
Effective bounded verification of concurrent programs

Viktor Vafeiadis

1 June 2023



The grand challenge of software engineering

Produce software that is
▶ correct,
▶ efficient, and
▶ useful

with minimal cost
▶ in developer expertise and
▶ in developer time/effort.

2



The grand challenge of software engineering

Produce software that is
▶ correct, ⇝ use verification techniques
▶ efficient, and ⇝ exploit parallelism
▶ useful application-dependent

with minimal cost
▶ in developer expertise and
▶ in developer time/effort.

2



The grand challenge of software engineering

Produce software that is
▶ correct, ⇝ use verification techniques
▶ efficient, and ⇝ exploit parallelism
▶ useful application-dependent

with minimal cost
▶ in developer expertise and ⇝ automated verification
▶ in developer time/effort. ⇝ with no false positives

2



Software model checking (SMC)

Given a program P and a property Φ,
check that all executions of P satisfy Φ.

▶ It is fully automated (“push button” technique).
▶ Unsuccessful verification returns error traces,

i.e. program traces that result in an error.

▶ It assumes programs are bounded.
▶ It is slow and it does not scale well.

3



Software model checking (SMC)

Given a program P and a property Φ,
check that all executions of P satisfy Φ.

▶ It is fully automated (“push button” technique).
▶ Unsuccessful verification returns error traces,

i.e. program traces that result in an error.

▶ It assumes programs are bounded.
▶ It is slow and it does not scale well.

3



The naive SMC approach does not scale!
There are way too many interleavings.

(exponential in the number of threads and the size of the program)

But exploring all interleavings is unnecessary.
▶ Many interleavings lead to the same outcome.

DPOR: Avoid exploring ‘equivalent’ interleavings

▶ The same bug can be exposed by multiple interleavings.
Bounding: Explore only ‘simple’ interleavings

For best results, combine the two techniques.

4



The naive SMC approach does not scale!
There are way too many interleavings.

(exponential in the number of threads and the size of the program)

But exploring all interleavings is unnecessary.
▶ Many interleavings lead to the same outcome.

DPOR: Avoid exploring ‘equivalent’ interleavings

▶ The same bug can be exposed by multiple interleavings.
Bounding: Explore only ‘simple’ interleavings

For best results, combine the two techniques.

4



The naive SMC approach does not scale!
There are way too many interleavings.

(exponential in the number of threads and the size of the program)

But exploring all interleavings is unnecessary.
▶ Many interleavings lead to the same outcome.

DPOR: Avoid exploring ‘equivalent’ interleavings

▶ The same bug can be exposed by multiple interleavings.
Bounding: Explore only ‘simple’ interleavings

For best results, combine the two techniques.

4



Dynamic partial order reduction (DPOR)

▶ Two interleavings are equivalent if they agree on the order of
racy accesses.

e.g., x := 1 ; y := 1 ; a := y and y := 1 ; x := 1 ; a := y

▶ Equivalent interleavings have the same outcome.

Correctness: Explore at least one interleaving per equiv. class
Optimality: Explore exactly one interleaving per equiv. class

5



TruSt: State-of-the-art in DPOR

▶ Correct, optimal, highly parallelizable;
▶ Works with almost any weak memory model;
▶ Has a small memory footprint (polynomial); and
▶ Has publicly available implementation (genmc).

Key ideas:
1. Represent equivalence classes as execution graphs.
2. Generate all consistent graphs of P incrementally.
3. Constrain reversals via a maximality condition.

6



Execution graphs

Store buffering (SB)
Initially, x = y = 0.

x := 1;
a := y //0

y := 1;
b := x //0

x86-TSO
CPU

write

write-back

read

CPU

. . .

. . .

Memory

program order (po), reads-from (rf), modification order (mo)

7



Execution graphs

Store buffering (SB)
Initially, x = y = 0.

x := 1;
a := y //0

y := 1;
b := x //0

[init]

Wx1

Ry

Wy1

Rx
rf

mo mo

program order (po), reads-from (rf), modification order (mo)

7



TruSt: Basic MC algorithm
Construct all consistent execution graphs incrementally
▶ Fix insertion order (e.g. increasing thread ID order)

Read r : Consider all possible writes that r could read from.

Write w : Revisit existing reads to instead read from w .

