
Enabling Performance on
Modern Hardware with
Practical Verification

Diogo Behrens

Huawei Dresden Research Center & Huawei Central Software Institute

Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Concurrency is everywhere
Operating systems, databases and

server applications resort to
multicore concurrency to
achieve high performance.

. . . but brings challenges!

Ï Notoriously hard to get right
Ï Non-deterministic thread interleaving

Ï Traditional testing isn’t sufficient
Ï Testing is unlikely to trigger subtle
concurrency bugs

Ï Production is likely to trigger them,
→ many instances and long executions

Ï Reproducing concurrency bugs is hard

Diogo Behrens — diogo.behrens@huawei.com

2

mailto://diogo.behrens@huawei.com

Concurrency is everywhere
Operating systems, databases and

server applications resort to
multicore concurrency to
achieve high performance.

. . . but brings challenges!

Ï Notoriously hard to get right
Ï Non-deterministic thread interleaving

Ï Traditional testing isn’t sufficient
Ï Testing is unlikely to trigger subtle
concurrency bugs

Ï Production is likely to trigger them,
→ many instances and long executions

Ï Reproducing concurrency bugs is hard

Diogo Behrens — diogo.behrens@huawei.com

2

mailto://diogo.behrens@huawei.com

Concurrency is everywhere
Operating systems, databases and

server applications resort to
multicore concurrency to
achieve high performance.

. . . but brings challenges!

Ï Notoriously hard to get right
Ï Non-deterministic thread interleaving

Ï Traditional testing isn’t sufficient
Ï Testing is unlikely to trigger subtle
concurrency bugs

Ï Production is likely to trigger them,
→ many instances and long executions

Ï Reproducing concurrency bugs is hard

Diogo Behrens — diogo.behrens@huawei.com

2

mailto://diogo.behrens@huawei.com

Modern hardware makes matters worse

Relaxed memory models (RMMs)

Ï Modern architectures becoming popular
eg, Arm, RISC-V

Ï Aggressive reorderings to improve
performance

Ï Much higher non-determinisim
Ï Careful use of memory barriers

(neither too many, nor too few)

data = ctrl = 0;

data = 1;
ctrl = 1;

while(!ctrl) {}
assert(data == 1);

Init

Thread 1 Thread 2

7

RMM
reorder

3

Modern hardware makes matters worse

Relaxed memory models (RMMs)

Ï Modern architectures becoming popular
eg, Arm, RISC-V

Ï Aggressive reorderings to improve
performance

Ï Much higher non-determinisim
Ï Careful use of memory barriers

(neither too many, nor too few)

data = ctrl = 0;

data = 1;
ctrl = 1;

while(!ctrl) {}
assert(data == 1);

Init

Thread 1 Thread 2

7

RMM
reorder

3

Modern hardware makes matters worse

Relaxed memory models (RMMs)

Ï Modern architectures becoming popular
eg, Arm, RISC-V

Ï Aggressive reorderings to improve
performance

Ï Much higher non-determinisim
Ï Careful use of memory barriers

(neither too many, nor too few)

data = ctrl = 0;

data = 1;
ctrl = 1;

while(!ctrl) {}
assert(data == 1);

Init

Thread 1 Thread 2

7

RMM
reorder

3

Modern hardware makes matters worse

Relaxed memory models (RMMs)

Ï Modern architectures becoming popular
eg, Arm, RISC-V

Ï Aggressive reorderings to improve
performance

Ï Much higher non-determinisim
Ï Careful use of memory barriers

(neither too many, nor too few)

data = ctrl = 0;

data = 1;
ctrl = 1;

while(!ctrl) {}
assert(data == 1);

Init

Thread 1 Thread 2

7

RMM
reorder

3

Modern hardware makes matters worse

Relaxed memory models (RMMs)

Ï Modern architectures becoming popular
eg, Arm, RISC-V

Ï Aggressive reorderings to improve
performance

Ï Much higher non-determinisim
Ï Careful use of memory barriers

(neither too many, nor too few)

data = ctrl = 0;

data = 1;
ctrl = 1;

while(!ctrl) {}
assert(data == 1);

Init

Thread 1 Thread 2

7

RMM
reorder

3

Modern hardware makes matters worse

Relaxed memory models (RMMs)

Ï Modern architectures becoming popular
eg, Arm, RISC-V

Ï Aggressive reorderings to improve
performance

Ï Much higher non-determinisim
Ï Careful use of memory barriers

(neither too many, nor too few)

data = ctrl = 0;

data = 1;
ctrl = 1;

while(!ctrl) {}
assert(data == 1);

Init

Thread 1 Thread 2

7

RMM
reorder

3

Modern hardware makes matters worse

Relaxed memory models (RMMs)

Ï Modern architectures becoming popular
eg, Arm, RISC-V

Ï Aggressive reorderings to improve
performance

Ï Much higher non-determinisim
Ï Careful use of memory barriers

(neither too many, nor too few)

data = ctrl = 0;

data = 1;
ctrl = 1;

while(!ctrl) {}
assert(data == 1);

Init

Thread 1 Thread 2

7

RMM
reorder

3

Do RMM bugs really happen?
Bugs found with our tools

Potential hang: DPDK MCS lock
The lock had one missing release barrier. An Arm
engineer replied to our patch: “Unfortunately, memory
ordering questions are hard topics. I have been
discussing this internally [. . .], hope to conclude soon.”
More than 3 months to accept the 1-line patch.

Mutual exclusion bug: seL4 CLH lock
The seL4 microkernel is a flagship of formal verification.
The big kernel lock implementation, however, was not
verified and missed one acquire-release barrier.

Crash: MariaDB lockfree hashtable
Due to missing barriers for Arm, data of a node can be
accessed after the node has been deleted. That causes
SEGFAULT crashes on high load workloads.

Diogo Behrens — diogo.behrens@huawei.com

4

mailto://diogo.behrens@huawei.com

Modern hardware makes matters worse

Deep NUMA hierarchies
Ï Core distance affects shared-memory

communication performance

Ï Concurrent algorithms must exploit that!
Ï Makes code even more complex

5

Modern hardware makes matters worse

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System

fast

slow

Deep NUMA hierarchies
Ï Core distance affects shared-memory

communication performance

Ï Concurrent algorithms must exploit that!
Ï Makes code even more complex

5

Modern hardware makes matters worse

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System

fast

slow

Deep NUMA hierarchies
Ï Core distance affects shared-memory

communication performance
Ï Concurrent algorithms must exploit that!

