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Concurrency is everywhere
Operating systems, databases and

server applications resort to
multicore concurrency to
achieve high performance.

. . . but brings challenges!

Ï Notoriously hard to get right
Ï Non-deterministic thread interleaving

Ï Traditional testing isn’t sufficient
Ï Testing is unlikely to trigger subtle
concurrency bugs

Ï Production is likely to trigger them,
→ many instances and long executions

Ï Reproducing concurrency bugs is hard
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Modern hardware makes matters worse

Relaxed memory models (RMMs)

Ï Modern architectures becoming popular
eg, Arm, RISC-V

Ï Aggressive reorderings to improve
performance

Ï Much higher non-determinisim
Ï Careful use of memory barriers

(neither too many, nor too few)

data = ctrl = 0;

data = 1;
ctrl = 1;

while(!ctrl) {}
assert(data == 1);

Init

Thread 1 Thread 2

7

RMM
reorder
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Do RMM bugs really happen?
Bugs found with our tools

Potential hang: DPDK MCS lock
The lock had one missing release barrier. An Arm
engineer replied to our patch: “Unfortunately, memory
ordering questions are hard topics. I have been
discussing this internally [. . . ], hope to conclude soon.”
More than 3 months to accept the 1-line patch.

Mutual exclusion bug: seL4 CLH lock
The seL4 microkernel is a flagship of formal verification.
The big kernel lock implementation, however, was not
verified and missed one acquire-release barrier.

Crash: MariaDB lockfree hashtable
Due to missing barriers for Arm, data of a node can be
accessed after the node has been deleted. That causes
SEGFAULT crashes on high load workloads.
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Modern hardware makes matters worse

Deep NUMA hierarchies
Ï Core distance affects shared-memory

communication performance

Ï Concurrent algorithms must exploit that!
Ï Makes code even more complex

5
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As the hardware evolves, so does the concurrency control

Example of Linux spinlock over the years

TTAS
3 atomics
no fairness Ticketlock

4 atomics
fairness qspinlock

LoC ≈ 400
26 atomics
fairness, locality

1990s

2008

2015

increasing #cores, #packages, #NUMAs, etc

Ï Simple
Ï Spin on single location
Ï All waiters cache-miss

Ï Based on MCS lock
Ï Spin on per-thread location
Ï Only next owner cache-miss

“atomics” refers to racy accesses, ie, variables
concurrently accessed by multiple cores
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LoC ≈ 400
26 atomics
fairness, locality

1990s

2008

2015

increasing #cores, #packages, #NUMAs, etc
“atomics” refers to racy accesses, ie, variables
concurrently accessed by multiple cores

Version Date Correctness
Linux 4.4 2015/09/11 Not verified
Linux 4.5 2015/11/09 RMMbug (fixed in 4.16)
Linux 4.8 2016/06/03 RMMbug (fixed in 4.16)
Linux 4.16 2018/02/13 Not verified
Linux 5.6 2020/01/07 Not verified
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Example of Linux spinlock over the years

TTAS
3 atomics
no fairness Ticketlock
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fairness qspinlock

LoC ≈ 400
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fairness, locality

CNA lock
LoC ≈ 580
46 atomics
fairness, locality,
NUMA-awareness

1990s

2008

2015

2019-2022?
increasing #cores, #packages, #NUMAs, etc

“atomics” refers to racy accesses, ie, variables
concurrently accessed by multiple cores
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As the hardware evolves, so does the concurrency control

Example of Linux spinlock over the years

TTAS
3 atomics
no fairness Ticketlock

4 atomics
fairness qspinlock

LoC ≈ 400
26 atomics
fairness, locality

CNA lock
LoC ≈ 580
46 atomics
fairness, locality,
NUMA-awareness

1990s

2008

2015

2019-2022?
increasing #cores, #packages, #NUMAs, etc

“atomics” refers to racy accesses, ie, variables
concurrently accessed by multiple cores

When will it
be merged ???
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What can the industry do?

Solution 1: overprotection
Ï Spray the code with memory barriers
Ï Simplify design as much as possible
Ï Cost: performance impact

Solution 2: expert design
Ï Hire highly-skilled engineers
Ï Carefully design and implement
Ï Cost: error-prone, low maintainability
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Solution 3:
Enabling Performance with Practical Verification



What is Practical Verification?

