
barkhauseninstitut.org

The M3 Hardware/Software Platform

Nils Asmussen

07/02/2024, Huawei Summit 2024

Motivation

Software complexity

Current operating systems are huge

Used on various devices in daily life:

Hardware complexity

Heterogeneity through specialization

Untrusted hardware components

2 / 13

Software Complexity

Todays operating systems are huge and monolithic

Microkernel-based systems as one solution: split OS up into isolated components

Study: could have reduced severity of 96% of Linux’ critical CVEs
and eliminated 40% [1]

[1] Simon Biggs, Damon Lee, Gernot Heiser; The Jury Is In: Monolithic OS Design Is Flawed, APSys’18
3 / 13

Hardware Complexity: Heterogeneous Systems

Demanded by performance and energy requirements

Big challenge for OSes: single shared kernel on all cores does no longer work

OSes need to be prepared for processing elements with different feature sets

4 / 13

Hardware Complexity: Untrusted Components

Provided by third-party vendors

Bug in such a component can compromise whole system (see Broadcom incident)

Side channels in modern cores allow attackers to leak private data; some bypass all
security measures of the core (address spaces, virtualization, . . .)

Have been lurking in CPUs for many years, also due to complexity

5 / 13

Our approach: split hardware and software into
isolated components

6 / 13

Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App Key ideas:

TCU as new hardware
component

Direct communication
between tiles

Kernel on dedicated tile

7 / 13

Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App Key ideas:

TCU as new hardware
component

Direct communication
between tiles

Kernel on dedicated tile

7 / 13

Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App

Key ideas:

TCU as new hardware
component

Direct communication
between tiles

Kernel on dedicated tile

7 / 13

Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App Key ideas:

TCU as new hardware
component

Direct communication
between tiles

Kernel on dedicated tile

7 / 13

Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App Key ideas:

TCU as new hardware
component

Direct communication
between tiles

Kernel on dedicated tile

7 / 13

Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App

Reduces complexity:

Microkernel-based system

TCU adds uniform interface

TCU adds isolation

7 / 13

Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App

Reduces complexity:

Microkernel-based system

TCU adds uniform interface

TCU adds isolation

7 / 13

Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App

Reduces complexity:

Microkernel-based system

TCU adds uniform interface

TCU adds isolation

7 / 13

Communication

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM

S

R

S

R

TCU provides endpoints to:

Access memory (contiguous
range, byte granular)

Receive messages into a
receive buffer

Send messages to a
receiving endpoint

Replies for RPC

8 / 13

Communication

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM S

R

S

R

TCU provides endpoints to:

Access memory (contiguous
range, byte granular)

Receive messages into a
receive buffer

Send messages to a
receiving endpoint

Replies for RPC

8 / 13

Communication

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM S

R

S

R

TCU provides endpoints to:

Access memory (contiguous
range, byte granular)

Receive messages into a
receive buffer

Send messages to a
receiving endpoint

Replies for RPC

8 / 13

Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

MM S

R

S

R

TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

9 / 13

Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

MM S

R

S

R

TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

9 / 13

Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

MM S

R

S

R

TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

9 / 13

Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

MM S

R

S

R

TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

9 / 13

OS Design

M3: Microkernel-based system for het. manycores
(or L4 ± 1)

Implemented from scratch in Rust and C++

Drivers, filesystems, etc. implemented on user tiles

Kernel manages permissions, using capabilities

TCU enforces permissions
(communication, memory access)

Kernel is independent of other tiles

Kernel M3FS

pipes App

App App

10 / 13

Prototype Platforms

gem5 simulator

FPGA

11 / 13

Prototype Platforms

gem5 simulator FPGA

11 / 13

Research based on M3

M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores
Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, Gerhard Fettweis, ASPLOS’16

M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, Hermann Härtig, UATC’19

SemperOS: A Distributed Capability System
Matthias Hille, Nils Asmussen, Pramod Bhatotia, Hermann Härtig, UATC’19

Efficient and Scalable Core Multiplexing with M3v
Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, Michael Roitzsch, ASPLOS’22

Towards Disaggregation-Native Data Streaming between Devices
Nils Asmussen, Michael Roitzsch, HCDS’24

Core-Local Reasoning and Predictable Cross-Core Communication with M3

Nils Asmussen, Sebastian Haas, Adam Lackorzyński, Michael Roitzsch, RTAS’24
12 / 13

