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How Did Paul Get This Way?

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business 

applications (1976-1981)
– Started supporting self by coding in June 1977

● Contract programming (1981-1985)
● Systems administration and Internet research (1986-1990)
● Concurrent proprietary UNIX (1990-2000)
● Linux kernel concurrency and realtime (2001-present)



3

Cautionary Quotes

● The first secret of getting what you want is 
knowing what you want.  Arthur D. Hlavaty

● If you don't know what you want, you will probably 
never get it.  Oliver Wendell Holmes, Jr.

● If you don't know what you want, you end up with 
a lot you don't.  Chuck Palahniuk
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1990: Stochastic Fairness Queueing
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1990: Stochastic Fairness Queueing

Photo: Michael Hicks, Creative Commons Attribution 2.0 Generic



6

1990: Queueing Problem

Bulk Source

Interactive
Source

Interactive
Source

Router

1 Megabit network is fast.
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1990: Fair Queueing

Bulk Source

Interactive
Source

Interactive
Source

Router

Give each flow its own queue!
Yeah, you and how many 10MHz CPUs???
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Bulk Source

Interactive
Source

Interactive
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Router

Give each flow its own queue!
Yeah, you and how many 10MHz CPUs???
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1990: Stochastic Fair Queueing: Hash

Bulk Source

Interactive
Source

Interactive
Source

Router

Give each flow its own queue!
But only with high probabilty!!!

Hash IP-address/Port quadruple for wonderous end-to-end fairness!!!
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1990: Paul’s Internet Vision

SFQ Router SFQ Router
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1990: Paul’s Internet Vision

SFQ Router SFQ Router

SFQ Router SFQ Router

Delusion
Delusion

Hash IP-address/Port quadruple for wonderous end-to-end fairness!!!
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1990: What Internet Did Instead

SFQ Router SFQ Router

Overprovisioned
Non-End-to-End Internet

Internet gateways hash Ethernet MAC addresses for approximate real-world fairness.



13

1990 SFQ: What Went Wrong?
● Solved wrong problem: End-to-end fairness

– Correct problem: Hop-by-hop & endpoint fairness
– By sheer dumb luck, my algorithm handled both

● Research-quality code: Get the paper out!!!
– Engineers at Cisco and in Linux kernel fixed this

● Used heavily until about 2015 (aside from WISPs)
– FQ-CODEL and CAKE now address bufferbloat
– Dave Taht, Eric Dumazet, Toke Høiland-Jørgensen, ...

Høiland-Jørgensen
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1990 SFQ: What Went Wrong?
● Solved wrong problem: End-to-end fairness

– Correct problem: Hop-by-hop & endpoint fairness
– By sheer dumb luck, my algorithm handled both

● Research-quality code: Get the paper out!!!
– Engineers at Cisco and in Linux kernel fixed this

● Used heavily until about 2015 (aside from WISPs)
– FQ-CODEL and CAKE now address bufferbloat
– Dave Taht, Eric Dumazet, Toke Høiland-Jørgensen, ...

Høiland-Jørgensen

Bad idea badly im
plemented,

resuscitated by dumb luck
Premature abstraction is the

root of all evil
Live among your users!!!
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1980s: Eight-Bit CRM

Permission to use granted February 5, 2023 by Olivier Boisseau of OLD-COMPUTERS.COM
Image source: https://www.old-computers.com/museum/photos/otrona_attache_1s.jpg



19

1980s: Eight-Bit CRM

● CRM application built to spec under contract 
● The company loved it!
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1980s: Eight-Bit CRM

● CRM application built to spec under contract 
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● Their prospective customers, not so much
● Dumb luck: They paid me before bankruptcy
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1980s: Eight-Bit CRM

● CRM application built to spec under contract 
● The company loved it!
● Their prospective customers, not so much
● Dumb luck: They paid me before bankruptcy

Bad idea well im
plemented,

but hey, I g
ot paid???
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1980s: Eight-Bit CRM: What Instead?

