

Cautionary Tales on Implementing
the Software That People Want
Be Careful What You Wish For. You Might Get It!!!

© 2023 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team

Huawei Global Software Technology Summit, May 31, 2023

2

How Did Paul Get This Way?

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business

applications (1976-1981)
– Started supporting self by coding in June 1977

● Contract programming (1981-1985)
● Systems administration and Internet research (1986-1990)
● Concurrent proprietary UNIX (1990-2000)
● Linux kernel concurrency and realtime (2001-present)

3

Cautionary Quotes

● The first secret of getting what you want is
knowing what you want. Arthur D. Hlavaty

● If you don't know what you want, you will probably
never get it. Oliver Wendell Holmes, Jr.

● If you don't know what you want, you end up with
a lot you don't. Chuck Palahniuk

4

1990: Stochastic Fairness Queueing

5

1990: Stochastic Fairness Queueing

Photo: Michael Hicks, Creative Commons Attribution 2.0 Generic

6

1990: Queueing Problem

Bulk Source

Interactive
Source

Interactive
Source

Router

1 Megabit network is fast.

7

1990: Fair Queueing

Bulk Source

Interactive
Source

Interactive
Source

Router

Give each flow its own queue!
Yeah, you and how many 10MHz CPUs???

8

1990: Fair Queueing

Bulk Source

Interactive
Source

Interactive
Source

Router

Give each flow its own queue!
Yeah, you and how many 10MHz CPUs???

9

1990: Stochastic Fair Queueing: Hash

Bulk Source

Interactive
Source

Interactive
Source

Router

Give each flow its own queue!
But only with high probabilty!!!

Hash IP-address/Port quadruple for wonderous end-to-end fairness!!!

10

1990: Paul’s Internet Vision

SFQ Router SFQ Router

SFQ Router SFQ Router

Hash IP-address/Port quadruple for wonderous end-to-end fairness!!!

11

1990: Paul’s Internet Vision

SFQ Router SFQ Router

SFQ Router SFQ Router

Delusion
Delusion

Hash IP-address/Port quadruple for wonderous end-to-end fairness!!!

12

1990: What Internet Did Instead

SFQ Router SFQ Router

Overprovisioned
Non-End-to-End Internet

Internet gateways hash Ethernet MAC addresses for approximate real-world fairness.

13

1990 SFQ: What Went Wrong?
● Solved wrong problem: End-to-end fairness

– Correct problem: Hop-by-hop & endpoint fairness
– By sheer dumb luck, my algorithm handled both

● Research-quality code: Get the paper out!!!
– Engineers at Cisco and in Linux kernel fixed this

● Used heavily until about 2015 (aside from WISPs)
– FQ-CODEL and CAKE now address bufferbloat
– Dave Taht, Eric Dumazet, Toke Høiland-Jørgensen, ...

Høiland-Jørgensen

14

1990 SFQ: What Went Wrong?
● Solved wrong problem: End-to-end fairness

– Correct problem: Hop-by-hop & endpoint fairness
– By sheer dumb luck, my algorithm handled both

● Research-quality code: Get the paper out!!!
– Engineers at Cisco and in Linux kernel fixed this

● Used heavily until about 2015 (aside from WISPs)
– FQ-CODEL and CAKE now address bufferbloat
– Dave Taht, Eric Dumazet, Toke Høiland-Jørgensen, ...

Høiland-Jørgensen

Bad idea badly im
plemented

15

1990 SFQ: What Went Wrong?
● Solved wrong problem: End-to-end fairness

– Correct problem: Hop-by-hop & endpoint fairness
– By sheer dumb luck, my algorithm handled both

● Research-quality code: Get the paper out!!!
– Engineers at Cisco and in Linux kernel fixed this

● Used heavily until about 2015 (aside from WISPs)
– FQ-CODEL and CAKE now address bufferbloat
– Dave Taht, Eric Dumazet, Toke Høiland-Jørgensen, ...

Høiland-Jørgensen

Bad idea badly im
plemented,

resuscitated by dumb luck

16

1990 SFQ: What Went Wrong?
● Solved wrong problem: End-to-end fairness

– Correct problem: Hop-by-hop & endpoint fairness
– By sheer dumb luck, my algorithm handled both

● Research-quality code: Get the paper out!!!
– Engineers at Cisco and in Linux kernel fixed this

● Used heavily until about 2015 (aside from WISPs)
– FQ-CODEL and CAKE now address bufferbloat
– Dave Taht, Eric Dumazet, Toke Høiland-Jørgensen, ...