Research based on M3

M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores
Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, Gerhard Fettweis, ASPLOS’16

M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, Hermann Härtig, UATC’19

SemperOS: A Distributed Capability System
Matthias Hille, Nils Asmussen, Pramod Bhatotia, Hermann Härtig, UATC’19

Efficient and Scalable Core Multiplexing with M3v
Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, Michael Roitzsch, ASPLOS’22

Towards Disaggregation-Native Data Streaming between Devices
Nils Asmussen, Michael Roitzsch, HCDS’24

Core-Local Reasoning and Predictable Cross-Core Communication with M3

Nils Asmussen, Sebastian Haas, Adam Lackorzyński, Michael Roitzsch, RTAS’24
13 / 13

barkhauseninstitut.org

Towards Disaggregation-Native
Data Streaming between Devices

Nils Asmussen, Michael Roitzsch

HCDS’24 – April 28, 2024

Motivation

Disaggregated data centers increase resource utilization and ease maintainance

Challenge: increased communication latencies

Optimizing for minimal data movement becomes critical

Particularly important for workloads that span multiple (accelerator) devices

2 / 11

Example Workload on Future CXL-based Systems

GPU

NPU

App SSD

NPU

CXL allows device-device
interaction

Driver for each device on each
device infeasible

Open questions: Protocol
design and placement

3 / 11

Example Workload on Future CXL-based Systems

GPU

NPU

App SSD

NPU

CXL allows device-device
interaction

Driver for each device on each
device infeasible

Open questions: Protocol
design and placement

3 / 11

Example Workload on Future CXL-based Systems

GPU

NPU

App SSD

NPU

CXL allows device-device
interaction

Driver for each device on each
device infeasible

Open questions: Protocol
design and placement

3 / 11

Example Workload on Future CXL-based Systems

GPU

NPU

App SSD

NPU

CXL allows device-device
interaction

Driver for each device on each
device infeasible

Open questions: Protocol
design and placement

3 / 11

Protocol Placement: Application-Side

GPU

App
Proto

SSD

No common protocol required

Extra (cross-machine)
communication hops

4 / 11

Protocol Placement: Central Resource-Side

CPU

App

Proto
GPU

SSD

No common protocol

Extra communication hops

5 / 11

Protocol Placement: Distributed Resource-Side

SSD

App

Proto

Proto

GPU

Accelerators or co-processors
execute common protocol

No extra communication hops

6 / 11

Disaggregation-Native Devices

Requirements:

Direct communication: avoid CPUs as intermediaries

Access restrictions: enforce application-specific permissions at accelerators

Common protocol: device-specific protocols replaced by common protocol

Protocol deployment: implemented on accelerator or co-processor

7 / 11

Disaggregation-Native Devices

Requirements:

Direct communication: avoid CPUs as intermediaries

Access restrictions: enforce application-specific permissions at accelerators

Common protocol: device-specific protocols replaced by common protocol

Protocol deployment: implemented on accelerator or co-processor

7 / 11

Disaggregation-Native Devices

Requirements:

Direct communication: avoid CPUs as intermediaries

Access restrictions: enforce application-specific permissions at accelerators

Common protocol: device-specific protocols replaced by common protocol

Protocol deployment: implemented on accelerator or co-processor

7 / 11

Disaggregation-Native Devices

Requirements:

Direct communication: avoid CPUs as intermediaries

Access restrictions: enforce application-specific permissions at accelerators

Common protocol: device-specific protocols replaced by common protocol

Protocol deployment: implemented on accelerator or co-processor

7 / 11

M3 as Foundation for Disaggregation-Native Devices

Core

Core

Core

GPU

NPU

SSD

DTU

DTU

DTU

DTU

DTU

DTU

Kernel

Supports heterogeneous
devices by design

Direct communication
between devices

Access restrictions via DTU

8 / 11

M3 as Foundation for Disaggregation-Native Devices

Core

Core

Core

GPU

NPU

SSD

Core

Core

Core

GPU

NPU

SSD

DTU

DTU

DTU

DTU

DTU

DTU

Kernel
Supports heterogeneous
devices by design

Direct communication
between devices

Access restrictions via DTU

8 / 11

M3 as Foundation for Disaggregation-Native Devices

Core

Core

Core

GPU

NPU

SSD

DTU

DTU

DTU

DTU

DTU

DTU

Kernel
Supports heterogeneous
devices by design

Direct communication
between devices

Access restrictions via DTU

8 / 11

M3 as Foundation for Disaggregation-Native Devices

Core

Core

Core

GPU

NPU

SSD

DTU

DTU

DTU

DTU

DTU

DTU

DTU

DTU

DTU

DTU

DTU

DTU

Kernel
Supports heterogeneous
devices by design

Direct communication
between devices

Access restrictions via DTU

8 / 11

Potential of Disaggregation-Native Devices

GPU

App
Proto

SSD

CPU

App

Proto
GPU

SSD
SSD

App

Proto

Proto

GPU

0

25

50

75

100

1 2 4 8 16 32

Data size (KiB)

L
a
te

n
c
y

(µ
s
)

App side

Res. side (centralized)

Res. side (distributed)

M3 on gem5 simulator

Conservative settings:
1µs inter machine latency
0.5µs intra machine latency
4 GHz CPUs, 1 GHz Co-Proc.

No compute, only protocol
execution on CPUs/Co-Proc.

9 / 11

Potential of Disaggregation-Native Devices

GPU

App
Proto

SSD

CPU

App

Proto
GPU

SSD
SSD

App

Proto

Proto

GPU

0

25

50

75

100

1 2 4 8 16 32

Data size (KiB)

L
a
te

n
c
y

(µ
s
)

App side

Res. side (centralized)

Res. side (distributed)

M3 on gem5 simulator

Conservative settings:
1µs inter machine latency
0.5µs intra machine latency
4 GHz CPUs, 1 GHz Co-Proc.

No compute, only protocol
execution on CPUs/Co-Proc.

9 / 11

Potential of Disaggregation-Native Devices

GPU

App
Proto

SSD

CPU

App

Proto
GPU

SSD
SSD

App

Proto

Proto

GPU

0

25

50

75

100

1 2 4 8 16 32

Data size (KiB)

L
a
te

n
c
y

(µ
s
)

App side

Res. side (centralized)

Res. side (distributed)

M3 on gem5 simulator

Conservative settings:
1µs inter machine latency
0.5µs intra machine latency
4 GHz CPUs, 1 GHz Co-Proc.

No compute, only protocol
execution on CPUs/Co-Proc.

9 / 11

Potential of Disaggregation-Native Devices

GPU

App
Proto

SSD

CPU

App

Proto
GPU

SSD
SSD

App

Proto

Proto

GPU

0

25

50

75

100

1 2 4 8 16 32

Data size (KiB)

L
at

e
n

cy
 (

µ
s)

App side

Res. side (centralized)

Res. side (distributed)

M3 on gem5 simulator

Conservative settings:
1µs inter machine latency
0.5µs intra machine latency
4 GHz CPUs, 1 GHz Co-Proc.

No compute, only protocol
execution on CPUs/Co-Proc.

9 / 11

Challenges and OpenQuestions

M3 is currently designed for SoCs

External management of CPU-less servers with M3 kernel?

How to design the protocol to be simple, efficient, and flexible?

How do the DTU primitives map to CXL fabrics?

10 / 11

barkhauseninstitut.org Summary

Disaggregation-native: direct communication between devices

Offers latency benefits even with conservative measurements

Common data-streaming protocol could also ease programming

We believe M3 provides a nice foundation

barkhauseninstitut.org

Core-Local Reasoning and Predictable
Cross-Core Communication with M3

Nils Asmussen1, Sebastian Haas1, Adam Lackorzyński2, Michael Roitzsch1

1Barkhausen Institut, 2TU Dresden

RTAS’24, May 15th 2024

Requirements for Cyber-Physical Systems

1 Strong security guarantees

2 Hardware-level heterogeneity

3 Real-time guarantees

2 / 19

Requirements for Cyber-Physical Systems

1 Strong security guarantees

2 Hardware-level heterogeneity

3 Real-time guarantees

2 / 19

Requirements for Cyber-Physical Systems

1 Strong security guarantees

2 Hardware-level heterogeneity

3 Real-time guarantees

2 / 19

M3: Hardware/Operating System Co-Design

Core

Core

Core

GPU

DRAM

TPU

DTU

DTU

DTU

DTU

DTU

DTU

Service

Kernel Service

App

App
Key ideas:

DTU as new hardware
component

Direct communication
between tiles

Kernel on dedicated tile

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
3 / 19

M3: Hardware/Operating System Co-Design

Core

Core

Core

GPU

DRAM

TPU

DTU

DTU

DTU

DTU

DTU

DTU

Service

Kernel Service

App

App
Key ideas:

DTU as new hardware
component

Direct communication
between tiles

Kernel on dedicated tile

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
3 / 19

M3: Hardware/Operating System Co-Design

Core

Core

Core

GPU

DRAM

TPU

DTU

DTU

DTU

DTU

DTU

DTU

Service

Kernel Service

App

App

Key ideas:

DTU as new hardware
component

Direct communication
between tiles

Kernel on dedicated tile

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
3 / 19

M3: Hardware/Operating System Co-Design

Core

Core

Core

GPU

DRAM

TPU

DTU

DTU

DTU

DTU

DTU

DTU

Service

Kernel Service

App

App

Key ideas:

DTU as new hardware
component

Direct communication
between tiles

Kernel on dedicated tile

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
3 / 19

M3: Hardware/Operating System Co-Design

Core

Core

Core

GPU

DRAM

TPU

DTU

DTU

DTU

DTU

DTU

DTU

Service

Kernel Service

App

App
Key ideas:

DTU as new hardware
component

Direct communication
between tiles

Kernel on dedicated tile

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
3 / 19

M3: Advantages for Security [1]

Core

Core

Core

GPU

DRAM

TPU

DTU

DTU

DTU

DTU

DTU

DTU

Service

Kernel Service

App

App

MMSR SR

Allows integration of untrusted
cores/accelerators:

OS kernel needs to
configure endpoint first

Send/receive endpoint for
message passing

Memory endpoint to access
tile-external memory

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
4 / 19

M3: Advantages for Security [1]

Core

Core

Core

GPU

DRAM

TPU

DTU

DTU

DTU

DTU

DTU

DTU

Service

Kernel Service

App

App

MM

SR SR

Allows integration of untrusted
cores/accelerators:

OS kernel needs to
configure endpoint first

Send/receive endpoint for
message passing

Memory endpoint to access
tile-external memory

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
4 / 19

M3: Advantages for Security [1]

Core

Core

Core

GPU

DRAM

TPU

DTU

DTU

DTU

DTU

DTU

DTU

Service

Kernel Service

App

App

MMSR SR

Allows integration of untrusted
cores/accelerators:

OS kernel needs to
configure endpoint first

Send/receive endpoint for
message passing

Memory endpoint to access
tile-external memory

[1] Asmussen et al.; M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores, ASPLOS 2016
4 / 19

M3: Advantages for Heterogeneity [2]

Core

Core

Core

GPU

DRAM

TPU

DTU

DTU

DTU

DTU

DTU

DTU

Kernel

S RS R

DTU provides uniform interface:

Simplifies platform
management for OS

Simplifies collaboration of
different tiles

[2] Asmussen et al.; M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication, UATC 2019
5 / 19

M3: Advantages for Heterogeneity [2]

Core

Core

Core

GPU

DRAM

TPU

DTU

DTU

DTU

DTU

DTU

DTU

Kernel

S RS R

DTU provides uniform interface:

Simplifies platform
management for OS

Simplifies collaboration of
different tiles

[2] Asmussen et al.; M3x: Autonomous Accelerators via Context-Enabled Fast-Path Communication, UATC 2019
5 / 19

Why is M3 Interesting for Real-Time?

