N barkhausen

barkhauseninstitut.org B institut

The M3 Hardware/Software Platform

Nils Asmussen

07/02/2024, Huawei Summit 2024

Motivation h-|

Software complexity Hardware complexity

e Current operating systems are huge ® Heterogeneity through specialization

5 o

® Used on various devices in daily life: ® Untrusted hardware components
Q ° ﬁ o o :)’(\)"V:lighll‘fodem j

2/13

Software Complexity h-

® Todays operating systems are huge and monolithic
® Microkernel-based systems as one solution: split OS up into isolated components

® Study: could have reduced severity of 96% of Linux’ critical CVEs
and eliminated 40% [1]

[1] Simon Biggs, Damon Lee, Gernot Heiser; The Jury Is In: Monolithic OS Design Is Flawed, APSys’18
3/13

Hardware Complexity: Heterogeneous Systems h-|

Snapdragon

Adreno 630
X20 LTE modem e~
[——
Subsystem

Wi-Fi

1,“90" 685DSP gpec ISP

Qualcomm

Agstic Audio Kryo 385 CPU

Qualcomm

System Memory Mobile Security

® Demanded by performance and energy requirements
® Big challenge for OSes: single shared kernel on all cores does no longer work

® OSes need to be prepared for processing elements with different feature sets

4/13

Hardware Complexity: Untrusted Components h-|

5

SAMSUNG

Exynos Modem

Provided by third-party vendors

Bug in such a component can compromise whole system (see Broadcom incident)

Side channels in modern cores allow attackers to leak private data; some bypass all

security measures of the core (address spaces, virtualization, ...)

Have been lurking in CPUs for many years, also due to complexity

5/13

Our approach: split hardware and software into

isolated components

6/13

Hardware/Operating System Co-Design h-l

7/13

Hardware/Operating System Co-Design h-l

o= |
N IK

7/13

Hardware/Operating System Co-Design h-l

‘ Key ideas:

® TCU as new hardware
Teu Teu component

®

!l

TCU

7/13

Hardware/Operating System Co-Design h-

Kernel @ Key ideas:
. N/
TCU

® TCU as new hardware
TCU O OTcuO

component

® Direct communication

between tiles
Serv App

ol [reuo—oeu

7/13

Hardware/Operating System Co-Design h 1

. w
Kernel @ Key ideas:
LR

® TCU as new hardware
Sicle

component

® Direct communication

/’ between tiles
Serv App ® Kernel on dedicated tile

ol [reuo—oeu

7/13

Hardware/Operating System Co-Design h-l

Kernel
Reduces complexity:

TCU .m. ® Microkernel-based system

e | | | o

ol [reuo—oeu

7/13

Hardware/Operating System Co-Design h-l

Kernel
Reduces complexity:

TCU .m. ® Microkernel-based system

® TCU adds uniform interface
Serv App

ol [reuo—oeu

7/13

Hardware/Operating System Co-Design h-l

Reduces complexity:
TCU

TCU O .m. ® Microkernel-based system

® TCU adds uniform interface

® TCU adds isolation

Serv App

ol [reuo—oeu

O

7/13

Communication

Kernel

TCU

TCU

TCU provides endpoints to:

® Access memory (contiguous
range, byte granular)

8/13

Communication

Kernel
TCU TCUWM TCU ®
Serv App DRAM

TCU provides endpoints to:

® Access memory (contiguous
range, byte granular)

® Receive messages into a
receive buffer

® Send messages to a
receiving endpoint

8/13

|
Communication h]

TCU provides endpoints to:

Kernel ® Access memory (contiguous

range, byte granular)
TCU TCUWM TCU®

® Receive messages into a

receive buffer

® Send messages to a
Serv App DRAM receiving endpoint

® Replies for RPC
el teu -

8/13

User tile

Isolation
Kernel tile User tike\
Kernel /
User tile User tile
Serv App
TCU TCU

DRAM

TCU-based isolation:

e Additional protection layer

9/13

Isolation
Kernel tile User tile User tile
Kernel
TCU TCU TCU
User tile User tile
Serv App DRAM
TCU TCU

TCU-based isolation:

e Additional protection layer

9/13

Isolation
Kernel tile User tile User tile
Kernel
TCU TCU TCUG
User tile User tile
Serv App DRAM
TCU TCU