Ï Makes code even more complex

5

Modern hardware makes matters worse

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System

fast

slow

Deep NUMA hierarchies
Ï Core distance affects shared-memory

communication performance
Ï Concurrent algorithms must exploit that!
Ï Makes code even more complex

5

As the hardware evolves, so does the concurrency control

Example of Linux spinlock over the years

TTAS
3 atomics
no fairness Ticketlock

4 atomics
fairness qspinlock

LoC ≈ 400
26 atomics
fairness, locality

1990s

2008

2015

increasing #cores, #packages, #NUMAs, etc

Ï Simple
Ï Spin on single location
Ï All waiters cache-miss

Ï Based on MCS lock
Ï Spin on per-thread location
Ï Only next owner cache-miss

“atomics” refers to racy accesses, ie, variables
concurrently accessed by multiple cores

Diogo Behrens — diogo.behrens@huawei.com

6

mailto://diogo.behrens@huawei.com

As the hardware evolves, so does the concurrency control

Example of Linux spinlock over the years

TTAS
3 atomics
no fairness Ticketlock

4 atomics
fairness qspinlock

LoC ≈ 400
26 atomics
fairness, locality

1990s

2008

2015

increasing #cores, #packages, #NUMAs, etc
“atomics” refers to racy accesses, ie, variables
concurrently accessed by multiple cores

Version Date Correctness
Linux 4.4 2015/09/11 Not verified
Linux 4.5 2015/11/09 RMMbug (fixed in 4.16)
Linux 4.8 2016/06/03 RMMbug (fixed in 4.16)
Linux 4.16 2018/02/13 Not verified
Linux 5.6 2020/01/07 Not verified

Diogo Behrens — diogo.behrens@huawei.com

6

mailto://diogo.behrens@huawei.com

As the hardware evolves, so does the concurrency control

Example of Linux spinlock over the years

TTAS
3 atomics
no fairness Ticketlock

4 atomics
fairness qspinlock

LoC ≈ 400
26 atomics
fairness, locality

CNA lock
LoC ≈ 580
46 atomics
fairness, locality,
NUMA-awareness

1990s

2008

2015

2019-2022?
increasing #cores, #packages, #NUMAs, etc

“atomics” refers to racy accesses, ie, variables
concurrently accessed by multiple cores

Diogo Behrens — diogo.behrens@huawei.com

6

mailto://diogo.behrens@huawei.com

As the hardware evolves, so does the concurrency control

Example of Linux spinlock over the years

TTAS
3 atomics
no fairness Ticketlock

4 atomics
fairness qspinlock

LoC ≈ 400
26 atomics
fairness, locality

CNA lock
LoC ≈ 580
46 atomics
fairness, locality,
NUMA-awareness

1990s

2008

2015

2019-2022?
increasing #cores, #packages, #NUMAs, etc

“atomics” refers to racy accesses, ie, variables
concurrently accessed by multiple cores

When will it
be merged ???

Diogo Behrens — diogo.behrens@huawei.com

6

mailto://diogo.behrens@huawei.com

What can the industry do?

Solution 1: overprotection
Ï Spray the code with memory barriers
Ï Simplify design as much as possible
Ï Cost: performance impact

Solution 2: expert design
Ï Hire highly-skilled engineers
Ï Carefully design and implement
Ï Cost: error-prone, low maintainability

Diogo Behrens — diogo.behrens@huawei.com

7

mailto://diogo.behrens@huawei.com

Solution 3:
Enabling Performance with Practical Verification

What is Practical Verification?

In short: we don’t know!

Diogo Behrens — diogo.behrens@huawei.com

8

mailto://diogo.behrens@huawei.com

What is Practical Verification?

We know what formal verification is!

Ï Goal: show correctness
Ï Examples:

Ï interactive theorem proving
Ï model checking

Ï In contrast to testing, exhaustive:
Ï All possible interleavings
Ï All possible reorderings
Ï All possible contexts, . . .

Ï Problems:

Ï High level of expertise required
Ï Often unrealistic assumptions
(eg, hardware simplifications)

And practical verification?

Ï Goal: increase confidence
Ï Exhaustive as long as it pays off
Ï A concurrency counterpart of testing
Ï Ideally any developer can use it:

Ï Push-button, fully-automated
Ï No expertise required

Ï In practice, a few experts must help
Ï Defining what to check (properties)
Ï Improving tool scalability
Ï Making methods more realistic

Diogo Behrens — diogo.behrens@huawei.com

8

mailto://diogo.behrens@huawei.com

What is Practical Verification?

We know what formal verification is!

Ï Goal: show correctness
Ï Examples:

Ï interactive theorem proving
Ï model checking

Ï In contrast to testing, exhaustive:
Ï All possible interleavings
Ï All possible reorderings
Ï All possible contexts, . . .

Ï Problems:

Ï High level of expertise required
Ï Often unrealistic assumptions
(eg, hardware simplifications)

And practical verification?

Ï Goal: increase confidence
Ï Exhaustive as long as it pays off
Ï A concurrency counterpart of testing
Ï Ideally any developer can use it:

Ï Push-button, fully-automated
Ï No expertise required

Ï In practice, a few experts must help
Ï Defining what to check (properties)
Ï Improving tool scalability
Ï Making methods more realistic

Diogo Behrens — diogo.behrens@huawei.com

8

mailto://diogo.behrens@huawei.com

What is Practical Verification?

We know what formal verification is!

Ï Goal: show correctness
Ï Examples:

Ï interactive theorem proving
Ï model checking

Ï In contrast to testing, exhaustive:
Ï All possible interleavings
Ï All possible reorderings
Ï All possible contexts, . . .

Ï Problems:
Ï High level of expertise required
Ï Often unrealistic assumptions
(eg, hardware simplifications)

And practical verification?

Ï Goal: increase confidence
Ï Exhaustive as long as it pays off
Ï A concurrency counterpart of testing
Ï Ideally any developer can use it:

Ï Push-button, fully-automated
Ï No expertise required

Ï In practice, a few experts must help
Ï Defining what to check (properties)
Ï Improving tool scalability
Ï Making methods more realistic

Diogo Behrens — diogo.behrens@huawei.com

8

mailto://diogo.behrens@huawei.com

What is Practical Verification?

We know what formal verification is!

Ï Goal: show correctness
Ï Examples:

Ï interactive theorem proving
Ï model checking

Ï In contrast to testing, exhaustive:
Ï All possible interleavings
Ï All possible reorderings
Ï All possible contexts, . . .

Ï Problems:
Ï High level of expertise required
Ï Often unrealistic assumptions
(eg, hardware simplifications)

And practical verification?

Ï Goal: increase confidence
Ï Exhaustive as long as it pays off
Ï A concurrency counterpart of testing
Ï Ideally any developer can use it:

Ï Push-button, fully-automated
Ï No expertise required

Ï In practice, a few experts must help
Ï Defining what to check (properties)
Ï Improving tool scalability
Ï Making methods more realistic

Diogo Behrens — diogo.behrens@huawei.com

8

mailto://diogo.behrens@huawei.com

What is Practical Verification?