1 Tile specialization and local reasoning

2 Low-latency and low-jitter cross-tile communication

3 Avoids issues with client priorities

6 / 19

Real-Time with M3: Tile Specialization and Local Reasoning

Linux

Core1 Core2

RT App BE App

API API

E
E

Shared Linux

Linux

Core1 Core2

RTOS Linux

RT App BE App

API API

RTOS+Linux

Linux

Core1 Core2

RT Mux BE Mux

RT App BE App

API API

M3

M3 enables local reasoning without losing the shared-system experience

7 / 19

Real-Time with M3: Tile Specialization and Local Reasoning

Linux

Core1 Core2

RT App BE App

API API

E

E

Shared Linux

Linux

Core1 Core2

RTOS Linux

RT App BE App

API API

RTOS+Linux

Linux

Core1 Core2

RT Mux BE Mux

RT App BE App

API API

M3

M3 enables local reasoning without losing the shared-system experience

7 / 19

Real-Time with M3: Tile Specialization and Local Reasoning

Linux

Core1 Core2

RT App BE App

API API

E
E

Shared Linux

Linux

Core1 Core2

RTOS Linux

RT App BE App

API API

RTOS+Linux

Linux

Core1 Core2

RT Mux BE Mux

RT App BE App

API API

M3

M3 enables local reasoning without losing the shared-system experience

7 / 19

Real-Time with M3: Tile Specialization and Local Reasoning

Linux

Core1 Core2

RT App BE App

API API

E
E

Shared Linux

Linux

Core1 Core2

RTOS Linux

RT App BE App

API API

RTOS+Linux

Linux

Core1 Core2

RT Mux BE Mux

RT App BE App

API API

M3

M3 enables local reasoning without losing the shared-system experience

7 / 19

Real-Time with M3: Tile Specialization and Local Reasoning

Linux

Core1 Core2

RT App BE App

API API

E
E

Shared Linux

Linux

Core1 Core2

RTOS Linux

RT App BE App

API API

RTOS+Linux

Linux

Core1 Core2

RT Mux BE Mux

RT App BE App

API API

M3

M3 enables local reasoning without losing the shared-system experience

7 / 19

Real-Time with M3: Tile Specialization and Local Reasoning

Linux

Core1 Core2

RT App BE App

API API

E
E

Shared Linux

Linux

Core1 Core2

RTOS Linux

RT App BE App

API API

RTOS+Linux

Linux

Core1 Core2

RT Mux BE Mux

RT App BE App

API API

M3

M3 enables local reasoning without losing the shared-system experience

7 / 19

Real-Time with M3: Client Priorities

Interference from low-prio to high-prio clients [3]:

Sorted IPC queue

Scheduling budgets

M3 side steps these problems:

—
Core1 Core2 Core3

Mux Mux Mux

Client-H OS Service Client-L

DTU DTU DTU

Mux Mux Mux

[3] Mergendahl et al.: The thundering herd: Amplifying kernel interference to attack response times, RTAS 2022
8 / 19

Real-Time with M3: Client Priorities

Interference from low-prio to high-prio clients [3]:

Sorted IPC queue

Scheduling budgets

M3 side steps these problems:

—
Core1 Core2 Core3

Mux Mux Mux

Client-H OS Service Client-L

DTU DTU DTU

Mux Mux Mux

[3] Mergendahl et al.: The thundering herd: Amplifying kernel interference to attack response times, RTAS 2022
8 / 19

Real-Time with M3: Client Priorities

Interference from low-prio to high-prio clients [3]:

Sorted IPC queue

Scheduling budgets

M3 side steps these problems:

—
Core1 Core2 Core3

Mux Mux Mux

Client-H OS Service Client-L

DTU DTU DTU

Mux Mux Mux

[3] Mergendahl et al.: The thundering herd: Amplifying kernel interference to attack response times, RTAS 2022
8 / 19

Real-Time with M3: Client Priorities

Interference from low-prio to high-prio clients [3]:

Sorted IPC queue

Scheduling budgets

M3 side steps these problems:

—
Core1 Core2 Core3

Mux Mux Mux

Client-H OS Service Client-L

DTU DTU DTU

Mux Mux Mux

[3] Mergendahl et al.: The thundering herd: Amplifying kernel interference to attack response times, RTAS 2022
8 / 19

Enhancements to M3’s Real-Time Guarantees

1 NoC-traffic regulation

2 End-to-end enforcement of resource limits

3 Fast and energy-efficient communication

9 / 19

Local Reasoning?

Cross-tile interference study

Single foreground workload disturbed max. possible background workloads

Run on gem5-based simulation platform (FPGA measurements in paper)

Workloads
Transfers: DMA requests to memory

Memory: memory accesses beyond cache capacity

Msgs: message passing with max. message size

Compute: number crunching without cache misses

10 / 19

Local Reasoning?

Cross-tile interference study

Single foreground workload disturbed max. possible background workloads

Run on gem5-based simulation platform (FPGA measurements in paper)

Workloads
Transfers: DMA requests to memory

Memory: memory accesses beyond cache capacity

Msgs: message passing with max. message size

Compute: number crunching without cache misses

10 / 19

Local Reasoning?