T

TCU-based isolation:
e Additional protection layer

® Only kernel tile can
establish communication

channels

9/13

Isolation
Kernel tile User tile User tile
A\ //;\\
Kernel App App
- N
TCU TCU® TCU®
User tile User tile
Serv App DRAM
el o

k-

TCU-based isolation:
e Additional protection layer

® Only kernel tile can
establish communication

channels

® User tiles can only use

established channels

9/13

OS Design h-|

® M3: Microkernel-based system for het. manycores
Kernel M3FS

(orL4 +£1)
® Implemented from scratch in Rust and C++ i
® Drivers, filesystems, etc. implemented on user tiles ;
o ‘ o pipes O—O App
e Kernel manages permissions, using capabilities
® TCU enforces permissions i
(communication, memory access)
o0
- , App L5 App
e Kernel is independent of other tiles

10/13

Prototype Platforms

7O remte g TISTering For Commestions v port 700
o704 renote_qdb: Listening for comections on port 7004
re/sin/n3_Loader cc:160: info: Loaded 'run/50ot.xrL' to GXa03a00020000060 . 0xBI00030900303
ro/sin/us Loader cc:185: info: Loaded ' to
re/sin/n3 Losder cc:160: info: Loaded ' “
re/sin/n3_Loador cc:185: info: Loaded ' (u o
re/sin/n3 Losder cc:160: info: Loaded ' w©
frc/sin/sinutat Entoring ovent queue § 0. Starting sinulation..
cotootkernet o TE verion 5.0.0
coTon:kernet 117] Entared ; quit via cert]
(coTon:kernet 51 arneh 15 resatt
re/sin/oauer.s warns PowerState: Alveady in the requssted pover state, request ignared
coTen:root 61 Boot nodotos
cateacroar Wodladn: G{COTOS-0x0], size: 6x53, nane: baot xnl]
coten:roat Mo [adar: GCOTOS-0x1830), sizo: GXSbSB, name: root]

ar63:no0t Wod{adan: GLEOTOS-0x5a000], size: Ox3ened, nane: nello]
corearoat Mo [adi: GCOTO5-ax9ca00] | size: Bx3enss, nano: hellol
cotenroot Moaladar: GLCOTOS-0xaboaD] , size: Ox10c8s, nane: cilenux]
corearoat
cotoa:root COTOL: Com RISed TILOACINGEFL | 1 | 1685 6530 W mnory
corea:rocr IHEN | 1EPS) 6553 KiB nenory
cotearoot TEPS) 65536 KiB womory
cotearoat PS | COREACC) 65536 K18 nenory
corea:rar £786: Conp Seriallev TELsALER(IEPS) KB nerory
cotoatroot Available nenory:
coTen:root Nostod{onls 35, res: trun, adie: GLEOTOSul wize: 0 W]
cotoncroot Se1L 2o, res: fatas, s SLCOToSSONSiTRRGRD] slae: 959 o)
carea:roct V'JV')zﬂ Coniss
cotoaroot t [
cateacroat Sonain n core with mue(tilen, 50, Hone, tane) [
coearoat netto [
coten:roat 1
coten:roat 1
coten:roat Donain an core witn nux=(rilenux, 5, one, None) [
corearoat netto [

101 o0t 1
coteairoat @ l
cotaLiroot @
cotenrost @ 1) |
coteleot @ 14s)
CoTolirost @ 16050) Scarting ‘hello’ on COTG2 with argurents (]
fello Horly
comorsront @ 17628) scarting “helto’ on COTES with angurents (1
1o Horla
[oresirone @ 101yt cntias gone. enseing
rcore: o 18]
iting § tio 175394ond tocauss 150kt instrvetion evuncores

gemb simulator

11/13

Prototype Platforms

[F3TE3 emoteg35: TIstening For Cammections o7 port 7003

nections on port 7064
/500 XL o 0x8002000000096000 . 0xE08a009000000503
Tio

info: Loaded *
i Losdea
nfo: Losded

0: nfo: Losded builo/gens-riscuéd-
aueue § 0

Stanting sinutation

117] Entered raw node; Quit via C

r

w03, nane: baot sl
cize: Bx5b150, name! root]
coteiiroat 0 sizo: 833006, nano: hello]
65536 KD nonary