In short: we don’t know!
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What is Practical Verification?

We know what formal verification is!

Ï Goal: show correctness
Ï Examples:

Ï interactive theorem proving
Ï model checking

Ï In contrast to testing, exhaustive:
Ï All possible interleavings
Ï All possible reorderings
Ï All possible contexts, . . .

Ï Problems:

Ï High level of expertise required
Ï Often unrealistic assumptions
(eg, hardware simplifications)

And practical verification?

Ï Goal: increase confidence
Ï Exhaustive as long as it pays off
Ï A concurrency counterpart of testing
Ï Ideally any developer can use it:

Ï Push-button, fully-automated
Ï No expertise required

Ï In practice, a few experts must help
Ï Defining what to check (properties)
Ï Improving tool scalability
Ï Making methods more realistic
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Where do we apply practical verification?



Practical Verification Scope in Huawei

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Diogo Behrens — diogo.behrens@huawei.com

9

mailto://diogo.behrens@huawei.com


Practical Verification Scope in Huawei

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

software memory model

LKMM C11’s stdatomic.h Huawei’s libvsync
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Synchronization
Primitives
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mutex, RCU

run_thread() {
// some parallel work
initialize_data();
do_something_locally();

// critical section
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sequential_code();
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Synchronous with locks
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Lockless Data
Structures

eg, list, queue,
hashtable, etc

Multicore CPU
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}

Asynchronous with data structures
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Practical Verification Scope in Huawei

Operating System
eg, OpenHarmony, OpenEuler

Lockless Data
Structures

eg, list, queue,
hashtable, etc

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model
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run_thread() {
// some parallel work
initialize_data();
do_something_locally();

// critical section
lock_acquire(&lock);
sequential_code();
lock_release(&lock);

// some more parallel work
do_something_locally();

}

Synchronous with locks

thread1() {
do_something_locally();
queue_enq(q, data);
do_something_else_locally();
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thread2() {

data_t *data;
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Asynchronous with data structures

if (atomic_add(counter) > MAX)
do_something(data);

Adhoc synchronization
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Practical Verification Scope in Huawei

Ï Sequential code
Ï It can be tested! Good news!
Ï Even the critical section code

Ï Concurrent code
Ï Cannot be easily tested
Ï Barrier placement is hard
Ï Hardware-awareness is hard
Ï Scope of practical verification!
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Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

Lockless Data
Structures

eg, list, queue,
hashtable, etc

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU



VSync: Push-button Verification/Optimization on RMMs

◦ VSync: https://dl.acm.org/doi/abs/10.1145/3445814.3446748 — Best paper @ ASPLOS’21
by Oberhauser, Chehab, Behrens, Fu, Paolillo, Oberhauser, Bhat, Wen, Chen, Kim, Vafeiadis

◦ Making relaxed memory models fair: https://dl.acm.org/doi/abs/10.1145/3485475 — Best paper @ OOPSLA’21
by Lahav, Namakonov, Oberhauser, Podkopaev, Vafeiadis

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports
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VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}
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VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
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barrier
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mutation
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barrier
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input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86
atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG
atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG
atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG
atomic_xchg_rlx amoswap.w LDXR;STXR XCHG
atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV
atomic_read_acq lw; fence [r,rw] LDAR MOV
atomic_read_rlx lw LDR MOV
atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE
atomic_write_rel fence [rw,w]; sw STLR MOV
atomic_write_rlx sw STR MOV
atomic_fence fence [rw,rw] DMB ISH MFENCE
atomic_fence_acq fence [r,rw] DMB ISHLD NOP
atomic_fence_rel fence [rw,w] DMB ISH NOP
atomic_fence_rlx nop NOP NOP
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VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
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mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86

atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG

atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG

atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG

atomic_xchg_rlx amoswap.w LDXR;STXR XCHG

atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV

atomic_read_acq lw; fence [r,rw] LDAR MOV

atomic_read_rlx lw LDR MOV

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE

atomic_write_rel fence [rw,w]; sw STLR MOV

atomic_write_rlx sw STR MOV

atomic_fence fence [rw,rw] DMB ISH MFENCE

atomic_fence_acq fence [r,rw] DMB ISHLD NOP

atomic_fence_rel fence [rw,w] DMB ISH NOP

atomic_fence_rlx nop NOP NOP
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VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
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barrier
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mutation
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model
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lock
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barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86

atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG

atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG

atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG

atomic_xchg_rlx amoswap.w LDXR;STXR XCHG

atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV

atomic_read_acq lw; fence [r,rw] LDAR MOV

atomic_read_rlx lw LDR MOV

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE

atomic_write_rel fence [rw,w]; sw STLR MOV

atomic_write_rlx sw STR MOV

atomic_fence fence [rw,rw] DMB ISH MFENCE

atomic_fence_acq fence [r,rw] DMB ISHLD NOP

atomic_fence_rel fence [rw,w] DMB ISH NOP

atomic_fence_rlx nop NOP NOP

lock_t lock;
int v = 0; // shared state
void run(int id) {

lock_acquire(&lock);
v++; // critical sec.
lock_release(&lock);

}

void main() {
pthread_t t[N]; // N == 3
for (int i=0; i < N; i++)

pthread_create(&t[i], 0, run, i);
for (int i=0; i < N; i++)

pthread_join(t[i], 0);
assert (v == N); // check of ME

}
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VSync: Push-button Verification/Optimization on RMMs
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atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV

atomic_read_acq lw; fence [r,rw] LDAR MOV

atomic_read_rlx lw LDR MOV

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE

atomic_write_rel fence [rw,w]; sw STLR MOV

atomic_write_rlx sw STR MOV

atomic_fence fence [rw,rw] DMB ISH MFENCE

atomic_fence_acq fence [r,rw] DMB ISHLD NOP

atomic_fence_rel fence [rw,w] DMB ISH NOP

atomic_fence_rlx nop NOP NOP

lock_t lock;
int v = 0; // shared state
void run(int id) {
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v++; // critical sec.
lock_release(&lock);

}

void main() {
pthread_t t[N]; // N == 3
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VSync: Push-button Verification/Optimization on RMMs

primitive.c

VSync
atomics

clang

barrier
analyzer

mutation
checker

model
checker

lock
client code

barrier
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optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86

atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG

atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG

atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG

atomic_xchg_rlx amoswap.w LDXR;STXR XCHG

atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV

atomic_read_acq lw; fence [r,rw] LDAR MOV

atomic_read_rlx lw LDR MOV

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE

atomic_write_rel fence [rw,w]; sw STLR MOV

atomic_write_rlx sw STR MOV

atomic_fence fence [rw,rw] DMB ISH MFENCE

atomic_fence_acq fence [r,rw] DMB ISHLD NOP

atomic_fence_rel fence [rw,w] DMB ISH NOP

atomic_fence_rlx nop NOP NOP

lock_t lock;
int v = 0; // shared state
void run(int id) {

lock_acquire(&lock);
v++; // critical sec.
lock_release(&lock);

}

void main() {
pthread_t t[N]; // N == 3
for (int i=0; i < N; i++)

pthread_create(&t[i], 0, run, i);
for (int i=0; i < N; i++)

pthread_join(t[i], 0);
assert (v == N); // check of ME

}

optimization report
-------------------

lock_acquire
atomic_read --> rlx
atomic_xchg --> acq

lock_release
atomic_write --> rel
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#barriers

barrier-mode
combination statusimports

// TTAS lock implementation
// using VSync-atomics (SC)

typedef atomic_t lock_t;
void lock_acquire(lock_t *lock) {

do {
while(atomic_read(lock));

} while(atomic_xchg(lock, 1));
}
void lock_release(lock_t *lock) {

atomic_write(lock, 0);
}

VSync-atomics RISC-V ARMv8 x86

atomic_xchg amoswap.w.aq.rl.sc LDAXR;STLXR XCHG

atomic_xchg_rel amoswap.w.rl LDXR;STLXR XCHG

atomic_xchg_acq amoswap.w.aq LDAXR;STXR XCHG

atomic_xchg_rlx amoswap.w LDXR;STXR XCHG

atomic_read fence [rw,rw]; lw; fence [r,rw] LDAR MOV

atomic_read_acq lw; fence [r,rw] LDAR MOV

atomic_read_rlx lw LDR MOV

atomic_write fence [rw,w]; sw; fence [rw,rw] STLR MOV;MFENCE

atomic_write_rel fence [rw,w]; sw STLR MOV

atomic_write_rlx sw STR MOV

atomic_fence fence [rw,rw] DMB ISH MFENCE

atomic_fence_acq fence [r,rw] DMB ISHLD NOP

atomic_fence_rel fence [rw,w] DMB ISH NOP

atomic_fence_rlx nop NOP NOP

lock_t lock;
int v = 0; // shared state
void run(int id) {

lock_acquire(&lock);
v++; // critical sec.
lock_release(&lock);