Høiland-Jørgensen

Bad idea badly im
plemented,

resuscitated by dumb luck
Premature abstraction is the

root of all evil

17

1990 SFQ: What Went Wrong?
● Solved wrong problem: End-to-end fairness

– Correct problem: Hop-by-hop & endpoint fairness
– By sheer dumb luck, my algorithm handled both

● Research-quality code: Get the paper out!!!
– Engineers at Cisco and in Linux kernel fixed this

● Used heavily until about 2015 (aside from WISPs)
– FQ-CODEL and CAKE now address bufferbloat
– Dave Taht, Eric Dumazet, Toke Høiland-Jørgensen, ...

Høiland-Jørgensen

Bad idea badly im
plemented,

resuscitated by dumb luck
Premature abstraction is the

root of all evil
Live among your users!!!

18

1980s: Eight-Bit CRM

Permission to use granted February 5, 2023 by Olivier Boisseau of OLD-COMPUTERS.COM
Image source: https://www.old-computers.com/museum/photos/otrona_attache_1s.jpg

19

1980s: Eight-Bit CRM

● CRM application built to spec under contract
● The company loved it!

20

1980s: Eight-Bit CRM

● CRM application built to spec under contract
● The company loved it!
● Their prospective customers, not so much

21

1980s: Eight-Bit CRM

● CRM application built to spec under contract
● The company loved it!
● Their prospective customers, not so much
● Dumb luck: They paid me before bankruptcy

22

1980s: Eight-Bit CRM

● CRM application built to spec under contract
● The company loved it!
● Their prospective customers, not so much
● Dumb luck: They paid me before bankruptcy

Bad idea well im
plemented

23

1980s: Eight-Bit CRM

● CRM application built to spec under contract
● The company loved it!
● Their prospective customers, not so much
● Dumb luck: They paid me before bankruptcy

Bad idea well im
plemented,

but hey, I g
ot paid???

24

1980s: Eight-Bit CRM: What Instead?

Time and Grade: Experience

25

Cautionary Quote

● "Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you're as clever as you can be
when you write it, how will you ever debug it?" - Brian W.
Kernighan, "The Elements of Programming Style", 2nd Edition,
Chapter 2.

26

Cautionary Quote

● "Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you're as clever as you can be
when you write it, how will you ever debug it?" - Brian W.
Kernighan, "The Elements of Programming Style", 2nd Edition,
Chapter 2.

● While programming, you are living in blissful ignorance of
important requirements. These requirements make themselves
known during debugging.

● Which is but one cause of Kernighan’s observation.

27

Cautionary Quote

● "Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you're as clever as you can be
when you write it, how will you ever debug it?" - Brian W.
Kernighan, "The Elements of Programming Style", 2nd Edition,
Chapter 2.

● While programming, you are living in blissful ignorance of
important requirements. These requirements make themselves
known during debugging.

● Which is but one cause of Kernighan’s observation.I failed to understand that I w
as

competing with a file
 cabinet

28

Cautionary Quote

● "Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you're as clever as you can be
when you write it, how will you ever debug it?" - Brian W.
Kernighan, "The Elements of Programming Style", 2nd Edition,
Chapter 2.

● While programming, you are living in blissful ignorance of
important requirements. These requirements make themselves
known during debugging.

● Which is but one cause of Kernighan’s observation.I failed to understand that I w
as

competing with a file
 cabinetAnd the file cabinet won

29

1980s: Acoustic Navigation

Photo by user Neozeed https://gunkies.org/wiki/File:Pdp11-23.jpg GNU Free Documentation License 1.2

30

1980s: Acoustic Navigation

Photo by user Neozeed https://gunkies.org/wiki/File:Pdp11-23.jpg GNU Free Documentation License 1.2

But with insane quantities

of shock mounting for

shipboard use

31

1980s: Acoustic Navigation (Pre-GPS)

Ship pings at one frequency...

...each transponder responds at its own frequency...

...then convert time to distance and triangulate!!!

32

Acoustic Navigation Complications

● If the ship’s position was known when deploying the transponder,
there would be no need for acoustic navigation

● Transponders do not fall exactly straight down through four miles of
water

● Ocean surface is not perfectly level
● Sound does not travel in a straight line through ocean water
● Sound does not travel at a uniform speed through ocean water
● Dolphins like to play with transponders

33

Acoustic Navigation Complications

● If the ship’s position was known when deploying the transponder,
there would be no need for acoustic navigation

● Transponders do not fall exactly straight down through four miles of
water

● Ocean surface is not perfectly level
● Sound does not travel in a straight line through ocean water
● Sound does not travel at a uniform speed through ocean water
● Dolphins like to play with transponders

34

Acoustic Navigation Calibration (1/2)

Ship pings at locations not on a line, minimize error to solve for transponder positions

35

Acoustic Navigation Complications

● If the ship’s position was known when deploying the transponder,
there would be no need for acoustic navigation

● Transponders do not fall exactly straight down through four miles of
water

● Ocean surface is not perfectly level
● Sound does not travel in a straight line through ocean water
● Sound does not travel at a uniform speed through ocean water
● Dolphins like to play with transponders

36

Acoustic Navigation Calibration (2/2)

Ship drops probe to measure temperature, salinity, and pressure...