EN | IEPS) 65536 A0 wemory

96 | TEPS | COREACE) 65538 Kib nenory
o 38 nenory

treerL | e

adie: GLCOTOS 0401, size: 0 i
addr: GICOTOS<OR3ETO000], size: 959 MiB

S0, tone, Hone) [

S, Hone, Hone) (

Starting “hello’ on COTG2 with argurents (]
Starting ‘helto’ on COTOS with arqurents (]
[comorirost @ 18901) AL enitas gone. Exiting

crnel g 19518) Shucting donn
JExiting @ tiex 1953799000 because nS_exit instruction encountenad

gemb simulator

FPGA

11/13

Research based on M3 h-l

® M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores
Nils Asmussen, Marcus Volp, Benedikt Nothen, Hermann Hartig, Gerhard Fettweis, ASPLOS’16

® M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, Hermann Hartig, UATC’19

e SemperOS: A Distributed Capability System
Matthias Hille, Nils Asmussen, Pramod Bhatotia, Hermann Hartig, UATC’19

e Efficient and Scalable Core Multiplexing with M3v
Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, Michael Roitzsch, ASPLOS’22

® Towards Disaggregation-Native Data Streaming between Devices
Nils Asmussen, Michael Roitzsch, HCDS’24

® Core-Local Reasoning and Predictable Cross-Core Communication with M3

Nils Asmussen, Sebastian Haas, Adam Lackorzynski, Michael Roitzsch, RTAS 24 213

Research based on M3 h-l

® Towards Disaggregation-Native Data Streaming between Devices
Nils Asmussen, Michael Roitzsch, HCDS’24

® Core-Local Reasoning and Predictable Cross-Core Communication with M3

Nils Asmussen, Sebastian Haas, Adam Lackorzynski, Michael Roitzsch, RTAS 24 /13

N barkhausen

barkhauseninstitut.org B institut

Towards Disaggregation-Native

Data Streaming between Devices

Nils Asmussen, Michael Roitzsch

HCDS’24 — April 28, 2024

-— - A ., ¢ 7 J .
Motivation h|

e Disaggregated data centers increase resource utilization and ease maintainance

Challenge: increased communication latencies

® Optimizing for minimal data movement becomes critical

Particularly important for workloads that span multiple (accelerator) devices

—un |

- |

Example Workload on Future CXL-based Systems

GPU

NPU

N\

NPU

SSD

T

3/11

Example Workload on Future CXL-based Systems h-|

GPU

NPU

N\

NPU

SSD

@ CXL allows device-device

interaction

3/11

Example Workload on Future CXL-based Systems h-|

App

GPU

NPU

N\

NPU

SSD

® CXL allows device-device
interaction

@ Driver for each device on each

device infeasible

3/11

Example Workload on Future CXL-based Systems b-|

App

GPU

NPU

N\

NPU

SSD

@ CXL allows device-device

interaction

@ Driver for each device on each

device infeasible

® Open questions: Protocol

design and placement

3/11

Protocol Placement: Application-Side h-l

GPU
A ® No common protocol required
13
PP - ® Extra (cross-machine)
- communication hops

SSD

4/11

Protocol Placement: Central Resource-Side h-|

CPU GPU
L F]
1 | ‘

SSD

® No common protocol

® Extra communication hops

5/11

Protocol Placement: Distributed Resource-Side b-|

Proto ® Accelerators or co-processors

execute common protocol

©
B
C

® No extra communication hops

-
=
o
—
!

6/11

Disaggregation-Native Devices h-l

Requirements:

® Direct communication: avoid CPUs as intermediaries

7/1

Disaggregation-Native Devices h-l

Requirements:

® Direct communication: avoid CPUs as intermediaries

® Access restrictions: enforce application-specific permissions at accelerators

7/1

Disaggregation-Native Devices h-l

Requirements:

® Direct communication: avoid CPUs as intermediaries
® Access restrictions: enforce application-specific permissions at accelerators

® Common protocol: device-specific protocols replaced by common protocol

7/ 1

Disaggregation-Native Devices h-l

Requirements:

® Direct communication: avoid CPUs as intermediaries

® Access restrictions: enforce application-specific permissions at accelerators

Common protocol: device-specific protocols replaced by common protocol

Protocol deployment: implemented on accelerator or co-processor

7/ 1

M3 as Foundation for Disaggregation-Native Devices h-|

Kernel GPU SSD

OTU. [DTUO——CDTUC

Core Core NPU

ool [oruO—CpTu

8/11

M3 as Foundation for Disaggregation-Native Devices h-|

® Supports heterogeneous

.m. devices by design

Kernel GPU SSD
DTU
Core Core NPU

Ee

DIUO—CpTU

8/11

M3 as Foundation for Disaggregation-Native Devices h-|

Kernel GPU SSD
OpTUC
Core Core NPU

e

e

otu

® Supports heterogeneous

devices by design

® Direct communication

between devices

8/11

M3 as Foundation for Disaggregation-Native Devices h-|

Kernel GPU SSD
DTU pTUO ODTUO)
Core Core NPU
DTU DTU DTU

® Supports heterogeneous

devices by design

® Direct communication

between devices

® Access restrictions via DTU

8/11

Potential of Disaggregation-Native Devices

App

i

App [

GPU

App [

® M3 on gemb5 simulator

9/11

Potential of Disaggregation-Native Devices h-|

GPU

® M3 on gemb5 simulator

® Conservative settings:
1us inter machine latency
0.5us intra machine latency
4 GHz CPUs, 1 GHz Co-Proc.

9/11

Potential of Disaggregation-Native Devices h-|

GPU

® M3 on gemb5 simulator

® Conservative settings:
1us inter machine latency
0.5us intra machine latency
4 GHz CPUs, 1 GHz Co-Proc.

® No compute, only protocol
execution on CPUs/Co-Proc.

9/11

Potential of Disaggregation-Native Devices h-|

Latency (us)

App

i

i -

100

754

50 1

25 4

0-

mm&&&

Data size (KiB)

GPU

SSD

App side
Res. side (centralized)
Res. side (distributed)

® M3 on gemb5 simulator

® Conservative settings:
1us inter machine latency
0.5us intra machine latency

4 GHz CPUs, 1 GHz Co-Proc.

® No compute, only protocol

execution on CPUs/Co-Proc.

9/11

Challenges and Open Questions h-l

M3 is currently designed for SoCs

External management of CPU-less servers with M3 kernel?

How to design the protocol to be simple, efficient, and flexible?

How do the DTU primitives map to CXL fabrics?

10/ 11

barkhauseninstitut.org Summary -l it:]asiilfcn'?usen

Disaggregation-native: direct communication between devices

Offers latency benefits even with conservative measurements

Common data-streaming protocol could also ease programming

We believe M3 provides a nice foundation

barkhauseninstitut.org C O R E N E ‘l" T -I _balé!;h?usen
INSTITU

Core-Local Reasoning and Predictable

Cross-Core Communication with M3

Nils Asmussen', Sebastian Haas', Adam Lackorzynski?, Michael Roitzsch'

'Barkhausen Institut, 2TU Dresden

RTAS 24, May 15th 2024

Requirements for Cyber-Physical Systems h-|

ﬂ Strong security guarantees

Vi, | Vd,
.

2/19

Requirements for Cyber-Physical Systems h-l

ﬂ Strong security guarantees

Vi, | $d,
O

2/19

Requirements for Cyber-Physical Systems

ﬂ Strong security guarantees

Vi, | $d,
O

@ Hardware-level heterogeneity

@) Real-time guarantees

O

2/19

M3: Hardware/Operating System Co-Design h-|

3/19

M3: Hardware/Operating System Co-Design

Core

Core

Core

3/19

Core GPU TPU
DTU DTU DTU

Core Core DRAM
DTU DTU DTU

: Hardware/Operating System Co-Design h-l

Key ideas:

e DTU as new hardware

component

3/19

Core GPU TPU
ShTe
Core Core DRAM

o1uo

o1uO

oty

: Hardware/Operating System Co-Design h-l

Key ideas:

e DTU as new hardware

component

@ Direct communication
between tiles

3/19

M3: Hardware/Operating System Co-Design h-l

Kernel Service App
SO0
Service App DRAM
oru.

Key ideas:

e DTU as new hardware

component

@ Direct communication
between tiles

e Kernel on dedicated tile

3/19

M3: Advantages for Security [1]

Kernel Service App
DTU DTU DTU
Service App DRAM
DTU DTU DTU

T

Allows integration of untrusted
cores/accelerators:
® OS kernel needs to

configure endpoint first

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016

4/19

M3: Advantages for Security [1] h-l

Allows integration of untrusted
Kernel Service App cores/accelerators:

® OS kernel needs to

DTU DTU DTU configure endpoint first
® Send/receive endpoint for
message passing
Service App DRAM

oIUG—aDTU. (DU

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
4/19

M3: Advantages for Security [1]

