
Getting more out of a stateless model checker

Viktor Vafeiadis

2 June 2023



The grand challenge of software engineering

Produce software that is
▶ correct, ⇝ use verification techniques
▶ efficient, and ⇝ exploit parallelism
▶ useful (application-dependent)

with minimal cost
▶ in developer expertise and ⇝ automated verification
▶ in developer time/effort. ⇝ with no false positives

2



Software model checking

Given a program P and a property Φ,
check that all executions of P satisfy Φ.

In our setting:
▶ P is a multi-threaded program.
▶ Φ is some safety property

e.g., the program does not segfault.

▶ It assumes programs are bounded.
▶ It is does not scale well.
▶ One still has to provide the program P and the property Φ.

3



Software model checking

Given a program P and a property Φ,
check that all executions of P satisfy Φ.

▶ It is fully automated (“push button” technique).
One only has to provide P and Φ.

▶ Supports weak memory consistency.
▶ Unsuccessful verification returns error traces.

i.e. program traces that violate Φ.

▶ It assumes programs are bounded.
▶ It is does not scale well.
▶ One still has to provide the program P and the property Φ.

3



Software model checking

Given a program P and a property Φ,
check that all executions of P satisfy Φ.

▶ It is fully automated (“push button” technique).
▶ Supports weak memory consistency.
▶ Unsuccessful verification returns error traces.

▶ It assumes programs are bounded.
▶ It is does not scale well.
▶ One still has to provide the program P and the property Φ.

3



Model checking approaches

Stateful
▶ Visit all program states by

DFS recording visited
states to avoid repetition.

▶ Requires program to have
bounded state-space.

▶ Uses a lot of memory.

Stateless
▶ Generate all program

executions without
recording visited states

▶ Assumes program to
always terminate.

▶ Low memory usage.

SMT-based: State-space exploration is done by SMT solver.

4



My favorite model checker: GenMC
State-of-the-art stateless model checker
▶ Correct, optimal, highly parallelizable
▶ Works with almost any weak memory model
▶ Small memory footprint
▶ Open source

https://github.com/mpi-sws/genmc/

5



Scalability



Scalability issues and remedies
There are way too many interleavings.

(exponential in the number of threads and the size of the program)

But exploring all interleavings is unnecessary.
▶ Many interleavings lead to the same outcome.

DPOR: Avoid exploring ‘equivalent’ interleavings

▶ Many interleavings are symmetric.
SR: Avoid exploring ‘symmetric’ interleavings

▶ The same bug can be exposed by multiple interleavings.
Bounding: Explore only ‘simple’ interleavings

7



Scalability issues and remedies
There are way too many interleavings.

(exponential in the number of threads and the size of the program)

But exploring all interleavings is unnecessary.
▶ Many interleavings lead to the same outcome.

DPOR: Avoid exploring ‘equivalent’ interleavings

▶ Many interleavings are symmetric.
SR: Avoid exploring ‘symmetric’ interleavings

▶ The same bug can be exposed by multiple interleavings.
Bounding: Explore only ‘simple’ interleavings

7



Scalability and DPOR
The ideal case: Threads access disjoint locations.

x [1] := 1
x [x [1]] := 2 × x [1]
assert(x [1] > 0)

...
x [N] := N
x [x [N]] := 2 × x [N]
assert(x [N] > 0)

▶ One execution – O(N) verification time

The worst case: Threads access the same locations.
lock()
unlock() ...

lock()
unlock()

▶ Without symmetry reduction, O(N!) executions.
8



Concrete example: reader-writer locks?
GenMCv0.10 does not have built-in support for RW-locks.
▶ How shall we implement them?

Count the number of readers holding a lock?
▶ Readers synchronize ⇝ slow verification.

read-lock()
x [1] := y
read-unlock()

...
read-lock()
x [N] := y
read-unlock()

▶ O(N!) executions.

9



Concrete example: reader-writer locks?
GenMCv0.10 does not have built-in support for RW-locks.
▶ How shall we implement them?

Count the number of readers holding a lock?
▶ Readers synchronize ⇝ slow verification.

read-lock()
x [1] := y
read-unlock()

...
read-lock()
x [N] := y
read-unlock()

▶ O(N!) executions.

9



Implementing reader-writer locks (2)
A better implementation
▶ Keep one lock per-thread
▶ Read-lock acquires the lock of the calling thread
▶ Write-lock acquires the locks of all the threads

▶ No contention on the following example
read-lock()
x [1] := y
read-unlock()

...
read-lock()
x [N] := y
read-unlock()

▶ One execution – O(N) verification time

10



Writing the program P
and the property Φ



Test clients
▶ Suppose we want to verify a concurrent queue library.
▶ We need to write test clients, such as:

enqueue(1);
enqueue(2);

a := dequeue();
assert(a ̸= 2);

enqueue(1);
a := dequeue();
assert(a ̸= ⊥);

enqueue(2);
b := dequeue();
assert(b ̸= ⊥);

enqueue(1); a := dequeue(); b := dequeue();
assert(a = ⊥ ∨ b = ⊥);

Is there a better way?