Time and Grade: Experience
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Cautionary Quote

● "Everyone knows that debugging is twice as hard as writing a 
program in the first place. So if you're as clever as you can be 
when you write it, how will you ever debug it?" - Brian W. 
Kernighan, "The Elements of Programming Style", 2nd Edition, 
Chapter 2.
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Cautionary Quote

● "Everyone knows that debugging is twice as hard as writing a 
program in the first place. So if you're as clever as you can be 
when you write it, how will you ever debug it?" - Brian W. 
Kernighan, "The Elements of Programming Style", 2nd Edition, 
Chapter 2.

● While programming, you are living in blissful ignorance of 
important requirements.  These requirements make themselves 
known during debugging.

● Which is but one cause of Kernighan’s observation.I failed to understand that I w
as

competing with a file
 cabinetAnd the file cabinet won
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1980s: Acoustic Navigation

Photo by user Neozeed https://gunkies.org/wiki/File:Pdp11-23.jpg GNU Free Documentation License 1.2
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1980s: Acoustic Navigation

Photo by user Neozeed https://gunkies.org/wiki/File:Pdp11-23.jpg GNU Free Documentation License 1.2
  

But with insane quantities

of shock mounting for

shipboard use
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1980s: Acoustic Navigation (Pre-GPS)

Ship pings at one frequency...

...each transponder responds at its own frequency...

...then convert time to distance and triangulate!!!
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Acoustic Navigation Complications

● If the ship’s position was known when deploying the transponder, 
there would be no need for acoustic navigation

● Transponders do not fall exactly straight down through four miles of 
water

● Ocean surface is not perfectly level
● Sound does not travel in a straight line through ocean water
● Sound does not travel at a uniform speed through ocean water
● Dolphins like to play with transponders
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Acoustic Navigation Calibration (1/2)

Ship pings at locations not on a line, minimize error to solve for transponder positions
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Acoustic Navigation Complications

● If the ship’s position was known when deploying the transponder, 
there would be no need for acoustic navigation

● Transponders do not fall exactly straight down through four miles of 
water
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Acoustic Navigation Calibration (2/2)

Ship drops probe to measure temperature, salinity, and pressure...
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Acoustic Navigation Calibration (2/2)
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Acoustic Navigation Calibration (2/2)
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Acoustic Navigation Calibration (2/2)
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Acoustic Navigation Calibration (2/2)
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Acoustic Navigation Calibration (2/2)

Ship drops probe to measure temperature, salinity, and pressure...

Then calculate sound velocity as a function of depth, and finally do ray-tracing.
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Acoustic Navigation Complications

● If ship’s position known when deploying transponder, no need for system
● Transponders do not fall exactly straight down through four miles of water
● Ocean surface is not perfectly level
● Sound does not travel in a straight line through ocean water
● Sound does not travel at a uniform speed through ocean water
● Dolphins like to play with transponders
● Error minimization has difficulty with three unknowns per transponder
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Acoustic Navigation: Measure Depth

Ship pings transponders...
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Acoustic Navigation: Measure Depth

...each transponder replies on its own frequency...
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Acoustic Navigation: Measure Depth

…transponders listen for bounce from surface...



47

Acoustic Navigation: Measure Depth

…and ship times successive replies from each transponder: 2x surface bound time!
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Acoustic Navigation: Measure Depth

Except that in shallow water, sound bounces, and bounces, and bounces, and ...
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Acoustic Navigation: Measure Depth

In shallow water, more than half of the measurements were bogus!!!
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Acoustic Navigation: Measure Depth

Statistical error rejection: “Sort first, and ask questions later”
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Acoustic Navigation: Measure Depth

Statistical error rejection: “Sort first, and ask questions later”Bad idea fixed “statistically”
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Acoustic Navigation: Measure Depth

Statistical error rejection: “Sort first, and ask questions later”Bad idea fixed “statistically”:

Missing requirement
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1970s: Student Housing System

Photo courtesy of Fundacio ́ n ICA: CDC 3300
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1970s: Student Housing System

Photo courtesy of Fundacio ́ n ICA: CDC 3300

Punched Cards and FORTRAN
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1970s: Student Housing System