Kernel Service App
DTU DTU DTU
Service App DRAM
\
orue—gous om

k-

Allows integration of untrusted
cores/accelerators:
® OS kernel needs to
configure endpoint first
® Send/receive endpoint for
message passing

® Memory endpoint to access

tile-external memory

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016

4/19

M3: Advantages for Heterogeneity [2]

Kernel GPU TPU
DTU DTU DTU

Core Core DRAM
DTU DTU DTU

L
b
DTU provides uniform interface:

e Simplifies platform
management for OS

[2] Asmussen et al.; M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication, UATC 2019

5/19

M3: Advantages for Heterogeneity [2] h-l

DTU provides uniform interface:
Kernel GPU TPU

e Simplifies platform

DTU @ @ management for OS

e Simplifies collaboration of
different tiles

Core Core DRAM

DTU DTU DTU

[2] Asmussen et al.; M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication, UATC 2019
5/19

Why is M3 Interesting for Real-Time?

@ Tile specialization and local reasoning

® Avoids issues with client priorities

6/19

Real-Time with M3: Tile Specialization and Local Reasoning

Shared Linux

RT App

BE App

API

API

Linux

‘ Corel H Core2 ‘

T

7/19

Real-Time with M3: Tile Specialization and Local Reasoning

Shared Linux

RT App BE App
API API
‘ Linux 7 ‘

‘ Corel H Core2 ‘

T

7/19

Real-Time with M3: Tile Specialization and Local Reasoning

Shared Linux

RT App BE App
API API
‘ Linux 7 ‘

‘ Corel }i{ Core2 ‘

T

7/19

Real-Time with M3: Tile Specialization and Local Reasoning

Shared Linux RTOS+Linux
RT App BE App RT App BE App
API API API API
‘ Linux 7 ‘ ‘ RTOS ‘ ‘ Linux ‘
‘ Corel }i{ Core2 ‘ ‘ Corel ‘ ‘ Core2 ‘

h

7/19

Real-Time with M3: Tile Specialization and Local Reasoning h-|

Shared Linux RTOS+Linux m3
RT App BE App RT App BE App RT App BE App
API API API API API ' API
‘ Linux # ‘ ‘ RTOS ‘ ‘ Linux ‘ ‘ RT Mux ‘ E ‘ BE Mux ‘
‘ Corel }i{ Core2 ‘ ‘ Corel ‘ ‘ Core2 ‘ ‘ Corel ‘ i ‘ Core2 ‘

7/19

Real-Time with M3: Tile Specialization and Local Reasoning h-|

Shared Linux RTOS+Linux m3
RT App BE App RT App BE App RT App i BE App
API API API API API i API
‘ Linux ¢ ‘ ‘ RTOS ‘ ‘ Linux ‘ ‘ RT Mux ‘ E ‘ BE Mux ‘
‘ Corel }i{ Core2 ‘ ‘ Corel ‘ ‘ Core2 ‘ ‘ Corel E Core2 ‘

M3 enables local reasoning without losing the shared-system experience

7/19

Real-Time with M3: Client Priorities h-l

Interference from low-prio to high-prio clients [3]:
e Sorted IPC queue
® Scheduling budgets

[3] Mergendahl et al.: The thundering herd: Amplifying kernel interference to attack response times, RTAS 2022
8/19

Real-Time with M3: Client Priorities h-l

Interference from low-prio to high-prio clients [3]:
e Sorted IPC queue
® Scheduling budgets

M3 side steps these problems:

‘ Client-H ‘ i ‘ OS Service ‘ i ‘ Client-L ‘
Mux ‘ E ‘ Mux ‘ E ‘ Mux ‘

i ‘ Core2 ‘ i ‘ Core3 ‘

' ' |

|
‘ Corel ‘
|

ptu O+O bTu OO DTU

[3] Mergendahl et al.: The thundering herd: Amplifying kernel interference to attack response times, RTAS 2022

8/19

Real-Time with M3: Client Priorities h-l

Interference from low-prio to high-prio clients [3]:
e Sorted IPC queue
® Scheduling budgets

M3 side steps these problems:

‘ Client-H ‘ i ‘ OS Service ‘ i ‘ Client-L ‘
Mux ‘ E ‘ Mux ‘ E ‘ Mux ‘

i ‘ Core2 ‘ i ‘ Core3 ‘

' ' |

|
‘ Corel ‘
|

ptTu O+0O DU OO DTU

[3] Mergendahl et al.: The thundering herd: Amplifying kernel interference to attack response times, RTAS 2022