We know what formal verification is!

Ï Goal: show correctness
Ï Examples:

Ï interactive theorem proving
Ï model checking

Ï In contrast to testing, exhaustive:
Ï All possible interleavings
Ï All possible reorderings
Ï All possible contexts, . . .

Ï Problems:
Ï High level of expertise required
Ï Often unrealistic assumptions
(eg, hardware simplifications)

And practical verification?

Ï Goal: increase confidence
Ï Exhaustive as long as it pays off
Ï A concurrency counterpart of testing
Ï Ideally any developer can use it:

Ï Push-button, fully-automated
Ï No expertise required

Ï In practice, a few experts must help
Ï Defining what to check (properties)
Ï Improving tool scalability
Ï Making methods more realistic

Diogo Behrens — diogo.behrens@huawei.com

8

mailto://diogo.behrens@huawei.com

Where do we apply practical verification?

Practical Verification Scope in Huawei

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Diogo Behrens — diogo.behrens@huawei.com

9

mailto://diogo.behrens@huawei.com

Practical Verification Scope in Huawei

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

software memory model

LKMM C11’s stdatomic.h Huawei’s libvsync

Diogo Behrens — diogo.behrens@huawei.com

9

mailto://diogo.behrens@huawei.com

Practical Verification Scope in Huawei

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU

run_thread() {
// some parallel work
initialize_data();
do_something_locally();

// critical section
lock_acquire(&lock);
sequential_code();
lock_release(&lock);

// some more parallel work
do_something_locally();

}

Synchronous with locks

Diogo Behrens — diogo.behrens@huawei.com

9

mailto://diogo.behrens@huawei.com

Practical Verification Scope in Huawei

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU

run_thread() {
// some parallel work
initialize_data();
do_something_locally();

// critical section
lock_acquire(&lock);
sequential_code();
lock_release(&lock);

// some more parallel work
do_something_locally();

}

Synchronous with locks

Diogo Behrens — diogo.behrens@huawei.com

9

mailto://diogo.behrens@huawei.com

Practical Verification Scope in Huawei

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Lockless Data
Structures

eg, list, queue,
hashtable, etc

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU

run_thread() {
// some parallel work
initialize_data();
do_something_locally();

// critical section
lock_acquire(&lock);
sequential_code();
lock_release(&lock);

// some more parallel work
do_something_locally();

}

Synchronous with locks

thread1() {
do_something_locally();
queue_enq(q, data);
do_something_else_locally();

}
thread2() {

data_t *data;
data = queue_deq(q);
if (data != NULL)

do_something_locally(data);
}

Asynchronous with data structures

Diogo Behrens — diogo.behrens@huawei.com

9

mailto://diogo.behrens@huawei.com

Practical Verification Scope in Huawei

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Lockless Data
Structures

eg, list, queue,
hashtable, etc

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU

run_thread() {
// some parallel work
initialize_data();
do_something_locally();

// critical section
lock_acquire(&lock);
sequential_code();
lock_release(&lock);

// some more parallel work
do_something_locally();

}

Synchronous with locks

thread1() {
do_something_locally();
queue_enq(q, data);
do_something_else_locally();

}
thread2() {

data_t *data;
data = queue_deq(q);
if (data != NULL)

do_something_locally(data);
}

Asynchronous with data structures

Diogo Behrens — diogo.behrens@huawei.com

9

mailto://diogo.behrens@huawei.com

Practical Verification Scope in Huawei

Operating System
eg, OpenHarmony, OpenEuler

Lockless Data
Structures

eg, list, queue,
hashtable, etc

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU

run_thread() {
// some parallel work
initialize_data();
do_something_locally();

// critical section
lock_acquire(&lock);
sequential_code();
lock_release(&lock);

// some more parallel work
do_something_locally();

}

Synchronous with locks

thread1() {
do_something_locally();
queue_enq(q, data);
do_something_else_locally();

}
thread2() {

data_t *data;
data = queue_deq(q);
if (data != NULL)

do_something_locally(data);
}

Asynchronous with data structures

if (atomic_add(counter) > MAX)
do_something(data);

Adhoc synchronization

Diogo Behrens — diogo.behrens@huawei.com

9

mailto://diogo.behrens@huawei.com

Practical Verification Scope in Huawei

Operating System
eg, OpenHarmony, OpenEuler

Lockless Data
Structures

eg, list, queue,
hashtable, etc

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU

run_thread() {
// some parallel work
initialize_data();
do_something_locally();

// critical section
lock_acquire(&lock);
sequential_code();
lock_release(&lock);

// some more parallel work
do_something_locally();

}

Synchronous with locks

thread1() {
do_something_locally();
queue_enq(q, data);
do_something_else_locally();

}
thread2() {

data_t *data;
data = queue_deq(q);
if (data != NULL)

do_something_locally(data);
}

Asynchronous with data structures

if (atomic_add(counter) > MAX)
do_something(data);

Adhoc synchronization

Diogo Behrens — diogo.behrens@huawei.com

9

mailto://diogo.behrens@huawei.com

Practical Verification Scope in Huawei

Ï Sequential code
Ï It can be tested! Good news!
Ï Even the critical section code

Ï Concurrent code
Ï Cannot be easily tested
Ï Barrier placement is hard
Ï Hardware-awareness is hard
Ï Scope of practical verification!

run_thread() {
// some parallel work
initialize_data();
do_something_locally();

// critical section
lock_acquire(&lock);
sequential_code();
lock_release(&lock);

// some more parallel work
do_something_locally();

}

Synchronous with locks

thread1() {
do_something_locally();
queue_enq(q, data);
do_something_else_locally();

}
thread2() {

data_t *data;
data = queue_deq(q);
if (data != NULL)

do_something_locally(data);
}

Asynchronous with data structures

if (atomic_add(counter) > MAX)
do_something(data);

Adhoc synchronization

Diogo Behrens — diogo.behrens@huawei.com

9

mailto://diogo.behrens@huawei.com

Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

Lockless Data
Structures

eg, list, queue,
hashtable, etc

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU

VSync: Push-button Verification/Optimization on RMMs

◦ VSync: https://dl.acm.org/doi/abs/10.1145/3445814.3446748 — Best paper @ ASPLOS’21
by Oberhauser, Chehab, Behrens, Fu, Paolillo, Oberhauser, Bhat, Wen, Chen, Kim, Vafeiadis

◦ Making relaxed memory models fair: https://dl.acm.org/doi/abs/10.1145/3485475 — Best paper @ OOPSLA’21
by Lahav, Namakonov, Oberhauser, Podkopaev, Vafeiadis

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

Diogo Behrens — diogo.behrens@huawei.com

11

https://dl.acm.org/doi/abs/10.1145/3445814.3446748
https://dl.acm.org/doi/abs/10.1145/3485475
mailto://diogo.behrens@huawei.com

VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

Diogo Behrens — diogo.behrens@huawei.com

11

mailto://diogo.behrens@huawei.com

VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

Diogo Behrens — diogo.behrens@huawei.com

11

mailto://diogo.behrens@huawei.com

VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86
atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG
atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG
atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG
atomic_xchg_rlx amoswap.w LDXR;STXR XCHG
atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV
atomic_read_acq lw; fence [r,rw] LDAR MOV
atomic_read_rlx lw LDR MOV
atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE
atomic_write_rel fence [rw,w]; sw STLR MOV
atomic_write_rlx sw STR MOV
atomic_fence fence [rw,rw] DMB ISH MFENCE
atomic_fence_acq fence [r,rw] DMB ISHLD NOP
atomic_fence_rel fence [rw,w] DMB ISH NOP
atomic_fence_rlx nop NOP NOP

Diogo Behrens — diogo.behrens@huawei.com

11

mailto://diogo.behrens@huawei.com

VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86

atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG

atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG

atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG

atomic_xchg_rlx amoswap.w LDXR;STXR XCHG

atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV

atomic_read_acq lw; fence [r,rw] LDAR MOV

atomic_read_rlx lw LDR MOV

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE

atomic_write_rel fence [rw,w]; sw STLR MOV

atomic_write_rlx sw STR MOV

atomic_fence fence [rw,rw] DMB ISH MFENCE

atomic_fence_acq fence [r,rw] DMB ISHLD NOP

atomic_fence_rel fence [rw,w] DMB ISH NOP

atomic_fence_rlx nop NOP NOP

Diogo Behrens — diogo.behrens@huawei.com

11

mailto://diogo.behrens@huawei.com

VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86

atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG

atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG

atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG

atomic_xchg_rlx amoswap.w LDXR;STXR XCHG

atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV

atomic_read_acq lw; fence [r,rw] LDAR MOV

atomic_read_rlx lw LDR MOV

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE

atomic_write_rel fence [rw,w]; sw STLR MOV

atomic_write_rlx sw STR MOV

atomic_fence fence [rw,rw] DMB ISH MFENCE

atomic_fence_acq fence [r,rw] DMB ISHLD NOP

atomic_fence_rel fence [rw,w] DMB ISH NOP

atomic_fence_rlx nop NOP NOP

lock_t lock;
int v = 0; // shared state
void run(int id) {

lock_acquire(&lock);
v++; // critical sec.
lock_release(&lock);

}

void main() {
pthread_t t[N]; // N == 3
for (int i=0; i < N; i++)

pthread_create(&t[i], 0, run, i);
for (int i=0; i < N; i++)

pthread_join(t[i], 0);
assert (v == N); // check of ME

}

Diogo Behrens — diogo.behrens@huawei.com

11

mailto://diogo.behrens@huawei.com

VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86

atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG

atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG

atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG

atomic_xchg_rlx amoswap.w LDXR;STXR XCHG

atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV

atomic_read_acq lw; fence [r,rw] LDAR MOV

atomic_read_rlx lw LDR MOV

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE

atomic_write_rel fence [rw,w]; sw STLR MOV

atomic_write_rlx sw STR MOV

atomic_fence fence [rw,rw] DMB ISH MFENCE

atomic_fence_acq fence [r,rw] DMB ISHLD NOP

atomic_fence_rel fence [rw,w] DMB ISH NOP

atomic_fence_rlx nop NOP NOP

lock_t lock;
int v = 0; // shared state
void run(int id) {

lock_acquire(&lock);
v++; // critical sec.
lock_release(&lock);

}

void main() {
pthread_t t[N]; // N == 3
for (int i=0; i < N; i++)

pthread_create(&t[i], 0, run, i);
for (int i=0; i < N; i++)

pthread_join(t[i], 0);
assert (v == N); // check of ME

}

Diogo Behrens — diogo.behrens@huawei.com

11

mailto://diogo.behrens@huawei.com

VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86

atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG

atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG

atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG

atomic_xchg_rlx amoswap.w LDXR;STXR XCHG

atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV

atomic_read_acq lw; fence [r,rw] LDAR MOV

atomic_read_rlx lw LDR MOV

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE

atomic_write_rel fence [rw,w]; sw STLR MOV

atomic_write_rlx sw STR MOV

atomic_fence fence [rw,rw] DMB ISH MFENCE

atomic_fence_acq fence [r,rw] DMB ISHLD NOP

atomic_fence_rel fence [rw,w] DMB ISH NOP

atomic_fence_rlx nop NOP NOP

lock_t lock;
int v = 0; // shared state
void run(int id) {

lock_acquire(&lock);
v++; // critical sec.
lock_release(&lock);

}

void main() {
pthread_t t[N]; // N == 3
for (int i=0; i < N; i++)

pthread_create(&t[i], 0, run, i);
for (int i=0; i < N; i++)

pthread_join(t[i], 0);
assert (v == N); // check of ME

}

optimization report

lock_acquire
atomic_read --> rlx
atomic_xchg --> acq

lock_release
atomic_write --> rel

Diogo Behrens — diogo.behrens@huawei.com

11

mailto://diogo.behrens@huawei.com

VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86

atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG

atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG

atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG

atomic_xchg_rlx amoswap.w LDXR;STXR XCHG

atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV

atomic_read_acq lw; fence [r,rw] LDAR MOV

atomic_read_rlx lw LDR MOV

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE

atomic_write_rel fence [rw,w]; sw STLR MOV

atomic_write_rlx sw STR MOV

atomic_fence fence [rw,rw] DMB ISH MFENCE

atomic_fence_acq fence [r,rw] DMB ISHLD NOP

atomic_fence_rel fence [rw,w] DMB ISH NOP

atomic_fence_rlx nop NOP NOP

lock_t lock;
int v = 0; // shared state
void run(int id) {

lock_acquire(&lock);
v++; // critical sec.
lock_release(&lock);

}

void main() {
pthread_t t[N]; // N == 3
for (int i=0; i < N; i++)

pthread_create(&t[i], 0, run, i);
for (int i=0; i < N; i++)

pthread_join(t[i], 0);
assert (v == N); // check of ME

}

optimization report

lock_acquire
atomic_read --> rlx
atomic_xchg --> acq

lock_release
atomic_write --> rel

Problem: Some optimizations
cause hangs on Arm CPUS! Why?

Diogo Behrens — diogo.behrens@huawei.com

11

mailto://diogo.behrens@huawei.com

VSync: Push-button Verification/Optimization on RMMs

◦ VSync: https://dl.acm.org/doi/abs/10.1145/3445814.3446748 — Best paper @ ASPLOS’21
by Oberhauser, Chehab, Behrens, Fu, Paolillo, Oberhauser, Bhat, Wen, Chen, Kim, Vafeiadis

◦ Making relaxed memory models fair: https://dl.acm.org/doi/abs/10.1145/3485475 — Best paper @ OOPSLA’21
by Lahav, Namakonov, Oberhauser, Podkopaev, Vafeiadis

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

Await Model Checking

No scalable model checker for RMM was
capable of checking termination of spinloops!