}

void main() {
pthread_t t[N]; // N == 3
for (int i=0; i < N; i++)

pthread_create(&t[i], 0, run, i);
for (int i=0; i < N; i++)

pthread_join(t[i], 0);
assert (v == N); // check of ME

}

optimization report
-------------------

lock_acquire
atomic_read --> rlx
atomic_xchg --> acq

lock_release
atomic_write --> rel

Problem: Some optimizations
cause hangs on Arm CPUS! Why?
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VSync: Push-button Verification/Optimization on RMMs

◦ VSync: https://dl.acm.org/doi/abs/10.1145/3445814.3446748 — Best paper @ ASPLOS’21
by Oberhauser, Chehab, Behrens, Fu, Paolillo, Oberhauser, Bhat, Wen, Chen, Kim, Vafeiadis

◦ Making relaxed memory models fair: https://dl.acm.org/doi/abs/10.1145/3485475 — Best paper @ OOPSLA’21
by Lahav, Namakonov, Oberhauser, Podkopaev, Vafeiadis

primitive.c

VSync
atomics

clang

barrier
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mutation
checker

model
checker

lock
client code

barrier
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

Await Model Checking

No scalable model checker for RMM was
capable of checking termination of spinloops!
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VSync: Push-button Verification/Optimization on RMMs

queue.c

VSync
atomics

clang

barrier
analyzer

mutation
checker AMC

queue
client code

barrier
optimizer
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input IR mutated IR

result

#barriers

barrier-mode
combination statusimports

generator

Current work: extend VSync to data structures
eg, queues, lists, stacks
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Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

Lockless Data
Structures

eg, list, queue,
hashtable, etc

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU



Verifying CNA-based Linux qspinlock on LKMM

LKMM=Linux Kernel MemoryModel

TTAS
3 atomics
no fairness Ticketlock

4 atomics
fairness qspinlock

LoC ≈ 400
26 atomics
fairness, locality

CNA lock
LoC ≈ 580
46 atomics
fairness, locality,
NUMA-awareness

1990s

2008

2015

2019-2022?
increasing #cores, #packages, #NUMAs, etc

“atomics” refers to racy accesses, ie, variables
concurrently accessed by multiple cores
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Verifying CNA-based Linux qspinlock on LKMM
Technical report @ arXiv Jul’22 — by Paolillo, Ponce de León, Haas, Behrens, Chehab, Fu, Meyer

https://arxiv.org/abs/2111.15240

Ï Goal:
Ï Support merge of CNA patch (Oracle)

Ï Verification:
Ï LinuxKernelMemoryModel (LKMM)
Ï Armv8 memory model
Ï Power memory model

Ï Verification time:
Ï With 4 threads, from 12h to 15h

Ï Linux qspinlock and CNA:
Ï correct on Armv8
Ï correct on Power
Ï incorrect on LKMM!

Ï Lessons learned
Ï Was the model checker broken? No!
Ï LKMM mismatches reality!

(expert support)
Ï Having 2 model checkers is helpful!

https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc

Diogo Behrens — diogo.behrens@huawei.com

15

https://arxiv.org/abs/2111.15240
https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc
mailto://diogo.behrens@huawei.com


Verifying CNA-based Linux qspinlock on LKMM
Technical report @ arXiv Jul’22 — by Paolillo, Ponce de León, Haas, Behrens, Chehab, Fu, Meyer

https://arxiv.org/abs/2111.15240

Ï Goal:
Ï Support merge of CNA patch (Oracle)

Ï Verification:
Ï LinuxKernelMemoryModel (LKMM)
Ï Armv8 memory model
Ï Power memory model

Ï Verification time:
Ï With 4 threads, from 12h to 15h

Ï Linux qspinlock and CNA:
Ï correct on Armv8
Ï correct on Power

Ï incorrect on LKMM!
Ï Lessons learned

Ï Was the model checker broken? No!
Ï LKMM mismatches reality!