Photo courtesy Wikipedia user Bubba CC BY-SA 4.0: CDC Cyber 73 console (rest of computer fills room)
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1970s: Student Housing System

Photo courtesy Wikipedia user Bubba CC BY-SA 4.0: CDC Cyber 73 console (rest of computer fills room)

Punched Cards and COBOL
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Student Housing Temporal Confusion

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

$ $$ $ $ $$$$$$ $ $
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Student Housing Temporal Confusion

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

$ $$ $ $$ $ $

Student started on Friday and
was not amused by the bill.
My manager had the usual
1970s earthy suggestion for
alternative uses of the money.

Problem: Months vary in length

Solution: “jdate” algorith
m

“jdate” algorithm: https://aa.usno.navy.mil/faq/JD_formula

$$$$$
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Student Housing Temporal Confusion

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

$ $$ $ $$ $ $

Student started on Friday and
was not amused by the bill.
My manager had the usual
1970s earthy suggestion for
alternative uses of the money.

Good idea implemented poorly

$$$$$
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1990s: Clustered Database Servers

Photo Wikipedia user OpcomWikipedia user Opcom, CC BY-SA 3.0CC BY-SA 3.0
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Shared Disks For Availability Win!!!

Database
Server

Database
Server
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Shared Disks For Availability Win!!!

Database
Server

Database
Server

All data is still accessible!!!  Of course, sites should test this frequently...

But not necessarily every evening!!!
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Chaos-Monkey Challenges

● Crash dump was a complete disaster area
– No hints for on-site debugging instrumentation

● Unable to reproduce in the lab
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Chaos-Monkey Challenges

● Crash dump was a complete disaster area
– No hints for on-site debugging instrumentation

● Unable to reproduce in the lab
● Eventually, found test case: 5-27-hour MTBF

– But need week-long test for any alleged fix!!!
– And it was now Memorial Day weekend...
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Hint From Stack Trace
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Virtual Address
Tracking Array
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0:0MB
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2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

Unaligned memory
region



71

Hint From Stack Trace

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vta || vadr < vta)
    vta = vta[idx – 1];

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]



72

Hint From Stack Trace

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vta || vadr < vta)
    vta = vta[idx – 1];

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]



73

Hint From Stack Trace
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Hint From Stack Trace: Compiler Fun
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Compiler Fun In Failure Case
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Compiler Fun In Failure Case: Update
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Compiler Fun In Failure Case: Update
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Thwarting Compiler Fun
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Thwarting Compiler Fun: Update OK
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Shared Disks For Availability Win!!!
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Shared Disks For Availability Win!!!

Database
Server

Database
Server

Good idea implemented poorly,

vol
ati

le is your fri
end!
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Shared Disks For Availability Win!!!

Database
Server

Database
Server

And that is the story how I

deprived myself and my colleagues

of a Memorial Day weekend
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1970s: My First Professional Project

Photo courtesy of Rama & Musée Bolo, CC BY-SA 2.0 fr ASR-33 Teletype
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1970s: My First Professional Project

● Pro-bono computer dating program for National Honor Society 
fundraiser during my senior year in high school

● Questions from Home Economics teacher
● Simple Hamming-distance matching with expected 1970s 

constraints on matches
● Students’ paper questionnaires transcribed to paper tape, then 

read into program
● Simple, effective, worked great!!!
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One Dissatisfied Customer

● Senior girl matched only with freshmen boys
– And she really did check the seniors-only box

● Program looked to be correct
● Turned out to be data-entry error
● Correct program is not enough

– Environment and processes matter!!!
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One Dissatisfied Customer

● Senior girl matched only with freshmen
– And she really did check the seniors-only box

● Program looked to be correct
● Turned out to be data-entry error
● Correct program is not enough

– Environment and processes matter!!! Good idea implemented properly, 

but I w
as also overall project lead!
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Cautionary Quote

● A lot of success in life and business comes from 
knowing what you want to avoid. - Charlie 
Munger
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2004: Real-Time Linux
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2004: Real-Time Linux

