Folie 17: What Are the Problems?
	Folie 18: New Software for Heterogeneous Hardware
	Folie 19: Key Idea: Forget Offloading, Program like SMP

	Popcorn
	Folie 20: Taming pervasive CPU Heterogeneity (earlier work)
	Folie 21: Popcorn Linux and Compiler Framework Family of Projects

	Het-Popcorn
	Folie 22: Popcorn Linux and Compiler Framework
	Folie 23: Popcorn Linux – Operating System
	Folie 24: Popcorn Linux – Task Migration
	Folie 25: Popcorn Linux – Thread Migration’s DSM
	Folie 26: Popcorn Linux – Compiler/Runtime
	Folie 27: Popcorn Linux – Compiler
	Folie 28: Popcorn Linux – Runtime
	Folie 29: Popcorn Linux Results

	H-Containers
	Folie 30: H-Containers
	Folie 31: H-Container – Runtime
	Folie 32: H-Containers – Transpiler
	Folie 33: H-Containers Results

	New Stuff
	Folie 34: Introducing pervasive Coherent Shared Memory (current work)
	Folie 35: Heterogeneous-ISA CPUs with Coherent Shared Memory Projects

	Amesh
	Folie 36: Amash Linux and Compiler Framework
	Folie 37: Amash Linux – Operating System
	Folie 38: Amash Linux – Multiple-kernel vs Fused-kernel
	Folie 39: Amash Linux – VFS/Page Cache
	Folie 40: Amash Linux – Platform Simulator and Future Work
	Folie 41: Amash Linux Results

	Unificum
	Folie 42: Unificum Compiler Framework
	Folie 43: Unificum Compiler
	Folie 44: Unificum versus Popcorn Compiler Frmwrk
	Folie 45: Unificum Results

	Other Current Work
	Folie 46: More on Heterogeneous-ISA CPUs with Coherent Shared Memory

	Conclusion
	Folie 47: Conclusion