(expert support)
Ï Having 2 model checkers is helpful!

https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc

Diogo Behrens — diogo.behrens@huawei.com

15

https://arxiv.org/abs/2111.15240
https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc
mailto://diogo.behrens@huawei.com


Verifying CNA-based Linux qspinlock on LKMM
Technical report @ arXiv Jul’22 — by Paolillo, Ponce de León, Haas, Behrens, Chehab, Fu, Meyer

https://arxiv.org/abs/2111.15240

Ï Goal:
Ï Support merge of CNA patch (Oracle)

Ï Verification:
Ï LinuxKernelMemoryModel (LKMM)
Ï Armv8 memory model
Ï Power memory model

Ï Verification time:
Ï With 4 threads, from 12h to 15h

Ï Linux qspinlock and CNA:
Ï correct on Armv8
Ï correct on Power
Ï incorrect on LKMM!

Ï Lessons learned
Ï Was the model checker broken? No!
Ï LKMM mismatches reality!

(expert support)

Ï Having 2 model checkers is helpful!
https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc

Diogo Behrens — diogo.behrens@huawei.com

15

https://arxiv.org/abs/2111.15240
https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc
mailto://diogo.behrens@huawei.com


Verifying CNA-based Linux qspinlock on LKMM
Technical report @ arXiv Jul’22 — by Paolillo, Ponce de León, Haas, Behrens, Chehab, Fu, Meyer

https://arxiv.org/abs/2111.15240

Ï Goal:
Ï Support merge of CNA patch (Oracle)

Ï Verification:
Ï LinuxKernelMemoryModel (LKMM)
Ï Armv8 memory model
Ï Power memory model

Ï Verification time:
Ï With 4 threads, from 12h to 15h

Ï Linux qspinlock and CNA:
Ï correct on Armv8
Ï correct on Power
Ï incorrect on LKMM!

Ï Lessons learned
Ï Was the model checker broken? No!
Ï LKMM mismatches reality!

(expert support)
Ï Having 2 model checkers is helpful!

https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc

Diogo Behrens — diogo.behrens@huawei.com

15

https://arxiv.org/abs/2111.15240
https://github.com/hernanponcedeleon/Dat3M
https://github.com/MPI-SWS/genmc
mailto://diogo.behrens@huawei.com


Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

Lockless Data
Structures

eg, list, queue,
hashtable, etc

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU



Why would locks be too complex to model check?

Modern lock-design challenges

Ï Deep NUMA hierarchies
eg, packages, NUMA nodes,
L3 cache partitions

Ï Lock heterogenity
Different locks perform better in
different contexts, eg, cores with
shared cache or not

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System
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Why would locks be too complex to model check?

Modern lock-design challenges
Ï Deep NUMA hierarchies

eg, packages, NUMA nodes,
L3 cache partitions

Ï Lock heterogenity
Different locks perform better in
different contexts, eg, cores with
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Numa 2
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Core 8
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Why would locks be too complex to model check?

Modern lock-design challenges
Ï Deep NUMA hierarchies

eg, packages, NUMA nodes,
L3 cache partitions

Ï Lock heterogenity
Different locks perform better in
different contexts, eg, cores with
shared cache or not

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

Many-core NUMA System

Ticket

MCS

CLH(= NUMA)
( 6= NUMA)

( 6= package)
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Why would locks be too complex to model check?

What are the potential improvements?

Ï 2-level is good
Ï Multi-level is great
Ï Multi-level+heterogeneity is

awesome!

But model checkers can’t handle that

Ï Example multi-level HMCS:

Ï 2 levels: 2s
Ï 3 levels: 10s
Ï 4 levels: timeout after 24h

Ï Enter CLoF!

LevelDB benchmark, x86 server, 96 hyperthreads

1 4 8 16 24 32 48 64 95
Number of threads
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Our approach with multi-levels,
full hierarchy & heterogeneity

HMCS〈4〉, multi-levels, full hierarchy

HMCS〈2〉, NUMA-aware

MCS, no hierarchy
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CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Two NUMA-node example

l0threads in
NUMA node 1

threads in
NUMA node 2

(BasicLocks) l ::= l0, l1, l2, . . .
(ClofLocks) L ::= l | CLoF(l,L)

Simplified algorithm
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if (others won’t starve)

release l ;
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release L;
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CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig

https://dl.acm.org/doi/abs/10.1145/3477132.3483557

Base Step Induction Step
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CLoF: Compositional Lock Framework
Published @ SOSP’21 — by Chehab, Paolillo, Behrens, Fu, Chen, Härtig
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Base Step Induction Step

tkt clh mcs . . .