● Early 2000s: Many requests for real-time Linux
– But “enterprise-grade real-time Linux”

● Except that no such thing existed
● And my employer had strict rules for contracts 

calling for mythical creatures
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2004: Real-Time Linux

● Early 2000s: Many requests for real-time Linux
– But “enterprise-grade real-time Linux”

● Except that no such thing existed
● And my employer had strict rules for contracts 

calling for mythical creaturesNo Bid
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2004: Dawn of Multicore Embedded

CPU 0 CPU 1

CPU 2 CPU 3
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Multicore Embedded for Real Time!!!
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Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
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Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!

There is a real-tim
e effort spinning up.

But they are rewriting the kernel.

Pragmatism for the win!!!
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Multicore Real Time Linux Actions
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● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
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Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
● And we win a large contract!!!My idea is rejected!!!
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Multicore Real Time Linux Actions

● Why was my brilliant idea rejected?
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Multicore Real Time Linux Actions

● Why was my brilliant idea rejected?

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain  Zumwalt-class DDG destroyer
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Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
● And we win a large contract!!!

Rejected!!!

Except th
at we have

contractual commitm
ents

to meet...
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Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
● And we win a large contract!!!

Rejected!!!

Except th
at we have

contractual commitm
ents

to meet...

Remember that rewrite-the-kernel effort?

Well, I helped them with RCU

Three from-scratch implementations

One of the highlights of my career
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2004: Real-Time Linux

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain  Zumwalt-class DDG destroyer
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2004: Real-Time Linux

Nice idea collid
es with reality

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain  Zumwalt-class DDG destroyer
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2004: Real-Time Linux

Nice idea collid
es with reality

Reality
 wins

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain  Zumwalt-class DDG destroyer
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Formal Verification
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Formal Verification: Why Bother?
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Installed Base

1

1975
NHS

Million-Year Bug? Once In a Million Years!!!
Murphy is a nice guy: Everything that can happen, will...
...maybe in geologic time



127

Installed Base

1

1975
NHS

100
10
1

1985
Various

Million-Year Bug? Once in Ten Millennia
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Formal Verification: Why Bother?

● 2017: 20 billion instances of the Linux kernel
– Million-year MTBF bug fails >50 times per day
– New kernel version every 2-3 months

● Testing really is feasible for low-duty-cycle devices
– But not for the ~80 million servers!!!

● Plus Linux is used in safety-critical applications!!!
● Full state-space search is quite attractive
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Formal Verification Experience

● 1993: Promela/spin election algorithm
● 2007: “Quick” RCU (QRCU) verification
● 2008: RCU idle-detection for energy efficiency
● 2012: Verify userspace RCU
● 2014: Verify RCU idle detection for NMIs
● 2018-on: Heavy use of herd7 and LKMM
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Formal Verification Experience

● 1993: Promela/spin election algorithm
● 2007: “Quick” RCU (QRCU) verification
● 2008: RCU idle-detection for energy efficiency
● 2012: Verify userspace RCU
● 2014: Verify RCU idle detection for NMIs
● 2018-on: Heavy use of herd7 and LKMM

Verify
ing design, not re

gression testing

Verific
ation valid after bug fix

???
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Formal Verification is Expensive

● At best, exponential; in general, undecidable
– Partitioning for combinatorial implosion?

● “Macho” verification requires full specification
– Which is large, thus containing lots of bugs!

● Successful formal verification highly restricted:
– Small programs, simple properties of large programs, or 

execution-guided verification
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Formal Verification is Expensive

● At best, exponential; in general, undecidable
– Partitioning for combinatorial implosion?

● “Macho” verification requires full specification
– Which is large, thus containing lots of bugs!

● Successful formal verification highly restricted:
– Small programs, simple properties of large programs, or 

execution-guided verification
 Powerful when used properly,

 

static analysis can be fast
How to verify the verification?
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Remember That File Cabinet?
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Formal Verification’s Scope Is Limited

● "Everyone knows that debugging is twice as hard as writing a 
program in the first place. So if you're as clever as you can be 
when you write it, how will you ever debug it?" - Brian W. 
Kernighan, "The Elements of Programming Style", 2nd Edition, 
Chapter 2.