37

Acoustic Navigation Calibration (2/2)

Ship drops probe to measure temperature, salinity, and pressure...

38

Acoustic Navigation Calibration (2/2)

Ship drops probe to measure temperature, salinity, and pressure...

39

Acoustic Navigation Calibration (2/2)

Ship drops probe to measure temperature, salinity, and pressure...

40

Acoustic Navigation Calibration (2/2)

Ship drops probe to measure temperature, salinity, and pressure...

41

Acoustic Navigation Calibration (2/2)

Ship drops probe to measure temperature, salinity, and pressure...

Then calculate sound velocity as a function of depth, and finally do ray-tracing.

42

Acoustic Navigation Complications

● If ship’s position known when deploying transponder, no need for system
● Transponders do not fall exactly straight down through four miles of water
● Ocean surface is not perfectly level
● Sound does not travel in a straight line through ocean water
● Sound does not travel at a uniform speed through ocean water
● Dolphins like to play with transponders
● Error minimization has difficulty with three unknowns per transponder

43

Acoustic Navigation Complications

● If ship’s position known when deploying transponder, no need for system
● Transponders do not fall exactly straight down through four miles of water
● Ocean surface is not perfectly level
● Sound does not travel in a straight line through ocean water
● Sound does not travel at a uniform speed through ocean water
● Dolphins like to play with transponders
● Error minimization has difficulty with three unknowns per transponder

44

Acoustic Navigation: Measure Depth

Ship pings transponders...

45

Acoustic Navigation: Measure Depth

...each transponder replies on its own frequency...

46

Acoustic Navigation: Measure Depth

…transponders listen for bounce from surface...

47

Acoustic Navigation: Measure Depth

…and ship times successive replies from each transponder: 2x surface bound time!

48

Acoustic Navigation: Measure Depth

Except that in shallow water, sound bounces, and bounces, and bounces, and ...

49

Acoustic Navigation: Measure Depth

In shallow water, more than half of the measurements were bogus!!!

50

Acoustic Navigation: Measure Depth

Statistical error rejection: “Sort first, and ask questions later”

51

Acoustic Navigation: Measure Depth

Statistical error rejection: “Sort first, and ask questions later”Bad idea fixed “statistically”

52

Acoustic Navigation: Measure Depth

Statistical error rejection: “Sort first, and ask questions later”Bad idea fixed “statistically”:

Missing requirement

53

1970s: Student Housing System

Photo courtesy of Fundacio ́ n ICA: CDC 3300

54

1970s: Student Housing System

Photo courtesy of Fundacio ́ n ICA: CDC 3300

Punched Cards and FORTRAN

55

1970s: Student Housing System

Photo courtesy Wikipedia user Bubba CC BY-SA 4.0: CDC Cyber 73 console (rest of computer fills room)

56

1970s: Student Housing System

Photo courtesy Wikipedia user Bubba CC BY-SA 4.0: CDC Cyber 73 console (rest of computer fills room)

Punched Cards and COBOL

57

Student Housing Temporal Confusion

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

$ $$ $ $ $$$$$$ $ $

58

Student Housing Temporal Confusion

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

$ $$ $ $$ $ $

Student started on Friday and
was not amused by the bill.

$$$$$

59

Student Housing Temporal Confusion

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

$ $$ $ $$ $ $

Student started on Friday and
was not amused by the bill.
My manager had the usual
1970s earthy suggestion for
alternative uses of the money.

$$$$$

60

Student Housing Temporal Confusion

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

$ $$ $ $$ $ $

Student started on Friday and
was not amused by the bill.
My manager had the usual
1970s earthy suggestion for
alternative uses of the money.

$$$$$

Problem: Months vary in length

61

Student Housing Temporal Confusion

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

$ $$ $ $$ $ $

Student started on Friday and
was not amused by the bill.
My manager had the usual
1970s earthy suggestion for
alternative uses of the money.

Problem: Months vary in length

Solution: “jdate” algorith
m

“jdate” algorithm: https://aa.usno.navy.mil/faq/JD_formula

$$$$$

62

Student Housing Temporal Confusion

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

$ $$ $ $$ $ $

Student started on Friday and
was not amused by the bill.
My manager had the usual
1970s earthy suggestion for
alternative uses of the money.

