
Getting more out of a stateless model checker

Viktor Vafeiadis

2 June 2023



The grand challenge of software engineering

Produce software that is
▶ correct, ⇝ use verification techniques
▶ efficient, and ⇝ exploit parallelism
▶ useful (application-dependent)

with minimal cost
▶ in developer expertise and ⇝ automated verification
▶ in developer time/effort. ⇝ with no false positives
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Software model checking

Given a program P and a property Φ,
check that all executions of P satisfy Φ.

In our setting:
▶ P is a multi-threaded program.
▶ Φ is some safety property

e.g., the program does not segfault.

▶ It assumes programs are bounded.
▶ It is does not scale well.
▶ One still has to provide the program P and the property Φ.
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Software model checking

Given a program P and a property Φ,
check that all executions of P satisfy Φ.

▶ It is fully automated (“push button” technique).
One only has to provide P and Φ.

▶ Supports weak memory consistency.
▶ Unsuccessful verification returns error traces.

i.e. program traces that violate Φ.
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Model checking approaches

Stateful
▶ Visit all program states by

DFS recording visited
states to avoid repetition.

▶ Requires program to have
bounded state-space.

▶ Uses a lot of memory.

Stateless
▶ Generate all program

executions without
recording visited states

▶ Assumes program to
always terminate.

▶ Low memory usage.

SMT-based: State-space exploration is done by SMT solver.
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My favorite model checker: GenMC
State-of-the-art stateless model checker
▶ Correct, optimal, highly parallelizable
▶ Works with almost any weak memory model
▶ Small memory footprint
▶ Open source

https://github.com/mpi-sws/genmc/
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Scalability



Scalability issues and remedies
There are way too many interleavings.

(exponential in the number of threads and the size of the program)

But exploring all interleavings is unnecessary.
▶ Many interleavings lead to the same outcome.

DPOR: Avoid exploring ‘equivalent’ interleavings

▶ Many interleavings are symmetric.
SR: Avoid exploring ‘symmetric’ interleavings

▶ The same bug can be exposed by multiple interleavings.
Bounding: Explore only ‘simple’ interleavings
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Scalability and DPOR
The ideal case: Threads access disjoint locations.

x [1] := 1
x [x [1]] := 2 × x [1]
assert(x [1] > 0)

...
x [N] := N
x [x [N]] := 2 × x [N]
assert(x [N] > 0)

▶ One execution – O(N) verification time

The worst case: Threads access the same locations.
lock()
unlock() ...

lock()
unlock()

▶ Without symmetry reduction, O(N!) executions.
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Concrete example: reader-writer locks?
GenMCv0.10 does not have built-in support for RW-locks.
▶ How shall we implement them?

Count the number of readers holding a lock?
▶ Readers synchronize ⇝ slow verification.

read-lock()
x [1] := y
read-unlock()

...
read-lock()
x [N] := y
read-unlock()

▶ O(N!) executions.
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Implementing reader-writer locks (2)
A better implementation
▶ Keep one lock per-thread
▶ Read-lock acquires the lock of the calling thread
▶ Write-lock acquires the locks of all the threads

▶ No contention on the following example
read-lock()
x [1] := y
read-unlock()

...
read-lock()
x [N] := y
read-unlock()

▶ One execution – O(N) verification time
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Writing the program P
and the property Φ



Test clients
▶ Suppose we want to verify a concurrent queue library.
▶ We need to write test clients, such as:

enqueue(1);
enqueue(2);

a := dequeue();
assert(a ̸= 2);

enqueue(1);
a := dequeue();
assert(a ̸= ⊥);

enqueue(2);
b := dequeue();
assert(b ̸= ⊥);

enqueue(1); a := dequeue(); b := dequeue();
assert(a = ⊥ ∨ b = ⊥);

Is there a better way?
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Linearizability
▶ The standard specification of concurrent libraries
▶ Every concurrent history can be linearized into a legal sequential

history (preserving the real-time order of method calls).

enq(1) ret

enq(2) ret

deq() ret/2

▶ “Global lock” semantics
▶ Linearizability = Refinement of an atomic specification

[Herlihy&Wing, 1990]
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Linearizability and weak memory consistency
▶ There is no such thing as real-time order.
⇝ use “happens-before” order instead.