● While programming, you are living in blissful ignorance of 
important requirements.  These requirements make themselves 
known during debugging.

● Which is but one cause of Kernighan’s observation.I failed to understand that I w
as

competing with a file
 cabinetAnd the file cabinet won
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Formal Verification’s Scope Is Limited
● Does anyone really want the software?
● Is the software economically valuable?

– Enough to pay the software’s developers?  Validation personnel?  Service 
personnel?  Sales?  Documentation?  Maintenance?  

● Are any supply chains robust?
● Are the requirements correct?  Complete?
● Are the requirements met?

– Functional requirements?  Performance requirements?  Non-real-time latency 
requirements?  Real-time latency requirements? Energy-efficiency 
requirements?  Human-factors requirements?  Legal requirements?  Human-
language requirements?
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Real-Time Linux System Options

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain  Zumwalt-class DDG destroyer

1) Special system for this bid
2) New real-time product line
3) Put real-time capabilities into standard product
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Real-Time Linux System Option 1

● Special system for this bid
– Low development cost for group producing server
– High development cost for real-time Linux group
– High likelihood of firmware issues
– High service costs for real-time Linux group
– So-so customer experience
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Real-Time Linux System Option 2

● New real-time product line
– High development cost for group producing server
– Low development cost for real-time Linux group
– Lower likelihood of firmware issues
– Low service costs for real-time Linux group
– Good customer experience
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Real-Time Linux System Option 3

● Put real-time capabilities into standard product
– Negative costs (!) for group producing server
– Low development cost for real-time Linux group
– Lower likelihood of firmware issues
– Low service costs for real-time Linux group
– Good customer experience for many customers
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Real-Time Linux System Options

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain  Zumwalt-class DDG destroyer

1) Special system for this bid
2) New real-time product line
3) Put real-time capabilities into standard product
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Real-Time Linux System Options

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain  Zumwalt-class DDG destroyer

1) Special system for this bid
2) New real-time product line
3) Put real-time capabilities into standard product

Great things can happen if techies

and business people work

together!!!
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Formal Verification is Heavily Used

● Several test projects on the Linux kernel
● Many proprietary projects verify each commit
● But…

– Formal verification in the small
– Check for undesirable properties

● File bug reports as appropriate
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Formal Verification is Heavily Used

● Several test projects on the Linux kernel
● Many proprietary projects verify each commit
● But…

– Formal verification in the small
– Check for undesirable properties

● File bug reports as appropriateDe-ris
k via one-way bet
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Cautionary Quote (Redux)

● A lot of success in life and business comes from 
knowing what you want to avoid. - Charlie 
Munger
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Cautionary Quotes

● Sometimes you don't even know what you want until 
you find out you can't have it. - Meghan O'Rourke

● Sometimes we don't know what we want until we 
don't get it. - Sloane Crosley

● We don't know what we want, but we are ready to 
bite somebody to get it - Will Rogers
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Natural Selection
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Natural Selection
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Natural Selection: Not Just Lifeforms

Software
(Randomly
Generated)

Validation
(Selection!) Bugs

Fewer (?)
Injected Bugs

Robust
Software

Agile methods attempt to push this methodology back to the specification
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Natural Selection: Bugs are Software!

Software
(Randomly
Generated)

Validation
(Selection!) Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation



159

Natural Selection: Bugs are Software!

Software
(Randomly
Generated)

Validation
(Selection!) Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation

Bug Reports:
Improve

Validation
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Validate Only Intended Use Cases

Current Validated
Use Cases
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Major Development Generates Bug

Current Validated
Use Cases
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After Validation and Bug Fixing

Current Validated
Use Cases
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After Another Round of Development

Current Validated
Use Cases
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More Validation and Bug Fixing

Current Validated
Use Cases
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New
Use Cases

New
Use Cases

New Use Cases: Walls of Bugs!!!