Model Checker
for RMM

¦3

As in VSync paper
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CLoF Learnings

Ï Concurrency must be smart and hardware tailored
Otherwise we miss big opportunities

Ï Modularity is essential for model checking
Ideally by design, not in hinsight

Ï Support proof sketches are faster, scale, and often OK
Goodbye fully-automated verification /
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Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook

Application Database
eg, OpenGauss DB

Operating System
eg, OpenHarmony, OpenEuler

Multicore CPU
eg, ARMv8, RISC-V

hardware memory model

Atomic Interface
eg, atomic_{xchg, get_add}

Lockless Data
Structures

eg, list, queue,
hashtable, etc

software memory model

Synchronization
Primitives
eg, spinlock,
mutex, RCU



What about concurrent data structures?

Ringbuffers are pervasive
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BBQ: Block-based Bounded Queue
In 6 days @ USENIX ATC’22 — by Wang, Behrens, Fu, Oberhauser, Oberhauser, Lei, Chen, Härtig, Chen

Ï Conventional designs:
Ï most favor simplicity
Ï performance ∼ interference enq/deq

Ï Block Approach:

Ï Split ringbuffer and metadata in blocks
Ï Drastically reduce enq/deq interference
Ï 1.5x to 50x higher throughput
Ï Verified with VSync
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BBQ: Performance Experiments

SPSCMicrobenchmarks

bbq
dpdkrb

linuxrb
boostqfollyq
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linuxrb
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2x throughput of Meta’s FollyQ

See paper for DPDK, Disruptor, io_uring, multiple modes, etc.
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BBQ Learnings

The cost of increased performance

≈ 10 atomics

DPDK-like algorithm
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BBQ Learnings

The cost of increased performance

increased complexity

≈ 10 atomics

DPDK-like algorithm

≈ 20 atomics

Part of BBQ
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BBQ Learnings

How to ensure correctness?

Ï Long stress testing
by engineers

Ï Identification of corner cases
by experts and engineers

Ï Model checking of corner cases
by engineers with expert support

Ï Only a few corner cases necessary
queue full/empty, FIFO, wrap-around

Ï 3 bugs found model checking them
Not found while stress testing

Ï Reproducible on real hardware
Test cases were built in retrospect
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Agenda

Ï Modern Hardware and Concurrent Programs

Ï Enabling Performance with Practical Verification

Ï Practical Verification in Practice
Ï VSync: dealing with Relaxed Memory Models (RMMs)
Ï CNA on RMM: verifying next-gen Linux spinlock
Ï CLoF: dealing with NUMA hierarchies and heterogeneity
Ï BBQ: building highly-efficient ringbuffers

Ï Wrap up and Outlook



Enabling Performance with Practical Verification

Modern hardware features
Ï Relaxed Memory Models, eg, Arm, RISC-V
Ï Deep NUMA hierarchies

Consequences to concurrency
Ï Must be smarter to boost performance

Ï But complexity gets out of control!

Practical verification
Ï Formal verification tools

confidence on code correctness

Ï A few experts
scalability and coverage of tools

modern
hardware

Processor 1
Numa 1
Core 1
Core 2
Core 3
Core 4

Numa 2
Core 5
Core 6
Core 7
Core 8

Processor 2
Numa 2
Core 9
Core 10
Core 11
Core 12

Numa 3
Core 13
Core 14
Core 15
Core 16

fast

slow
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Outlook: A challenging future!

big little big little

L2L2

L3 / interconnect

RAM

cluster cluster Deeper and more complex hierarchies
Ï Heterogeneous processing power

eg, Arm big.LITTLE, Intel Alder Lake

Ï Accelerators on shared memory
eg, GPUs, NPUs, FPGAs

Ï Non-volatile memories

How to consider everythig together?

Ï Practical verification FTW!
Ï Great potential of HW-SW collaboration!
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THANK YOU
非常感谢你
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