Good idea implemented poorly

$$$$$

63

1990s: Clustered Database Servers

Photo Wikipedia user OpcomWikipedia user Opcom, CC BY-SA 3.0CC BY-SA 3.0

64

Shared Disks For Availability Win!!!

Database
Server

Database
Server

65

Shared Disks For Availability Win!!!

Database
Server

Database
Server

All data is still accessible!!!

66

Shared Disks For Availability Win!!!

Database
Server

Database
Server

All data is still accessible!!! Of course, sites should test this frequently...

67

Shared Disks For Availability Win!!!

Database
Server

Database
Server

All data is still accessible!!! Of course, sites should test this frequently...

But not necessarily every evening!!!

68

Chaos-Monkey Challenges

● Crash dump was a complete disaster area
– No hints for on-site debugging instrumentation

● Unable to reproduce in the lab

69

Chaos-Monkey Challenges

● Crash dump was a complete disaster area
– No hints for on-site debugging instrumentation

● Unable to reproduce in the lab
● Eventually, found test case: 5-27-hour MTBF

– But need week-long test for any alleged fix!!!
– And it was now Memorial Day weekend...

70

Hint From Stack Trace

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

Virtual Address
Tracking Array
vata[512]

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

Unaligned memory
region

71

Hint From Stack Trace

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vta || vadr < vta)
 vta = vta[idx – 1];

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

72

Hint From Stack Trace

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vta || vadr < vta)
 vta = vta[idx – 1];

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

73

Hint From Stack Trace

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vta || vadr < vta)
 vta = vta[idx – 1];

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

74

Hint From Stack Trace: Compiler Fun

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vata[idx] ||
 vadr < vata[idx])
 vta = vta[idx – 1];

Unaligned memory
region

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

75

Compiler Fun In Failure Case

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vata[idx] ||
 vadr < vata[idx])
 vta = vta[idx – 1];

Unaligned memory
region

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

76

Compiler Fun In Failure Case: Update

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vata[idx] ||
 vadr < vata[idx])
 vta = vta[idx – 1];

Unaligned memory
region

Memory freed!!!

X

Virtual Address
Tracking Array
vata[512]

77

Compiler Fun In Failure Case: Update

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vata[idx] ||
 vadr < vata[idx])
 vta = vta[idx – 1];

X
Unaligned memory

region

Memory freed!!!

vta
 is

 N
ULL!!!

Virtual Address
Tracking Array
vata[512]

78

Thwarting Compiler Fun

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = READ_ONCE(vata[idx]);
if (!vta || vadr < vta)
 vta = vta[idx – 1];

Unaligned memory
region

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

79

Thwarting Compiler Fun: Update OK

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = READ_ONCE(vata[idx]);
if (!vta || vadr < vta)
 vta = vta[idx – 1];

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

Memory freed!!!

80

Shared Disks For Availability Win!!!

Database
Server

Database
Server

Good idea implemented poorly

81

Shared Disks For Availability Win!!!

Database
Server

Database
Server

Good idea implemented poorly,

vol
ati

le is your fri
end!

82

Shared Disks For Availability Win!!!

Database
Server

Database
Server

And that is the story how I

deprived myself and my colleagues

of a Memorial Day weekend

83

1970s: My First Professional Project

Photo courtesy of Rama & Musée Bolo, CC BY-SA 2.0 fr ASR-33 Teletype

84

1970s: My First Professional Project

● Pro-bono computer dating program for National Honor Society
fundraiser during my senior year in high school

● Questions from Home Economics teacher
● Simple Hamming-distance matching with expected 1970s

constraints on matches
● Students’ paper questionnaires transcribed to paper tape, then

read into program
● Simple, effective, worked great!!!

85

One Dissatisfied Customer

● Senior girl matched only with freshmen boys
– And she really did check the seniors-only box

● Program looked to be correct
● Turned out to be data-entry error
● Correct program is not enough

– Environment and processes matter!!!

86

One Dissatisfied Customer

● Senior girl matched only with freshmen
– And she really did check the seniors-only box

● Program looked to be correct
● Turned out to be data-entry error
● Correct program is not enough

– Environment and processes matter!!! Good idea implemented properly,

87

One Dissatisfied Customer

● Senior girl matched only with freshmen
– And she really did check the seniors-only box

● Program looked to be correct
● Turned out to be data-entry error
● Correct program is not enough

– Environment and processes matter!!! Good idea implemented properly,

but I w
as also overall project lead!