 0.00

 0.00

 0.00

 0.00

 0.00

 3.43

 3.41

 0.00

 0.00

 2.68

 3.14

 0.00

 0.00

 0.00

 0.00

 0.00

compute

memory

msgs

transfers

compute memory msgs transfers

Foreground

B
a

ck
g

ro
u

n
d

0

1

2

3

4

5

11 / 19

Network-on-Chip Regulation

Added multiple token-bucket
registers to DTU

Register contains:
amount: available bytes
limit: max. bytes
rate: bytes added per time

Kernel

Core

DTU

Mux

Core

DTU

AppApp

AppApp

Mux

Core

12 / 19

Network-on-Chip Regulation

Added multiple token-bucket
registers to DTU

Register contains:
amount: available bytes
limit: max. bytes
rate: bytes added per time

Kernel

Core

DTU

Mux

Core

DTU

AppApp AppApp

Mux

Core

12 / 19

Network-on-Chip Regulation

Added multiple token-bucket
registers to DTU

Register contains:
amount: available bytes
limit: max. bytes
rate: bytes added per time

Kernel

Core

DTU

Mux

Core

DTU

AppApp AppApp

Mux

Core

12 / 19

Network-on-Chip Regulation

Added multiple token-bucket
registers to DTU
Register contains:

amount: available bytes
limit: max. bytes
rate: bytes added per time

Kernel

Core

DTU

Mux

Core

DTU

AppApp AppApp

Mux

Core

12 / 19

End-to-end Resource Limits

M3 is a microkernel-based OS

Uses capabilities, similar to Composite [4]

However: original M3 did not enforce limits and had no policy

[4] Parmer et al.: Predictable interrupt management and scheduling in the Composite component-based system, RTSS 2008
13 / 19

End-to-end Resource Limits

1 Policy: distribution of resources

<app args="example" time="10ms" noc -bw="1GB/s"/>

2 Capabilities: fine-grained division/exchange of resources
Resource manager turns XML properties into capabilities
Starting application on tile requires a tile capability
Tile capability has quotas attached (CPU time, NoC bandwidth, . . .)
Derive creates new capability with subset of quota

3 Enforcement
Multiplexer enforces CPU time (with timer)
DTU enforces NoC bandwidth (with token-bucket register)

14 / 19

End-to-end Resource Limits

1 Policy: distribution of resources

<app args="example" time="10ms" noc -bw="1GB/s"/>

2 Capabilities: fine-grained division/exchange of resources
Resource manager turns XML properties into capabilities
Starting application on tile requires a tile capability
Tile capability has quotas attached (CPU time, NoC bandwidth, . . .)
Derive creates new capability with subset of quota

3 Enforcement
Multiplexer enforces CPU time (with timer)
DTU enforces NoC bandwidth (with token-bucket register)

14 / 19

End-to-end Resource Limits

1 Policy: distribution of resources

<app args="example" time="10ms" noc -bw="1GB/s"/>

2 Capabilities: fine-grained division/exchange of resources
Resource manager turns XML properties into capabilities
Starting application on tile requires a tile capability
Tile capability has quotas attached (CPU time, NoC bandwidth, . . .)
Derive creates new capability with subset of quota

3 Enforcement
Multiplexer enforces CPU time (with timer)
DTU enforces NoC bandwidth (with token-bucket register)

14 / 19

Evaluation

1 Cross-tile communication latency and jitter

2 Communication latency with per-priority endpoints

3 Local reasoning with NoC regulation

4 Fast and energy-efficient communication

15 / 19

Communication Latency with Per-Priority Endpoints

Service on dedicated tile, 1-6 clients on other tiles

Two receive endpoints: high (1 client) and low priority (rest of clients)

Each request takes fixed amount of time: 1ms

 1
.0

05

 2
.0

06

 3
.0

08

 4
.0

12

 5
.0

15

 6
.0

19

0

2

4

6

8

10

1 2 3 4 5 6

Number of clients

M
ax

. r
eq

. t
im

e
(m

s)

No−prios

Low

High

16 / 19

Communication Latency with Per-Priority Endpoints

Service on dedicated tile, 1-6 clients on other tiles

Two receive endpoints: high (1 client) and low priority (rest of clients)

Each request takes fixed amount of time: 1ms
 1

.0
05

 2
.0

06

 3
.0

08

 4
.0

12

 5
.0

15

 6
.0

19

0

2

4

6

8

10

1 2 3 4 5 6

Number of clients

M
ax

. r
eq

. t
im

e
(m

s)