Current Validated
Use Cases
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New
Use Cases

New
Use Cases

New Use Cases: Walls of Bugs!!!

Current Validated
Use Cases

Open-source software can help
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Natural Selection: Bugs are Software!

Software
(Randomly
Generated)

Validation
(Selection!) Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation

Bug Reports
And Paranoia:

Improve
Validation
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“Natural Selection” is a Euphemism
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“Natural Selection” is a Euphemism

If your tests are not failing, they are not
improving your software
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“Natural Selection” is a Euphemism

If your tests are not failing, they are not
improving your software

If your users are not complaining, they
are not improving your software
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Why Would Users Fail to Complain?

● They are not actually using your software (common case)
● They do not know who to complain to
● The last N times they complained:

– Nothing useful happened
– They were yelled at or otherwise belittled

● Your software is technically successful
– And has thus “faded into the woodwork”
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Cautionary Quotes

● Customers don’t know what they want until 
we’ve shown them. - Steve Jobs
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as from your own. - Henry Ford
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Cautionary Quotes

● Customers don’t know what they want until 
we’ve shown them. - Steve Jobs

● If there is any one secret of success, it lies in 
the ability to get the other person’s point of view 
and see things from that person’s angle as well 
as from your own. - Henry Ford  You must live among your users  

You must complain on their behalf
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Summary
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Summary

● People don’t know what they want
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Summary

● People don’t know what they want
● But for software developers, this is no excuse
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Summary

● People don’t know what they want
● But for software developers, this is no excuse

– You have only failed if you have given up...until then 
it's called learning. - Unknown

– You are not a failure until you start blaming others 
for your mistakes. - John Wooden
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But I Had It Easy!

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business 

applications (1976-1981)
– Do the assigned work

● Contract programming (1981-1985)
● Systems administration and Internet research (1986-1990)
● Concurrent proprietary UNIX (1990-2000)
● Linux kernel concurrency and realtime (2001-present)



182

But I Had It Easy!

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business 

applications (1976-1981)
● Contract programming (1981-1985)

– Keep them out of court (or even out of jail)
● Systems administration and Internet research (1986-1990)
● Concurrent proprietary UNIX (1990-2000)
● Linux kernel concurrency and realtime (2001-present)
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● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business 

applications (1976-1981)
● Contract programming (1981-1985)
● Systems administration and Internet research (1986-1990)

– Keep users happy and fulfill terms of research contracts
● Concurrent proprietary UNIX (1990-2000)
● Linux kernel concurrency and realtime (2001-present)
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But I Had It Easy!

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business 

applications (1976-1981)
● Contract programming (1981-1985)
● Systems administration and Internet research (1986-1990)
● Concurrent proprietary UNIX (1990-2000)

– Make it fast and scalable (up to 64 CPUs)
● Linux kernel concurrency and realtime (2001-present)
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But I Had It Easy!

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business 

applications (1976-1981)
● Contract programming (1981-1985)
● Systems administration and Internet research (1986-1990)
● Concurrent proprietary UNIX (1990-2000)
● Linux kernel concurrency and realtime (2001-present)

– Make it many things...
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But I Had It Easy!

● Linux kernel concurrency and realtime (2001-present):
– Fast and scalable (up to 4096 CPUs)
– Real-time response (sub-20-microsecond latencies)
– Energy efficiency
– Near-bare-metal efficiency to usermode applications
– Robustness (20 billion instances)
– Ease of use driven by security
– Ease of administration (large data centers) 
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but modern systems are far

more complex and user-centric
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But I Had It Easy!

● Linux kernel concurrency and realtime (2001-present):
– Fast and scalable (up to 4096 CPUs)
– Real-time response (sub-20-microsecond latencies)
– Energy efficiency
– Near-bare-metal efficiency to usermode applications
– Robustness (20 billion instances)
– Ease of use driven by security
– Ease of administration (large data centers) Yes, I am proud of my accomplishments,

but modern systems are far

more complex and user-centric
My job is to provide reliable

infrastructure
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Questions?

Photo NASA Public Domain April 7, 2021
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