Diogo Behrens — diogo.behrens@huawei.com

11

https://dl.acm.org/doi/abs/10.1145/3445814.3446748
https://dl.acm.org/doi/abs/10.1145/3485475
mailto://diogo.behrens@huawei.com

VSync: Push-button Verification/Optimization on RMMs

queue.c

VSync
atomics

clang

barrier
analyzer

mutation
checker AMC

queue
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

generator

Current work: extend VSync to data structures
eg, queues, lists, stacks

Diogo Behrens — diogo.behrens@huawei.com

11

mailto://diogo.behrens@huawei.com

Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

Lockless Data
Structures

eg, list, queue,
hashtable, etc

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU

Verifying CNA-based Linux qspinlock on LKMM

LKMM=Linux Kernel MemoryModel

TTAS
3 atomics
no fairness Ticketlock

4 atomics
fairness qspinlock

LoC ≈ 400
26 atomics
fairness, locality

CNA lock
LoC ≈ 580
46 atomics
fairness, locality,
NUMA-awareness

1990s

2008

2015

2019-2022?
increasing #cores, #packages, #NUMAs, etc

“atomics” refers to racy accesses, ie, variables
concurrently accessed by multiple cores

Diogo Behrens — diogo.behrens@huawei.com

13

mailto://diogo.behrens@huawei.com

Verifying CNA-based Linux qspinlock on LKMM
Technical report @ arXiv Jul’22 — by Paolillo, Ponce de León, Haas, Behrens, Chehab, Fu, Meyer

https://arxiv.org/abs/2111.15240

Ï Goal:
Ï Support merge of CNA patch (Oracle)

Ï Verification:
Ï LinuxKernelMemoryModel (LKMM)
Ï Armv8 memory model
Ï Power memory model

Ï Verification time:
Ï With 4 threads, from 12h to 15h

Ï Linux qspinlock and CNA:
Ï correct on Armv8
Ï correct on Power
Ï incorrect on LKMM!

Ï Lessons learned
Ï Was the model checker broken? No!
Ï LKMM mismatches reality!

(expert support)
Ï Having 2 model checkers is helpful!

https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc

Diogo Behrens — diogo.behrens@huawei.com

15

https://arxiv.org/abs/2111.15240
https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc
mailto://diogo.behrens@huawei.com

Verifying CNA-based Linux qspinlock on LKMM
Technical report @ arXiv Jul’22 — by Paolillo, Ponce de León, Haas, Behrens, Chehab, Fu, Meyer

https://arxiv.org/abs/2111.15240

Ï Goal:
Ï Support merge of CNA patch (Oracle)

Ï Verification:
Ï LinuxKernelMemoryModel (LKMM)
Ï Armv8 memory model
Ï Power memory model

Ï Verification time:
Ï With 4 threads, from 12h to 15h

Ï Linux qspinlock and CNA:
Ï correct on Armv8
Ï correct on Power

Ï incorrect on LKMM!
Ï Lessons learned

Ï Was the model checker broken? No!
Ï LKMM mismatches reality!

(expert support)
Ï Having 2 model checkers is helpful!

https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc

Diogo Behrens — diogo.behrens@huawei.com

15

https://arxiv.org/abs/2111.15240
https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc
mailto://diogo.behrens@huawei.com

Verifying CNA-based Linux qspinlock on LKMM
Technical report @ arXiv Jul’22 — by Paolillo, Ponce de León, Haas, Behrens, Chehab, Fu, Meyer

https://arxiv.org/abs/2111.15240

Ï Goal:
Ï Support merge of CNA patch (Oracle)

Ï Verification:
Ï LinuxKernelMemoryModel (LKMM)
Ï Armv8 memory model
Ï Power memory model

Ï Verification time:
Ï With 4 threads, from 12h to 15h

Ï Linux qspinlock and CNA:
Ï correct on Armv8
Ï correct on Power
Ï incorrect on LKMM!

Ï Lessons learned
Ï Was the model checker broken? No!
Ï LKMM mismatches reality!

(expert support)

Ï Having 2 model checkers is helpful!
https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc

Diogo Behrens — diogo.behrens@huawei.com

15

https://arxiv.org/abs/2111.15240
https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc
mailto://diogo.behrens@huawei.com

Verifying CNA-based Linux qspinlock on LKMM
Technical report @ arXiv Jul’22 — by Paolillo, Ponce de León, Haas, Behrens, Chehab, Fu, Meyer

https://arxiv.org/abs/2111.15240

Ï Goal:
Ï Support merge of CNA patch (Oracle)

Ï Verification:
Ï LinuxKernelMemoryModel (LKMM)
Ï Armv8 memory model
Ï Power memory model

Ï Verification time:
Ï With 4 threads, from 12h to 15h

Ï Linux qspinlock and CNA:
Ï correct on Armv8
Ï correct on Power
Ï incorrect on LKMM!

Ï Lessons learned
Ï Was the model checker broken? No!
Ï LKMM mismatches reality!

(expert support)
Ï Having 2 model checkers is helpful!

https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc

Diogo Behrens — diogo.behrens@huawei.com

15

https://arxiv.org/abs/2111.15240
https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc
mailto://diogo.behrens@huawei.com

Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

Lockless Data
Structures

eg, list, queue,
hashtable, etc

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU

Why would locks be too complex to model check?

Modern lock-design challenges

Ï Deep NUMA hierarchies
eg, packages, NUMA nodes,
L3 cache partitions

Ï Lock heterogenity
Different locks perform better in
different contexts, eg, cores with
shared cache or not

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System

Diogo Behrens — diogo.behrens@huawei.com

17

mailto://diogo.behrens@huawei.com

Why would locks be too complex to model check?

Modern lock-design challenges
Ï Deep NUMA hierarchies

eg, packages, NUMA nodes,
L3 cache partitions

Ï Lock heterogenity
Different locks perform better in
different contexts, eg, cores with
shared cache or not

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System

fast

slowest

slower(= NUMA)
(6= NUMA)

(6= package)

Diogo Behrens — diogo.behrens@huawei.com

17

mailto://diogo.behrens@huawei.com

Why would locks be too complex to model check?

Modern lock-design challenges
Ï Deep NUMA hierarchies

eg, packages, NUMA nodes,
L3 cache partitions

Ï Lock heterogenity
Different locks perform better in
different contexts, eg, cores with
shared cache or not

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System

Ticket

MCS

CLH(= NUMA)
(6= NUMA)

(6= package)

Diogo Behrens — diogo.behrens@huawei.com

17

mailto://diogo.behrens@huawei.com

Why would locks be too complex to model check?