88

Cautionary Quote

● A lot of success in life and business comes from
knowing what you want to avoid. - Charlie
Munger

89

2004: Real-Time Linux

90

2004: Real-Time Linux

● Early 2000s: Many requests for real-time Linux
– But “enterprise-grade real-time Linux”

● Except that no such thing existed
● And my employer had strict rules for contracts

calling for mythical creatures

91

2004: Real-Time Linux

● Early 2000s: Many requests for real-time Linux
– But “enterprise-grade real-time Linux”

● Except that no such thing existed
● And my employer had strict rules for contracts

calling for mythical creaturesNo Bid

92

2004: Dawn of Multicore Embedded

CPU 0 CPU 1

CPU 2 CPU 3

93

Multicore Embedded for Real Time!!!

CPU 0 CPU 1

CPU 2 CPU 3

N
on

-r
ea

lti
m

e
co

de
 h

er
e

R
ea

lti
m

e
co

de
 h

er
e

94

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!
N

on
-r

ea
lti

m
e

co
de

 h
er

e

R
ea

lti
m

e
co

de
 h

er
e

95

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

96

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

Respond to non-real-time activity by migrating.

97

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

Respond to non-real-time activity by migrating.

98

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

Respond to non-real-time activity by migrating.

99

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

Respond to non-real-time activity by migrating.

100

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

Respond to non-real-time activity by migrating.

101

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

Respond to non-real-time activity by migrating.

102

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

Respond to non-real-time activity by migrating.and back when done (system call).

103

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

Respond to non-real-time activity by migrating.and back when done (system call).

104

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

Respond to non-real-time activity by migrating.and back when done (system call).

105

CPU 0 NRT CPU 1 RT

CPU 2 RT CPU 3 RT

Multicore Embedded for Real Time!!!

Respond to non-real-time activity by migrating.and back when done (system call).

106

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration

107

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!

108

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!

There is a real-tim
e effort spinning up.

But they are rewriting the kernel.

Pragmatism for the win!!!

109

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!

110

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
● And we win a large contract!!!

111

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
● And we win a large contract!!!My idea is rejected!!!

112

Multicore Real Time Linux Actions

● Why was my brilliant idea rejected?

113

Multicore Real Time Linux Actions

● Why was my brilliant idea rejected?

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain Zumwalt-class DDG destroyer

114

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
● And we win a large contract!!!

Rejected!!!

Except th
at we have

contractual commitm
ents

to meet...

115

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
● And we win a large contract!!!

Rejected!!!

Except th
at we have

contractual commitm
ents

to meet...

Remember that rewrite-the-kernel effort?

116

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
● And we win a large contract!!!

Rejected!!!

Except th
at we have

contractual commitm
ents

to meet...

Remember that rewrite-the-kernel effort?

Well, I helped them with RCU

117

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
● And we win a large contract!!!

Rejected!!!

Except th
at we have

contractual commitm
ents

to meet...

Remember that rewrite-the-kernel effort?

Well, I helped them with RCU

Three from-scratch implementations

118

Multicore Real Time Linux Actions

● Produce patch implementing syscall migration
● Test it out, works great!
● Inform executives real-time Linux is real!!!
● No more need for no-bid!!!
● And we win a large contract!!!

Rejected!!!

Except th
at we have

contractual commitm
ents

to meet...

Remember that rewrite-the-kernel effort?

Well, I helped them with RCU

Three from-scratch implementations

One of the highlights of my career

119

2004: Real-Time Linux

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain Zumwalt-class DDG destroyer

120

2004: Real-Time Linux

Nice idea collid
es with reality

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain Zumwalt-class DDG destroyer

121

2004: Real-Time Linux

Nice idea collid
es with reality

Reality
 wins

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain Zumwalt-class DDG destroyer

122

Formal Verification

123

Formal Verification: Why Bother?

124

Installed Base

1

1975
NHS

Million-Year Bug? Once In a Million Years!!!

125

Installed Base

1

1975
NHS

Million-Year Bug? Once In a Million Years!!!
Murphy is a nice guy: Everything that can happen, will...

126

Installed Base

1

1975
NHS

Million-Year Bug? Once In a Million Years!!!
Murphy is a nice guy: Everything that can happen, will...
...maybe in geologic time

127

Installed Base

1

1975
NHS

100
10
1

1985
Various

Million-Year Bug? Once in Ten Millennia

128

Installed Base

1

1975
NHS

100
10
1

1985
Various

Million-Year Bug? Once per Century

1995
SQNT

10K
1K
100
10
1

129

Installed Base

1

1975
NHS

100
10
1

1985
Various

Million-Year Bug? Once a Month

1995
SQNT

10K
1K
100
10
1

2005
Linux

100K
10K

10M

1K
100
10
1

130

Installed Base

1

1975
NHS

100
10
1

1985
Various

Million-Year Bug? Several Times per Day

1995
SQNT

10K
1K
100
10
1

2005
Linux

100K
10K

10M

1K
100
10
1

100K
10K

10M

2015
Linux

1K
100
10
1

10G

131

Installed Base

1

1975
NHS

100
10
1

1985
Various

Million-Year Bug? Several Times per Hour

1995
SQNT

10K
1K
100
10
1

2005
Linux

100K
10K

10M

1K
100
10
1

100K
10K

10M

2015
Linux

1K
100
10
1

10G

100K
10K

10M

2017
Linux

1K
100
10
1

10G
100G

132

Installed Base

1

1975
NHS

100
10
1

1985
Various

Million-Year Bug? You don't want to know...