12



Test clients
▶ Suppose we want to verify a concurrent queue library.
▶ We need to write test clients, such as:

enqueue(1);
enqueue(2);

a := dequeue();
assert(a ̸= 2);

enqueue(1);
a := dequeue();
assert(a ̸= ⊥);

enqueue(2);
b := dequeue();
assert(b ̸= ⊥);

enqueue(1); a := dequeue(); b := dequeue();
assert(a = ⊥ ∨ b = ⊥);

Is there a better way?

12



Linearizability
▶ The standard specification of concurrent libraries
▶ Every concurrent history can be linearized into a legal sequential

history (preserving the real-time order of method calls).

enq(1) ret

enq(2) ret

deq() ret/2

▶ “Global lock” semantics
▶ Linearizability = Refinement of an atomic specification

[Herlihy&Wing, 1990]

13



Linearizability and weak memory consistency
▶ There is no such thing as real-time order.
⇝ use “happens-before” order instead.

▶ Linearizability specifies only output correctness.
▶ It does not specify induced synchronization.

Can the following program print 0?

x := 1
enqueue(28)

if dequeue() > 5 then
print x

14



Refinement of a global lock specification?
▶ Representation: unbounded array with front and back pointers.
▶ Enforce atomicity with a global lock.

enqueue(v) △=
lock();
array [back] := v ;
back := back + 1;
unlock();

dequeue() △=
lock();
v := ⊥;
f := front;
if f < back then

v := array [f ];
front := f + 1;

unlock();
return v

15



Refinement of a global lock specification?

“Global lock” specification:
▶ Guarantees correct message-passing behavior.
▶ But enforces too much synchronization.
▶ Is not refined by standard implementations.

We need a more advanced specification.
▶ Directly use C/C++11 atomics?

Too complex.

16



Library-scoped locks
A specification device:
▶ Like normal locks, provide mutual exclusion and synchronization

but only within the library.
▶ They do not induce synchronization outside the library.

Simplifies specifications:
▶ Disentagle atomicity from synchtonization.
▶ Use C/C++11 atomics to specify desired synchronization.

17



Queue specification with library-scoped locks
▶ Enforce synchronization between matching enqueue/dequeue.

enqueue(v) △=
lib-lock();
array [back] :=rel v ;
back := back + 1;
lib-unlock();

dequeue() △=
lib-lock();
v := ⊥;
f := front;
if f < back then

v :=acq array [f ];
front := f + 1;

lib-unlock();
return v

18



Checking linearizability for particular client

▶ Generate all executions of the specification.
▶ Collect the set of allowed outcomes:

results of the methods & induced synchronization.

▶ Generate all executions of the implementation.
▶ For each execution, check that its outcome is allowed.

i.e. the results of the methods agree, but the implementation
may induce more synchronization than the specification.

19



Checking linearizability for all clients?

Defining client that exposes bug can be tricky.
▶ Minimal client exposing weak memory bug in HW queue:

enqueue(1);
enqueue(2);

b := dequeue();
enqueue(3);

c := dequeue();
d := dequeue();

enqueue(4);
a := dequeue();

assert(b ̸= 2 ∨ c ̸= 3 ∨ d ̸= 4 ∨ a ̸= 1);

We want to check linearizability for all bounded clients.
▶ Use the most parallel client?

20



Most parallel client (MPC)
Inkove K library operations in parallel, e.g.:

enqueue(1) enqueue(2) dequeue() dequeue()

Key property:
▶ Every client execution can be obtained by some MPC execution

by adding synchronization and applying a value substitution.

▶ MPC sufficient for showing assertion safety.
▶ On its own, not so useful for showing linearizability.

21



Checking linearizability with MPC

Phase 1: Analyze the specification
▶ For each outcome, calculate minimal happens-before extensions

forbidding it.

Phase 2: Verify the implementation
For each implementation execution:
▶ Check that projection allowed by the specification (as before)
▶ Additionally, check that every recorded hb-extension renders the

execution inconsistent.

22



Implementation – Evaluation
▶ Prototype implementation over GenMC

Employing DPOR, SR & other optimizations

▶ Standard data structure benchmarks:
Michael-Scott, DGLM, Herlihy-Wing, etc.

▶ Scales to 8-10 operations
Successfully proves refinement of atomic specification

▶ Finds subtle weak memory bug in Herlihy-Wing queue
4 enqueues, 4 dequeues, < 1 min

23



Conclusion

Summary
▶ Model checking for linearizability
▶ Scalability issues of SMC

Future work
▶ Further enhance SMC scalability
▶ Non-linearizable libraries

24