8



TruSt: Basic MC algorithm
Construct all consistent execution graphs incrementally
▶ Fix insertion order (e.g. increasing thread ID order)

Read r : Consider all possible writes that r could read from.

Write w : Revisit existing reads to instead read from w .

x := 1 a := x

Wx0

8



TruSt: Basic MC algorithm
Construct all consistent execution graphs incrementally
▶ Fix insertion order (e.g. increasing thread ID order)

Read r : Consider all possible writes that r could read from.

Write w : Revisit existing reads to instead read from w .

x := 1 a := x

Wx0
⇝

Wx0

Wx1
po

8



TruSt: Basic MC algorithm
Construct all consistent execution graphs incrementally
▶ Fix insertion order (e.g. increasing thread ID order)

Read r : Consider all possible writes that r could read from.

Write w : Revisit existing reads to instead read from w .

x := 1 a := x

Wx0
⇝

Wx0

Wx1
po

8



TruSt: Basic MC algorithm
Construct all consistent execution graphs incrementally
▶ Fix insertion order (e.g. increasing thread ID order)

Read r : Consider all possible writes that r could read from.

Write w : Revisit existing reads to instead read from w .

x := 1 a := x

Wx0
⇝

Wx0

Wx1
po

⇝


Wx0

Wx1 Rx

rf
Wx0

Wx1 Rxrf


8



TruSt: Basic MC algorithm
Construct all consistent execution graphs incrementally
▶ Fix insertion order (e.g. increasing thread ID order)

Read r : Consider all possible writes that r could read from.

Write w : Revisit existing reads to instead read from w .

x := 1 a := x Add a := x first

Wx0
⇝

Wx0

Rx

rf

8



TruSt: Basic MC algorithm
Construct all consistent execution graphs incrementally
▶ Fix insertion order (e.g. increasing thread ID order)

Read r : Consider all possible writes that r could read from.

Write w : Revisit existing reads to instead read from w .

x := 1 a := x Add a := x first

Wx0
⇝

Wx0

Rx

rf

8



TruSt: Basic MC algorithm
Construct all consistent execution graphs incrementally
▶ Fix insertion order (e.g. increasing thread ID order)

Read r : Consider all possible writes that r could read from.

Write w : Revisit existing reads to instead read from w .

x := 1 a := x Add a := x first

Wx0
⇝

Wx0

Rx

rf
⇝


Wx0

Wx1 Rx

rf
Wx0

Wx1 Rxrf


8



TruSt: Revisits can delete events
a := x ;
y := a x := 1

Wx0

Rx

Wy0

⇝


Wx0

Rx

Wy0

Wx1

Wx0

Rx Wx1


Which events to remove on a w → r revisit?
(RCMC) those (po ∪ rf)+-after r

(GenMC) those added after r , not (po ∪ rf)+-before w
9



Maximal graph extensions

Initially, x = y = 0.

y := 1 a := x
b := y x := 1

▶ The revisit of a := x should happen in only one case:

[init]

Wy1 Rx

Ry

rf

[init]

Wy1 Rx

Ry

rf

rf

▶ Choose the maximal one, where the revisited read and all events to be
deleted were inserted maximally.

10



Preemption bounding

▶ Preemption: schedule a different thread although previous
thread had not finished.

▶ Bugs tend to manifest with few thread preemptions.
e.g., atomicity violations require only one preemption

a := x
x := a + 1

acquire(l)
x := x + 1
release(l)

▶ Explore only interleavings with up to K preemptions.

▶ #Interleavings is exponential in K.

11



How many preemptions are needed to reveal bugs?
SCTBench and SV-COMP

9

5%

Timeout

10%

1
40%

0
45%

Concurrent data structures

1

33%
0

40%

2

27%

12



The combination is non-trivial (1/2)
Problem 1: POR-equivalent traces can have different number of
preemptions.

x := 1
y := 1 a := x

[init]

W x 1

W y 1

R x 1 W x ; W y ; R x — 0 preemptions
W x ; R x ; W y — 1 preemption

Solution: Define #preemptions of an execution graph:
▶ π(G) △= min{π(τ) | τ linearizes G}.
▶ Calculating π(G) is NP-complete.

13



The combination is non-trivial (1/2)
Problem 1: POR-equivalent traces can have different number of
preemptions.

x := 1
y := 1 a := x

[init]

W x 1

W y 1

R x 1 W x ; W y ; R x — 0 preemptions
W x ; R x ; W y — 1 preemption

Solution: Define #preemptions of an execution graph:
▶ π(G) △= min{π(τ) | τ linearizes G}.
▶ Calculating π(G) is NP-complete.