What are the potential improvements?

Ï 2-level is good
Ï Multi-level is great
Ï Multi-level+heterogeneity is

awesome!

But model checkers can’t handle that

Ï Example multi-level HMCS:

Ï 2 levels: 2s
Ï 3 levels: 10s
Ï 4 levels: timeout after 24h

Ï Enter CLoF!

LevelDB benchmark, x86 server, 96 hyperthreads

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

Our approach with multi-levels,
full hierarchy & heterogeneity

HMCS〈4〉, multi-levels, full hierarchy

HMCS〈2〉, NUMA-aware

MCS, no hierarchy

Diogo Behrens — diogo.behrens@huawei.com

17

mailto://diogo.behrens@huawei.com

Why would locks be too complex to model check?

What are the potential improvements?

Ï 2-level is good

Ï Multi-level is great
Ï Multi-level+heterogeneity is

awesome!

But model checkers can’t handle that

Ï Example multi-level HMCS:

Ï 2 levels: 2s
Ï 3 levels: 10s
Ï 4 levels: timeout after 24h

Ï Enter CLoF!

LevelDB benchmark, x86 server, 96 hyperthreads

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

Our approach with multi-levels,
full hierarchy & heterogeneity

HMCS〈4〉, multi-levels, full hierarchy

HMCS〈2〉, NUMA-aware

MCS, no hierarchy

up to +20%
(like CNA)

Diogo Behrens — diogo.behrens@huawei.com

17

mailto://diogo.behrens@huawei.com

Why would locks be too complex to model check?

What are the potential improvements?

Ï 2-level is good
Ï Multi-level is great

Ï Multi-level+heterogeneity is
awesome!

But model checkers can’t handle that

Ï Example multi-level HMCS:

Ï 2 levels: 2s
Ï 3 levels: 10s
Ï 4 levels: timeout after 24h

Ï Enter CLoF!

LevelDB benchmark, x86 server, 96 hyperthreads

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

Our approach with multi-levels,
full hierarchy & heterogeneity

HMCS〈4〉, multi-levels, full hierarchy

HMCS〈2〉, NUMA-aware

MCS, no hierarchy

up to +20%
(like CNA)

up to +120%

Diogo Behrens — diogo.behrens@huawei.com

17

mailto://diogo.behrens@huawei.com

Why would locks be too complex to model check?

What are the potential improvements?

Ï 2-level is good
Ï Multi-level is great
Ï Multi-level+heterogeneity is

awesome!

But model checkers can’t handle that

Ï Example multi-level HMCS:

Ï 2 levels: 2s
Ï 3 levels: 10s
Ï 4 levels: timeout after 24h

Ï Enter CLoF!

LevelDB benchmark, x86 server, 96 hyperthreads

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

Our approach with multi-levels,
full hierarchy & heterogeneity

HMCS〈4〉, multi-levels, full hierarchy

HMCS〈2〉, NUMA-aware

MCS, no hierarchy

up to +20%
(like CNA)

up to +120%

up to +180%

Diogo Behrens — diogo.behrens@huawei.com

17

mailto://diogo.behrens@huawei.com

Why would locks be too complex to model check?

What are the potential improvements?

Ï 2-level is good
Ï Multi-level is great
Ï Multi-level+heterogeneity is

awesome!

But model checkers can’t handle that
Ï Example multi-level HMCS:

Ï 2 levels: 2s
Ï 3 levels: 10s
Ï 4 levels: timeout after 24h

Ï Enter CLoF!

LevelDB benchmark, x86 server, 96 hyperthreads

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

Our approach with multi-levels,
full hierarchy & heterogeneity

HMCS〈4〉, multi-levels, full hierarchy

HMCS〈2〉, NUMA-aware

MCS, no hierarchy

up to +20%
(like CNA)

up to +120%

up to +180%

Diogo Behrens — diogo.behrens@huawei.com

17

mailto://diogo.behrens@huawei.com

Why would locks be too complex to model check?

What are the potential improvements?

Ï 2-level is good
Ï Multi-level is great
Ï Multi-level+heterogeneity is

awesome!

But model checkers can’t handle that
Ï Example multi-level HMCS:

Ï 2 levels: 2s
Ï 3 levels: 10s
Ï 4 levels: timeout after 24h

Ï Enter CLoF!

LevelDB benchmark, x86 server, 96 hyperthreads

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

Our approach with multi-levels,
full hierarchy & heterogeneity

HMCS〈4〉, multi-levels, full hierarchy

HMCS〈2〉, NUMA-aware

MCS, no hierarchy

up to +20%
(like CNA)

up to +120%

up to +180%

Diogo Behrens — diogo.behrens@huawei.com

17

mailto://diogo.behrens@huawei.com

Why would locks be too complex to model check?

What are the potential improvements?

Ï 2-level is good
Ï Multi-level is great
Ï Multi-level+heterogeneity is

awesome!

But model checkers can’t handle that
Ï Example multi-level HMCS:

Ï 2 levels: 2s
Ï 3 levels: 10s
Ï 4 levels: timeout after 24h

Ï Enter CLoF!

LevelDB benchmark, x86 server, 96 hyperthreads

1 4 8 16 24 32 48 64 95
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ed

ia
n

th
ro

ug
hp

ut
(i

te
r.

/µ
s)

Our approach with multi-levels,
full hierarchy & heterogeneity

HMCS〈4〉, multi-levels, full hierarchy

HMCS〈2〉, NUMA-aware

MCS, no hierarchy

up to +20%
(like CNA)

up to +120%

up to +180%

Diogo Behrens — diogo.behrens@huawei.com

17

mailto://diogo.behrens@huawei.com

CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Two NUMA-node example

l0threads in
NUMA node 1

threads in
NUMA node 2

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm

Diogo Behrens — diogo.behrens@huawei.com

18

https://dl.acm.org/doi/abs/10.1145/3477132.3483557
mailto://diogo.behrens@huawei.com

CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Two NUMA-node example

l0

l1 l2
threads from
NUMA node 1

threads from
NUMA node 2

NUMA-node
level

system
level

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm

Diogo Behrens — diogo.behrens@huawei.com

18

https://dl.acm.org/doi/abs/10.1145/3477132.3483557
mailto://diogo.behrens@huawei.com

CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Two NUMA-node example

l0

l1 l2

CL
oF
(l 1
, L
0)

threads from
NUMA node 1

threads from
NUMA node 2

L0
l0

NUMA-node
level

system
level

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm

CLoF(l , L)::acquire =
acquire l ;
if (¬already has L)

acquire L;

CLoF(l , L)::release =
if (others won’t starve)

release l ;
else

release L;
release l ;