No−prios

Low

High

16 / 19

Communication Latency with Per-Priority Endpoints

Service on dedicated tile, 1-6 clients on other tiles

Two receive endpoints: high (1 client) and low priority (rest of clients)

Each request takes fixed amount of time: 1ms
 1

.0
05

 1
.0

05

 2
.0

06

 2
.0

06

 2
.0

06

 3
.0

08

 4
.0

12

 2
.0

06

 4
.0

12

 6
.0

19

 2
.0

06
 5

.0
15

 8
.0

25

 2
.0

06

 6
.0

19

 1
0.

03
2

 2
.0

06

0

2

4

6

8

10

1 2 3 4 5 6

Number of clients

M
ax

. r
eq

. t
im

e
(m

s)

No−prios

Low

High

16 / 19

Local Reasoning without/with NoC Regulation

 0.00

 0.00

 0.00

 0.00

 0.00

 3.43

 3.41

 0.00

 0.00

 2.68

 3.14

 0.00

 0.00

 0.00

 0.00

 0.00

compute

memory

msgs

transfers

compute memory msgs transfers

Foreground

B
a

ck
g

ro
u

n
d

0

1

2

3

4

5

Without NoC regulation
17 / 19

Local Reasoning without/with NoC Regulation

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

 0.01

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

compute

memory

msgs

transfers

compute memory msgs transfers

Foreground

B
a

ck
g

ro
u

n
d

0

1

2

3

4

5

With NoC regulation (rate = 8 MiB/s)
17 / 19

Future Work

Real-time version of multiplexer with real-time scheduler

Bounded request-handling times in kernel and services

Hardware implementation of NoC regulation

18 / 19

barkhauseninstitut.org Conclusion

M3 is a promising platform for cyber-physical systems
Designed for heterogeneous systems
Strong isolation between tiles

This work demonstrates local reasoning as another benefit:
No shared hardware resources between tiles
Tiles can be specialized for real-time / best-effort without losing shared-system experience
NoC regulation to limit interference

Source code of hardware and software is available:
https://github.com/Barkhausen-Institut/M3

https://github.com/Barkhausen-Institut/M3

Backup Slides

20 / 19

Communication Latency and Jitter

OS Platform avg P99 min max σ

M3 FPGA 537 675 484 3571 107

M3 S-RISCV 319 316 316 3460 99

Linux S-RISCV 16234 24824 11152 36578 3042

Linux S-x86 15317 22773 10529 35112 1335

NOVA S-x86 7058 7017 6919 130181 3899

M3 S-x86 405 416 377 3347 93

L4Re H-Arm 2605 2639 1622 22739 644

NOVA H-x86 10261 10442 9958 55724 1408

Table: Round-trip latency for cross-core messaging on different
hardware platforms and OSes (including outliers).

21 / 19

Application-Controlled Core Sleep

mwait
umwait

DTU-sleep

0 200 400

Latency (cycles)

Suspend

Wakeup

22 / 19

Tile-Interference on FPGA platform

 0.00

 0.00

 0.00

 0.00

 0.00

 0.42

 5.59

 0.13

 0.00

 0.04

 3.42

 0.03

 0.00

 0.00

 0.01

 0.01

compute

memory

msgs

transfers

compute memory msgs transfers

Foreground

B
a

ck
g

ro
u

n
d

0

1

2

3

4

5

23 / 19

Tile-Interference on gem5 platform

 0.00

 0.00

 0.00

 0.00

 0.00

 3.43

 3.41

 0.00

 0.00

 2.68

 3.14

 0.00

 0.00

 0.00

 0.00

 0.00

compute

memory

msgs

transfers

compute memory msgs transfers

Foreground

B
a

ck
g

ro
u

n
d

0

1

2

3

4

5

24 / 19

Tile-Interference for Memory Accesses

 0.00

 0.00

 0.00

 0.00

 0.00

 0.01

 0.01

 0.01

 0.00

 0.06

 0.05

 0.01

 0.00

 0.32

 0.22

 0.01

 0.00

 3.42

 3.41

 0.00

compute

memory

msgs

transfers

2048 512 128 32 8

NoC-bandwidth limit (MiB/s)

B
a

ck
g

ro
u

n
d

0

1

2

3

4

5

25 / 19