1995
SQNT

10K
1K
100
10
1

2005
Linux

100K
10K

10M

1K
100
10
1

100K
10K

10M

2015
Linux

1K
100
10
1

10G

100K
10K

10M

2017
Linux

1K
100
10
1

10G
100G

1T

100G
10G

100K
10K

10M

1K
100
10
1

IoT?

1T

133

Installed Base

1

1975
NHS

100
10
1

1985
Various

Million-Year Bug? You don't want to know...
But has Murphy transitioned
from a nice guy into a
homicidal maniac?

1995
SQNT

10K
1K
100
10
1

2005
Linux

100K
10K

10M

1K
100
10
1

100K
10K

10M

2015
Linux

1K
100
10
1

10G

100K
10K

10M

2017
Linux

1K
100
10
1

10G
100G

1T

100G
10G

100K
10K

10M

1K
100
10
1

IoT?

1T

134

Formal Verification: Why Bother?

● 2017: 20 billion instances of the Linux kernel
– Million-year MTBF bug fails >50 times per day
– New kernel version every 2-3 months

● Testing really is feasible for low-duty-cycle devices
– But not for the ~80 million servers!!!

● Plus Linux is used in safety-critical applications!!!
● Full state-space search is quite attractive

135

Formal Verification Experience

● 1993: Promela/spin election algorithm
● 2007: “Quick” RCU (QRCU) verification
● 2008: RCU idle-detection for energy efficiency
● 2012: Verify userspace RCU
● 2014: Verify RCU idle detection for NMIs
● 2018-on: Heavy use of herd7 and LKMM

136

Formal Verification Experience

● 1993: Promela/spin election algorithm
● 2007: “Quick” RCU (QRCU) verification
● 2008: RCU idle-detection for energy efficiency
● 2012: Verify userspace RCU
● 2014: Verify RCU idle detection for NMIs
● 2018-on: Heavy use of herd7 and LKMM

Verify
ing design, not re

gression testing

137

Formal Verification Experience

● 1993: Promela/spin election algorithm
● 2007: “Quick” RCU (QRCU) verification
● 2008: RCU idle-detection for energy efficiency
● 2012: Verify userspace RCU
● 2014: Verify RCU idle detection for NMIs
● 2018-on: Heavy use of herd7 and LKMM

Verify
ing design, not re

gression testing

Verific
ation valid after bug fix

???

138

Formal Verification is Expensive

● At best, exponential; in general, undecidable
– Partitioning for combinatorial implosion?

● “Macho” verification requires full specification
– Which is large, thus containing lots of bugs!

● Successful formal verification highly restricted:
– Small programs, simple properties of large programs, or

execution-guided verification

139

Formal Verification is Expensive

● At best, exponential; in general, undecidable
– Partitioning for combinatorial implosion?

● “Macho” verification requires full specification
– Which is large, thus containing lots of bugs!

● Successful formal verification highly restricted:
– Small programs, simple properties of large programs, or

execution-guided verification
 Powerful when used properly,

static analysis can be fast

140

Formal Verification is Expensive

● At best, exponential; in general, undecidable
– Partitioning for combinatorial implosion?

● “Macho” verification requires full specification
– Which is large, thus containing lots of bugs!

● Successful formal verification highly restricted:
– Small programs, simple properties of large programs, or

execution-guided verification
 Powerful when used properly,

static analysis can be fast
How to verify the verification?

141

Remember That File Cabinet?

142

Formal Verification’s Scope Is Limited

● "Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you're as clever as you can be
when you write it, how will you ever debug it?" - Brian W.
Kernighan, "The Elements of Programming Style", 2nd Edition,
Chapter 2.

● While programming, you are living in blissful ignorance of
important requirements. These requirements make themselves
known during debugging.

● Which is but one cause of Kernighan’s observation.I failed to understand that I w
as

competing with a file
 cabinetAnd the file cabinet won

143

Formal Verification’s Scope Is Limited
● Does anyone really want the software?
● Is the software economically valuable?