Diogo Behrens — diogo.behrens@huawei.com

18

https://dl.acm.org/doi/abs/10.1145/3477132.3483557
mailto://diogo.behrens@huawei.com

CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Two NUMA-node example

l0

l1 l2

l3 l4 l5 l6

L1

L0
l0

l1

cache-group
level

NUMA-node
level

system
level

threads

CL
oF
(l 3
, L
1)

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm

CLoF(l , L)::acquire =
acquire l ;
if (¬already has L)

acquire L;

CLoF(l , L)::release =
if (others won’t starve)

release l ;
else

release L;
release l ;

Diogo Behrens — diogo.behrens@huawei.com

18

https://dl.acm.org/doi/abs/10.1145/3477132.3483557
mailto://diogo.behrens@huawei.com

CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Base Step Induction Step

Diogo Behrens — diogo.behrens@huawei.com

19

https://dl.acm.org/doi/abs/10.1145/3477132.3483557
mailto://diogo.behrens@huawei.com

CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Base Step Induction Step

tkt clh mcs . . .

Model Checker
for RMM

¦3

As in VSync paper

Diogo Behrens — diogo.behrens@huawei.com

19

https://dl.acm.org/doi/abs/10.1145/3477132.3483557
mailto://diogo.behrens@huawei.com

CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Base Step Induction Step

tkt clh mcs . . .

Model Checker
for RMM

¦3

l0

l ′ l ′′

L′
=C

Lo
F(l

′ , L
)

L
l

abstract locks

Diogo Behrens — diogo.behrens@huawei.com

19

https://dl.acm.org/doi/abs/10.1145/3477132.3483557
mailto://diogo.behrens@huawei.com

CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Base Step Induction Step

tkt clh mcs . . .

Model Checker
for RMM

¦3

l0

l ′ l ′′

L′
=C

Lo
F(l

′ , L
)

L
l

abstract locks

Model Checker
for RMM

¦3

Diogo Behrens — diogo.behrens@huawei.com

19

https://dl.acm.org/doi/abs/10.1145/3477132.3483557
mailto://diogo.behrens@huawei.com

CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Base Step Induction Step

tkt clh mcs . . .

Model Checker
for RMM

¦3

Inductive correctness for
CLoF locks of any depth

and basic lock

l0

l ′ l ′′

L′
=C

Lo
F(l

′ , L
)

L
l

abstract locks

Model Checker
for RMM

¦3

Diogo Behrens — diogo.behrens@huawei.com

19

https://dl.acm.org/doi/abs/10.1145/3477132.3483557
mailto://diogo.behrens@huawei.com

CLoF Learnings

Ï Concurrency must be smart and hardware tailored
Otherwise we miss big opportunities

Ï Modularity is essential for model checking
Ideally by design, not in hinsight

Ï Support proof sketches are faster, scale, and often OK
Goodbye fully-automated verification /

Diogo Behrens — diogo.behrens@huawei.com

20

mailto://diogo.behrens@huawei.com

Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

Lockless Data
Structures

eg, list, queue,
hashtable, etc

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU

What about concurrent data structures?

Ringbuffers are pervasive

Diogo Behrens — diogo.behrens@huawei.com

22

mailto://diogo.behrens@huawei.com

What about concurrent data structures?

Ringbuffers are pervasive

Diogo Behrens — diogo.behrens@huawei.com

22

mailto://diogo.behrens@huawei.com

What about concurrent data structures?

Ringbuffers are pervasive

Diogo Behrens — diogo.behrens@huawei.com

22

mailto://diogo.behrens@huawei.com

What about concurrent data structures?

Ringbuffers are pervasive

Diogo Behrens — diogo.behrens@huawei.com

22

mailto://diogo.behrens@huawei.com

What about concurrent data structures?

Ringbuffers are pervasive

Diogo Behrens — diogo.behrens@huawei.com

22

mailto://diogo.behrens@huawei.com

BBQ: Block-based Bounded Queue
In 6 days @ USENIX ATC’22 — by Wang, Behrens, Fu, Oberhauser, Oberhauser, Lei, Chen, Härtig, Chen

Ï Conventional designs:
Ï most favor simplicity
Ï performance ∼ interference enq/deq

Ï Block Approach:

Ï Split ringbuffer and metadata in blocks
Ï Drastically reduce enq/deq interference
Ï 1.5x to 50x higher throughput
Ï Verified with VSync

P.headC.tail P.tailC.head

BBQ:

re
se

rv
ed

co
ns
um

ed

co
m
m
itt
ed

P.head

re
se
rv
ed

co
ns
um

ed
co

m
m
itt
ed

al
lo
ca

te
d

al
lo
ca

te
d

co
m
m
itt
ed

re
se
rv
ed

al
lo
ca

te
dres
erv

ed
co
ns
um

ed

co
m
m
itt
ed

al
lo
ca

te
dco
ns
um

ed

P.tailC.headC.tail

co
m
m
itt
ed

al
lo
ca

te
d

co
ns
um

ed
re
se
rv
ed

Diogo Behrens — diogo.behrens@huawei.com

23

mailto://diogo.behrens@huawei.com

BBQ: Block-based Bounded Queue
In 6 days @ USENIX ATC’22 — by Wang, Behrens, Fu, Oberhauser, Oberhauser, Lei, Chen, Härtig, Chen

Ï Conventional designs:
Ï most favor simplicity
Ï performance ∼ interference enq/deq

Ï Block Approach:
Ï Split ringbuffer and metadata in blocks
Ï Drastically reduce enq/deq interference
Ï 1.5x to 50x higher throughput
Ï Verified with VSync

P.headC.tail P.tailC.head

BBQ:

re
se

rv
ed

co
ns
um

ed

co
m
m
itt
ed

P.head

re
se
rv
ed

co
ns
um

ed
co

m
m
itt
ed

al
lo
ca

te
d

al
lo
ca

te
d

co
m
m
itt
ed

re
se
rv
ed

al
lo
ca

te
dres
erv

ed
co
ns
um

ed

co
m
m
itt
ed

al
lo
ca

te
dco
ns
um

ed

P.tailC.headC.tail

co
m
m
itt
ed

al
lo
ca

te
d

co
ns
um

ed
re
se
rv
ed

Diogo Behrens — diogo.behrens@huawei.com

23

mailto://diogo.behrens@huawei.com

BBQ: Performance Experiments

SPSCMicrobenchmarks

bbq
dpdkrb

linuxrb
boostqfollyq

scq
d0

1

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

bbq
dpdkrb

linuxrb
boostqfollyq

scq
d

100

101

L1
 c

ac
he

 m
iss

2x throughput of Meta’s FollyQ

See paper for DPDK, Disruptor, io_uring, multiple modes, etc.