8/19

Real-Time with M3: Client Priorities h-l

Interference from low-prio to high-prio clients [3]:
e Sorted IPC queue
® Scheduling budgets

M3 side steps these problems:

‘ Client-H ‘ i ‘ OS Service ‘ i ‘ Client-L ‘
Mux ‘ E ‘ Mux ‘ E ‘ Mux ‘

i ‘ Core2 ‘ i ‘ Core3 ‘

' ' |

|
‘ Corel ‘
|

ptTu O+0O DU OO DTU

[3] Mergendahl et al.: The thundering herd: Amplifying kernel interference to attack response times, RTAS 2022

8/19

Enhancements to M3’s Real-Time Guarantees

@ NoC-traffic regulation

@ End-to-end enforcement of resource limits

9/19

Local Reasoning? h-|

® Cross-tile interference study
® Single foreground workload disturbed max. possible background workloads

® Run on gem5-based simulation platform (FPGA measurements in paper)

10/ 19

Local Reasoning? h-|

® Cross-tile interference study

® Single foreground workload disturbed max. possible background workloads

® Run on gem5-based simulation platform (FPGA measurements in paper)
Workloads

® Transfers: DMA requests to memory

® Memory: memory accesses beyond cache capacity

® Msgs: message passing with max. message size

® Compute: number crunching without cache misses

10/ 19

Local Reasoning? b-|

transfers - 0.00 3.41 0.00 3.14
mMSQSs - 0.00 0.00 0.00 0.00
memory 1 0.00 3.43 0.00 2.68
compute - 0.00 0.00 0.00 0.00

Background

o = N W O

compute memory msgs transfers
Foreground

11/19

Network-on-Chip Regulation

® Added multiple token-bucket
registers to DTU

App | App
Kernel . Mux
Core . Core
DTU 1 DTU

T

12/19

Network-on-Chip Regulation

® Added multiple token-bucket
registers to DTU

App App
Kernel . Mux
Core . Core
DTU 1 DTU

T

12/19

Network-on-Chip Regulation

® Added multiple token-bucket
registers to DTU

App App
Kernel Mux
C(l)re Core
D'I'U || DTU

T

12/19

Network-on-Chip Regulation

® Added multiple token-bucket
registers to DTU
® Register contains:

® amount: available bytes
e limit: max. bytes

® rate: bytes added per time

App App

Kernel

‘ Mux

Core

‘ Core

DTU

11 DTU

T

12/19

End-to-end Resource Limits h-l

® M3 is a microkernel-based OS
e Uses capabilities, similar to Composite [4]

® However: original M3 did not enforce limits and had no policy

[4] Parmer et al.: Predictable interrupt management and scheduling in the Composite component-based system, RTSS 2008
13/19

End-to-end Resource Limits h-l

@ Policy: distribution of resources

<app args="example"” time="10ms” noc-bw="1GB/s"/>

14/ 19

End-to-end Resource Limits h-l

@ Policy: distribution of resources

<app args="example"” time="10ms” noc-bw="1GB/s"/>

@ Capabilities: fine-grained division/exchange of resources

® Resource manager turns XML properties into capabilities

@ Starting application on tile requires a tile capability

e Tile capability has quotas attached (CPU time, NoC bandwidth, ...)
)

Derive creates new capability with subset of quota

14/ 19

End-to-end Resource Limits h-l

@ Policy: distribution of resources

<app args="example"” time="10ms” noc-bw="1GB/s"/>

@ Capabilities: fine-grained division/exchange of resources

® Resource manager turns XML properties into capabilities
@ Starting application on tile requires a tile capability
e Tile capability has quotas attached (CPU time, NoC bandwidth, ...)

® Derive creates new capability with subset of quota

© Enforcement

® Multiplexer enforces CPU time (with timer)
® DTU enforces NoC bandwidth (with token-bucket register)

14/ 19

Evaluation

® Communication latency with per-priority endpoints

® Local reasoning with NoC regulation

15/ 19

Communication Latency with Per-Priority Endpoints h-|

e Service on dedicated tile, 1-6 clients on other tiles
® Two receive endpoints: high (1 client) and low priority (rest of clients)

® Each request takes fixed amount of time: 1ms

16/ 19

Communication Latency with Per-Priority Endpoints h-|

e Service on dedicated tile, 1-6 clients on other tiles
® Two receive endpoints: high (1 client) and low priority (rest of clients)