– Enough to pay the software’s developers? Validation personnel? Service
personnel? Sales? Documentation? Maintenance?

● Are any supply chains robust?
● Are the requirements correct? Complete?
● Are the requirements met?

– Functional requirements? Performance requirements? Non-real-time latency
requirements? Real-time latency requirements? Energy-efficiency
requirements? Human-factors requirements? Legal requirements? Human-
language requirements?

144

Formal Verification’s Scope Is Limited
● Does anyone really want the software?
● Is the software economically valuable?

– Enough to pay the software’s developers? Validation personnel? Service
personnel? Sales? Documentation? Maintenance?

● Are any supply chains robust?
● Are the requirements correct? Complete?
● Are the requirements met?

– Functional requirements? Performance requirements? Non-real-time latency
requirements? Real-time latency requirements? Energy-efficiency
requirements? Human-factors requirements? Legal requirements? Human-
language requirements?

145

Real-Time Linux System Options

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain Zumwalt-class DDG destroyer

1) Special system for this bid
2) New real-time product line
3) Put real-time capabilities into standard product

146

Real-Time Linux System Option 1

● Special system for this bid
– Low development cost for group producing server
– High development cost for real-time Linux group
– High likelihood of firmware issues
– High service costs for real-time Linux group
– So-so customer experience

147

Real-Time Linux System Option 2

● New real-time product line
– High development cost for group producing server
– Low development cost for real-time Linux group
– Lower likelihood of firmware issues
– Low service costs for real-time Linux group
– Good customer experience

148

Real-Time Linux System Option 3

● Put real-time capabilities into standard product
– Negative costs (!) for group producing server
– Low development cost for real-time Linux group
– Lower likelihood of firmware issues
– Low service costs for real-time Linux group
– Good customer experience for many customers

149

Real-Time Linux System Options

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain Zumwalt-class DDG destroyer

1) Special system for this bid
2) New real-time product line
3) Put real-time capabilities into standard product

150

Real-Time Linux System Options

Photo credit: National Museum of the U.S. Navy, 2016, Public Domain Zumwalt-class DDG destroyer

1) Special system for this bid
2) New real-time product line
3) Put real-time capabilities into standard product

Great things can happen if techies

and business people work

together!!!

151

Formal Verification is Heavily Used

● Several test projects on the Linux kernel
● Many proprietary projects verify each commit
● But…

– Formal verification in the small
– Check for undesirable properties

● File bug reports as appropriate

152

Formal Verification is Heavily Used

● Several test projects on the Linux kernel
● Many proprietary projects verify each commit
● But…

– Formal verification in the small
– Check for undesirable properties

● File bug reports as appropriateDe-ris
k via one-way bet

153

Cautionary Quote (Redux)

● A lot of success in life and business comes from
knowing what you want to avoid. - Charlie
Munger

154

Cautionary Quotes

● Sometimes you don't even know what you want until
you find out you can't have it. - Meghan O'Rourke

● Sometimes we don't know what we want until we
don't get it. - Sloane Crosley

● We don't know what we want, but we are ready to
bite somebody to get it - Will Rogers

155

Natural Selection

156

Natural Selection

157

Natural Selection: Not Just Lifeforms

Software
(Randomly
Generated)

Validation
(Selection!) Bugs

Fewer (?)
Injected Bugs

Robust
Software

Agile methods attempt to push this methodology back to the specification

158

Natural Selection: Bugs are Software!

Software
(Randomly
Generated)

Validation
(Selection!) Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation

159

Natural Selection: Bugs are Software!

Software
(Randomly
Generated)

Validation
(Selection!) Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation

Bug Reports:
Improve

Validation

160

Validate Only Intended Use Cases

Current Validated
Use Cases

161

Major Development Generates Bug

Current Validated
Use Cases

162

After Validation and Bug Fixing

Current Validated
Use Cases

163

After Another Round of Development

Current Validated
Use Cases

164

More Validation and Bug Fixing

Current Validated
Use Cases

165

New
Use Cases

New
Use Cases

New Use Cases: Walls of Bugs!!!

Current Validated
Use Cases

166

New
Use Cases

New
Use Cases

New Use Cases: Walls of Bugs!!!

Current Validated
Use Cases

Open-source software can help

167

Natural Selection: Bugs are Software!

Software
(Randomly
Generated)

Validation
(Selection!) Bugs

Fewer (?)
Injected Bugs

Software – And
Bugs Adapted
to Validation

Bug Reports
And Paranoia:

Improve
Validation

168

“Natural Selection” is a Euphemism

169

“Natural Selection” is a Euphemism

If your tests are not failing, they are not
improving your software

170

“Natural Selection” is a Euphemism

If your tests are not failing, they are not
improving your software

If your users are not complaining, they
are not improving your software

171

Why Would Users Fail to Complain?