Diogo Behrens — diogo.behrens@huawei.com

24

mailto://diogo.behrens@huawei.com

BBQ Learnings

The cost of increased performance

≈ 10 atomics

DPDK-like algorithm

Diogo Behrens — diogo.behrens@huawei.com

25

mailto://diogo.behrens@huawei.com

BBQ Learnings

The cost of increased performance

increased complexity

≈ 10 atomics

DPDK-like algorithm

≈ 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

mailto://diogo.behrens@huawei.com

BBQ Learnings

How to ensure correctness?

Ï Long stress testing
by engineers

Ï Identification of corner cases
by experts and engineers

Ï Model checking of corner cases
by engineers with expert support

Ï Only a few corner cases necessary
queue full/empty, FIFO, wrap-around

Ï 3 bugs found model checking them
Not found while stress testing

Ï Reproducible on real hardware
Test cases were built in retrospect

Diogo Behrens — diogo.behrens@huawei.com

26

mailto://diogo.behrens@huawei.com

Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Enabling Performance with Practical Verification

Modern hardware features
Ï Relaxed Memory Models, eg, Arm, RISC-V
Ï Deep NUMA hierarchies

Consequences to concurrency
Ï Must be smarter to boost performance

Ï But complexity gets out of control!

Practical verification
Ï Formal verification tools

confidence on code correctness

Ï A few experts
scalability and coverage of tools

modern
hardware

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

fast

slow

Diogo Behrens — diogo.behrens@huawei.com

28

mailto://diogo.behrens@huawei.com

Enabling Performance with Practical Verification

Modern hardware features
Ï Relaxed Memory Models, eg, Arm, RISC-V
Ï Deep NUMA hierarchies

Consequences to concurrency
Ï Must be smarter to boost performance

Ï But complexity gets out of control!

Practical verification
Ï Formal verification tools

confidence on code correctness

Ï A few experts
scalability and coverage of tools

modern
hardware

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

fast

slow

smart
concurrency

requires

l0

l1 l2

l3 l4 l5 l6

L1

l0

l1CL
oF
(l 3
, L
1)

complex
algorithms

implies

Diogo Behrens — diogo.behrens@huawei.com

28

mailto://diogo.behrens@huawei.com

Enabling Performance with Practical Verification

Modern hardware features
Ï Relaxed Memory Models, eg, Arm, RISC-V
Ï Deep NUMA hierarchies

Consequences to concurrency
Ï Must be smarter to boost performance
Ï But complexity gets out of control!

Practical verification
Ï Formal verification tools

confidence on code correctness

Ï A few experts
scalability and coverage of tools

modern
hardware

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

fast

slow

smart
concurrency

requires

l0

l1 l2

l3 l4 l5 l6

L1

l0

l1CL
oF
(l 3
, L
1)

complex
algorithms

implies

super expert
developer team

requires

Really?

Diogo Behrens — diogo.behrens@huawei.com

28

mailto://diogo.behrens@huawei.com

Enabling Performance with Practical Verification

Modern hardware features
Ï Relaxed Memory Models, eg, Arm, RISC-V
Ï Deep NUMA hierarchies

Consequences to concurrency
Ï Must be smarter to boost performance
Ï But complexity gets out of control!

Practical verification
Ï Formal verification tools

confidence on code correctness

Ï A few experts
scalability and coverage of tools

modern
hardware

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

fast

slow

smart
concurrency

requires

l0

l1 l2

l3 l4 l5 l6

L1

l0

l1CL
oF
(l 3
, L
1)

complex
algorithms

implies

Practical
Verification

requires

verification tools
eg, model checking

¦ä(P =⇒ Q)

+

Diogo Behrens — diogo.behrens@huawei.com

28

mailto://diogo.behrens@huawei.com

Enabling Performance with Practical Verification

Modern hardware features
Ï Relaxed Memory Models, eg, Arm, RISC-V
Ï Deep NUMA hierarchies

Consequences to concurrency
Ï Must be smarter to boost performance
Ï But complexity gets out of control!

Practical verification
Ï Formal verification tools

confidence on code correctness
Ï A few experts

scalability and coverage of tools

modern
hardware

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

fast

slow

smart
concurrency

requires

l0

l1 l2

l3 l4 l5 l6

L1

l0

l1CL
oF
(l 3
, L
1)

complex
algorithms

implies

Practical
Verification

requires

a few
experts

+

verification tools
eg, model checking

¦ä(P =⇒ Q)

+

Diogo Behrens — diogo.behrens@huawei.com

28

mailto://diogo.behrens@huawei.com

Outlook: A challenging future!

big little big little

L2L2

L3 / interconnect

RAM

cluster cluster Deeper and more complex hierarchies
Ï Heterogeneous processing power

eg, Arm big.LITTLE, Intel Alder Lake

Ï Accelerators on shared memory
eg, GPUs, NPUs, FPGAs

Ï Non-volatile memories

How to consider everythig together?

Ï Practical verification FTW!
Ï Great potential of HW-SW collaboration!

29

Outlook: A challenging future!

core GPU core FPGA

L2L2

L3 / interconnect

RAM

cluster cluster Deeper and more complex hierarchies
Ï Heterogeneous processing power

eg, Arm big.LITTLE, Intel Alder Lake
Ï Accelerators on shared memory

eg, GPUs, NPUs, FPGAs

Ï Non-volatile memories

How to consider everythig together?

Ï Practical verification FTW!
Ï Great potential of HW-SW collaboration!

29

Outlook: A challenging future!

core GPU core FPGA

L2L2

L3 / interconnect

RAM NVRAM

cluster cluster Deeper and more complex hierarchies
Ï Heterogeneous processing power

eg, Arm big.LITTLE, Intel Alder Lake
Ï Accelerators on shared memory

eg, GPUs, NPUs, FPGAs
Ï Non-volatile memories

How to consider everythig together?

Ï Practical verification FTW!
Ï Great potential of HW-SW collaboration!

29

Outlook: A challenging future!

core GPU core FPGA

L2L2

L3 / interconnect

RAM NVRAM

cluster cluster Deeper and more complex hierarchies
Ï Heterogeneous processing power

eg, Arm big.LITTLE, Intel Alder Lake
Ï Accelerators on shared memory

eg, GPUs, NPUs, FPGAs
Ï Non-volatile memories

How to consider everythig together?

Ï Practical verification FTW!
Ï Great potential of HW-SW collaboration!

29

THANK YOU
非常感谢你

Copyright © 2022 Huawei Technologies Co., Ltd. All Rights Reserved.
The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product port-
folio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive state-

ments. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

	Motivation
	Challenge: RMM
	Challenge: complexity
	Solutions?
	Our solution: practical verification

	VSync
	CNA on RMM
	CLoF Framework
	BBQ
	Approach
	Results

	Conclusion