® Each request takes fixed amount of time: 1ms

’U?lo_
£ o

A wn
g o 3 s No-prios
= 6 g 8 0
N © <
T 44 S = Low
g S o .
< 21 “ ﬂ H High
5] o [
E T T T T T T

1 2 3 4 5 6

Number of clients

16/ 19

Communication Latency with Per-Priority Endpoints b-|

e Service on dedicated tile, 1-6 clients on other tiles
® Two receive endpoints: high (1 client) and low priority (rest of clients)

® Each request takes fixed amount of time: 1ms

~
9 104 ——
E o 2[8
() 81 5' n S = .
e o N O 219 o8 No-prios
- - - A R>
= 6 [e0] o o o) &
: ggg 838 < I8 g g Low
g 41 B8 g 888 “r38 3 S S
- S & o NN i o (3 3
.. 2 - - ngh
30 ==]
E 0 T T T T T T
1 2 3 4 5 6

Number of clients

16/ 19

Local Reasoning without/with NoC Regulation h-l

transfers 4 0.00 3.41 0.00 3.14
msQs A 0.00 0.00 0.00 0.00
memory A 0.00 3.43 0.00 2.68
compute - 0.00 0.00 0.00 0.00

com'pute merﬁory msgs trans'fers
Foreground

Background

O = DD W pH~ O

Without NoC regulation

17/19

Local Reasoning without/with NoC Regulation

Background

transfers 4 0.00 0.00 0.00 0.00

msQs A 0.00 0.00 0.00 0.00

memory A 0.00 0.00 0.00 0.01

compute - 0.00 0.00 0.00 0.00
com'pute merﬁory ms'gs transfers

Foreground

With NoC regulation (rate = 8 MiB/s)

O = DD W pH~ O

T

17/19

Future Work h-|

® Real-time version of multiplexer with real-time scheduler
® Bounded request-handling times in kernel and services

® Hardware implementation of NoC regulation

18/ 19

N barkhausen

barkhauseninstitut.org Conclusion § institut

e M3 is a promising platform for cyber-physical systems
e Designed for heterogeneous systems
e Strong isolation between tiles
e This work demonstrates local reasoning as another benefit:

® No shared hardware resources between tiles
e Tiles can be specialized for real-time / best-effort without losing shared-system experience

e NoC regulation to limit interference

e Source code of hardware and software is available:
https://github.com/Barkhausen-Institut/M3

https://github.com/Barkhausen-Institut/M3

Backup Slides

20/19

Communication Latency and Jitter

oS Platform avg P99 min max o
m3 FPGA 537 675 484 3571 107
m3 S-RISCV 319 316 316 3460 99
Linux S-RISCV 16234 24824 11152 36578 3042
Linux S-x86 15317 22773 10529 35112 1335
NOVA S5-x86 7058 7017 6919 130181 3899
m3 S-x86 405 416 377 3347 93
L4Re H-Arm 2605 2639 1622 22739 644
NOVA H-x86 10261 10442 9958 55724 1408

Table: Round-trip latency for cross-core messaging on different

hardware platforms and OSes (including outliers).

21/19

Application-Controlled Core Sleep h-l

umwait 4 I
mwait | : Wakeup
0 200 400

Latency (cycles)

22/19

Tile-Interference on FPGA platform h-l

transfers 4 0.00 - 0.01 3.42

msgs - 0.00 0.13 0.01 0.03
memory - 0.00 0.42 0.00 0.04
compute - 0.00 0.00 0.00 0.00

Background

o =~ N W h~O

compute memory ms'gs tranéfers
Foreground

23/19

Tile-Interference on gem5 platform

Foreground

g transfers - 0.00 3.41 0.00 3.14
O msgsq 0.00 0.00 0.00 0.00
_g’ memory{ 0.00 3.43 0.00 2.68
& compute| 0.00 0.00 0.00 0.00
com'pute men'10ry ms'gs transfers

k-

o =~ N W h~O

24/19

Tile-Interference for Memory Accesses h i

transfers4 3.41 0.22 0.05 0.01 0.00
msgs+ 0.00 0.01 0.01 0.01 0.00
memory 1| 3.42 0.32 0.06 0.01 0.00
compute4 0.00 0.00 0.00 0.00 0.00

2048 512 128 32 8
NoC-bandwidth limit (MiB/s)

Background

O =~ DD w h~O

25/19