▶ Linearizability specifies only output correctness.
▶ It does not specify induced synchronization.

Can the following program print 0?

x := 1
enqueue(28)

if dequeue() > 5 then
print x
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Refinement of a global lock specification?
▶ Representation: unbounded array with front and back pointers.
▶ Enforce atomicity with a global lock.

enqueue(v) △=
lock();
array [back] := v ;
back := back + 1;
unlock();

dequeue() △=
lock();
v := ⊥;
f := front;
if f < back then

v := array [f ];
front := f + 1;

unlock();
return v
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Refinement of a global lock specification?

“Global lock” specification:
▶ Guarantees correct message-passing behavior.
▶ But enforces too much synchronization.
▶ Is not refined by standard implementations.

We need a more advanced specification.
▶ Directly use C/C++11 atomics?

Too complex.
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Library-scoped locks
A specification device:
▶ Like normal locks, provide mutual exclusion and synchronization

but only within the library.
▶ They do not induce synchronization outside the library.

Simplifies specifications:
▶ Disentagle atomicity from synchtonization.
▶ Use C/C++11 atomics to specify desired synchronization.
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Queue specification with library-scoped locks
▶ Enforce synchronization between matching enqueue/dequeue.

enqueue(v) △=
lib-lock();
array [back] :=rel v ;
back := back + 1;
lib-unlock();

dequeue() △=
lib-lock();
v := ⊥;
f := front;
if f < back then

v :=acq array [f ];
front := f + 1;

lib-unlock();
return v
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Checking linearizability for particular client

▶ Generate all executions of the specification.
▶ Collect the set of allowed outcomes:

results of the methods & induced synchronization.

▶ Generate all executions of the implementation.
▶ For each execution, check that its outcome is allowed.

i.e. the results of the methods agree, but the implementation
may induce more synchronization than the specification.
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Checking linearizability for all clients?

Defining client that exposes bug can be tricky.
▶ Minimal client exposing weak memory bug in HW queue:

enqueue(1);
enqueue(2);

b := dequeue();
enqueue(3);

c := dequeue();
d := dequeue();

enqueue(4);
a := dequeue();

assert(b ̸= 2 ∨ c ̸= 3 ∨ d ̸= 4 ∨ a ̸= 1);

We want to check linearizability for all bounded clients.
▶ Use the most parallel client?
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Most parallel client (MPC)
Inkove K library operations in parallel, e.g.:

enqueue(1) enqueue(2) dequeue() dequeue()

Key property:
▶ Every client execution can be obtained by some MPC execution

by adding synchronization and applying a value substitution.

▶ MPC sufficient for showing assertion safety.
▶ On its own, not so useful for showing linearizability.
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Checking linearizability with MPC

Phase 1: Analyze the specification
▶ For each outcome, calculate minimal happens-before extensions

forbidding it.

Phase 2: Verify the implementation
For each implementation execution:
▶ Check that projection allowed by the specification (as before)
▶ Additionally, check that every recorded hb-extension renders the

execution inconsistent.
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Implementation – Evaluation
▶ Prototype implementation over GenMC

Employing DPOR, SR & other optimizations

▶ Standard data structure benchmarks:
Michael-Scott, DGLM, Herlihy-Wing, etc.

▶ Scales to 8-10 operations
Successfully proves refinement of atomic specification

▶ Finds subtle weak memory bug in Herlihy-Wing queue
4 enqueues, 4 dequeues, < 1 min
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Conclusion

Summary
▶ Model checking for linearizability
▶ Scalability issues of SMC

Future work
▶ Further enhance SMC scalability
▶ Non-linearizable libraries
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