● They are not actually using your software (common case)
● They do not know who to complain to
● The last N times they complained:

– Nothing useful happened
– They were yelled at or otherwise belittled

● Your software is technically successful
– And has thus “faded into the woodwork”

172

Cautionary Quotes

● Customers don’t know what they want until
we’ve shown them. - Steve Jobs

173

Cautionary Quotes

● Customers don’t know what they want until
we’ve shown them. - Steve Jobs

● If there is any one secret of success, it lies in
the ability to get the other person’s point of view
and see things from that person’s angle as well
as from your own. - Henry Ford

174

Cautionary Quotes

● Customers don’t know what they want until
we’ve shown them. - Steve Jobs

● If there is any one secret of success, it lies in
the ability to get the other person’s point of view
and see things from that person’s angle as well
as from your own. - Henry Ford You must live among your users

175

Cautionary Quotes

● Customers don’t know what they want until
we’ve shown them. - Steve Jobs

● If there is any one secret of success, it lies in
the ability to get the other person’s point of view
and see things from that person’s angle as well
as from your own. - Henry Ford You must live among your users

You must complain on their behalf

176

Summary

177

Summary

● People don’t know what they want

178

Summary

● People don’t know what they want
● But for software developers, this is no excuse

179

Summary

● People don’t know what they want
● But for software developers, this is no excuse

– You have only failed if you have given up...until then
it's called learning. - Unknown

180

Summary

● People don’t know what they want
● But for software developers, this is no excuse

– You have only failed if you have given up...until then
it's called learning. - Unknown

– You are not a failure until you start blaming others
for your mistakes. - John Wooden

181

But I Had It Easy!

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business

applications (1976-1981)
– Do the assigned work

● Contract programming (1981-1985)
● Systems administration and Internet research (1986-1990)
● Concurrent proprietary UNIX (1990-2000)
● Linux kernel concurrency and realtime (2001-present)

182

But I Had It Easy!

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business

applications (1976-1981)
● Contract programming (1981-1985)

– Keep them out of court (or even out of jail)
● Systems administration and Internet research (1986-1990)
● Concurrent proprietary UNIX (1990-2000)
● Linux kernel concurrency and realtime (2001-present)

183

But I Had It Easy!

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business

applications (1976-1981)
● Contract programming (1981-1985)
● Systems administration and Internet research (1986-1990)

– Keep users happy and fulfill terms of research contracts
● Concurrent proprietary UNIX (1990-2000)
● Linux kernel concurrency and realtime (2001-present)

184

But I Had It Easy!

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business

applications (1976-1981)
● Contract programming (1981-1985)
● Systems administration and Internet research (1986-1990)
● Concurrent proprietary UNIX (1990-2000)

– Make it fast and scalable (up to 64 CPUs)
● Linux kernel concurrency and realtime (2001-present)

185

But I Had It Easy!

● High school class: IBM mainframe & HP Basic (1973-1976)
● University: Computer science & mechanical engineering, business

applications (1976-1981)
● Contract programming (1981-1985)
● Systems administration and Internet research (1986-1990)
● Concurrent proprietary UNIX (1990-2000)
● Linux kernel concurrency and realtime (2001-present)

– Make it many things...

186

But I Had It Easy!

● Linux kernel concurrency and realtime (2001-present):
– Fast and scalable (up to 4096 CPUs)
– Real-time response (sub-20-microsecond latencies)
– Energy efficiency
– Near-bare-metal efficiency to usermode applications
– Robustness (20 billion instances)
– Ease of use driven by security
– Ease of administration (large data centers)

187

But I Had It Easy!

● Linux kernel concurrency and realtime (2001-present):
– Fast and scalable (up to 4096 CPUs)
– Real-time response (sub-20-microsecond latencies)
– Energy efficiency
– Near-bare-metal efficiency to usermode applications
– Robustness (20 billion instances)
– Ease of use driven by security
– Ease of administration (large data centers) Yes, I am proud of my accomplishments,

but modern systems are far

more complex and user-centric

188

But I Had It Easy!

● Linux kernel concurrency and realtime (2001-present):
– Fast and scalable (up to 4096 CPUs)
– Real-time response (sub-20-microsecond latencies)
– Energy efficiency
– Near-bare-metal efficiency to usermode applications
– Robustness (20 billion instances)
– Ease of use driven by security
– Ease of administration (large data centers) Yes, I am proud of my accomplishments,

but modern systems are far

more complex and user-centric
My job is to provide reliable

infrastructure

189

Questions?

Photo NASA Public Domain April 7, 2021

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189