13



The combination is non-trivial (2/2)
Problem 2: π(.) is not monotone w.r.t. DPOR-visit order.

a := x
b := y

c := x
x := 2
if z = 0 then

y := 1

x := 1
z := 1

1 preemption

[init]

R x 2

R y 0

R x 1

W x 2

R z 0

W y 1

W x 1

⇝

0 preemptions

[init]

R x 2

R y 0

R x 1

W x 2

R z 1

W x 1

W z 1

14



The combination is non-trivial (2/2)
Problem 2: π(.) is not monotone w.r.t. DPOR-visit order.

Solution: Allow some slack S
▶ Adapt TruSt to drop explorations with π(G) > K + S.
▶ Prove that S = (#threads − 2) is necessary.
▶ Prove that S = (#threads − 2) is sufficient.
▶ Optimal for 2 threads, gradually worsens with more threads:

We may explore executions exceeding the bound,
but never any two equivalent executions.

14



Up to what bound is it faster than plain DPOR?
ms-queue

0 1 2 3 4 5 6 7 80

500

1,000

1,500

Bound

Ti
m

e
(s

)

treiber-stack

0 1 2 3 4 5 6 7 8 9 10 11 12 130

200

400

600

800
DPOR

Bound

Ti
m

e
(s

)

dglm

0 1 2 3 4 5 6 7 8 9

100

200

300

400

500

600
DPOR

Bound

Ti
m

e
(s

)

ms-queue-noise

0 1 2 3 4 5 6 7

100

200

300

400

500

DPOR

Bound

Ti
m

e
(s

)

ttas-lock

1 2 3 4

500

1,000

1,500

Bound

Ti
m

e
(s

)

dglm-noise

0 1 2 3 4

10

20

30

40

50

DPOR

Bound

Ti
m

e
(s

)

15



Bound calculation overhead in CDs benchmarks

100 101 102 103100

101

102

103

unbounded (s)

slo
we

st
bo

un
de

d
(s

)

17% on average

16



A different communication bound?

Recap: Preemption bounding
▶ Calculating π(G) is NP-complete.
▶ At every context switch, the scheduler can chose any other

thread to run next.

New idea: Restrict the scheduler’s power
▶ Assume a round-robin scheduler.
▶ The only problem is detecting where the preemptions occur.
▶ Greedy approach ⇝ linear in the size of the graph.

17



Bounding scheduling rounds
TruSt is optimal w.r.t. scheduling round bounding
▶ Execution extension is monotone w.r.t. scheduling rounds
▶ Revisiting a read does not decrease the scheduling rounds:

The events removed by a revisit can be added in one round.

3 rounds

[init]

R x 2

R y 0

R x 1

W x 2

R z 0

W y 1

W x 1

⇝

3 rounds

[init]

R x 2

R y 0

R x 1

W x 2

R z 1

W x 1

W z 1

18



Comparing communication bounds
Preemptions
▶ Great for finding bugs
▶ Requires some slack on

the exploration
▶ Bound checking can be

expensive

Scheduling rounds
▶ State-space increases more

rapidly
▶ Optimal exploration
▶ Fast bound checking

19



Bounding for weak memory models?
Neither preemptions nor scheduling rounds work.
▶ Weak behaviors cannot be explained by interleavings.
▶ Execution graphs can have cycles.

x := 1
a := y reads 0

y := 1
b := x reads 0

[init]
W x 1

R y 0

W y 1

R x 0

We need a different measure.
▶ For optimality, TruSt steps must never decrease the measure.
▶ Revisit steps remove events from the graph.

20



Bounding for weak memory models
Key observation:
▶ Removed events were added maximally. . .

in an SC fashion with a fixed schedule with no preemptions

Any measure of non-SC-ness works:
▶ Number of SC-cycles
▶ Total number of events in SC-cycles
▶ Number of threads participating in SC-cycles
▶ Maximal number of events per thread in SC-cycles

21



Conclusion
Bounding is a nice tool:
▶ It can make model checking much faster and scale much better.
▶ It can find all the relevant bugs.

But we need to understand bounding better.
▶ Especially, for weak memory.

22


