
Lluís Vilanova
Imperial College London

<vilanova@imperial.ac.uk>

May 2023 - Huawei SSRC

Rethinking service isolation
to reduce the cloud tax

Our Goal: Trustworthy and Efficient Clouds

2

Application

Cloud platform

OS

Hypervisor

Firmware

Hardware

Staff

tr
u
st

e
d

tr
u
st

e
d

Cloud provider perspectiveCloud user perspective

Application

Cloud stack

OS

Hypervisor

Firmware

Hardware

Staff

u
n
tr

u
st

e
d

u
n
tr

u
st

e
d

tr
u
st

e
d

June 2023 - Huawei GSTS

Security Challenges in Cloud Environments

• Cloud environments have a large trusted computing base (TCB)
– Linux: 20 million

– KVM: 13 million

– OpenStack: 2 million

•
Large TCB = many
security vulnerabilities
– Xen: 184 (2012-16)

– Linux: 721 (2012-16)

• Many attack vectors
– Control-flow hijacking

– Code injection

– Return-oriented programming

3

Need a fundamentally different approach for
engineering complex software stacks

June 2023 - Huawei GSTS

The Cloud Tax:
A Systemic Inefficiency Problem

Cloud stack inefficient by design
– Poor CPU & memory consolidation
– Increased TCO

Overheads across resources:

• Memory bandwidth
– Runtime data copies

• CPU cycles
– Runtime data copies
– Crossing multiple layers

• Memory utilization
– Components are replicated

– Same apps, libraries, OS...

June 2023 - Huawei GSTS 4

Application

Cloud platform

OS

Hypervisor

Firmware

Hardware

Staff

Application

Cloud platform

OS

Hypervisor

Firmware

Hardware

Staff

Application

Cloud platform

OS

Hypervisor

Firmware

Hardware

Staff

Application

Cloud platform

OS

Hypervisor

Firmware

Hardware

Staff

Application

Cloud platform

OS

Hypervisor

Firmware

Hardware

Staff

Application

Cloud platform

OS

Hypervisor

Firmware

Hardware

Staff

Roadmap: Slashing the Cloud Tax

5

Hardware

Storage service Analytics service

FS Net …

Library OS

FS Net …

Library OS

Monitor

1. CAP-VMs:
Capability-
Based Isolation
and Sharing in
the Cloud

[USENIX OSDI 2022]
2. Single-Copy
Objects (SCO):
Reducing the
Memory Footprint
in the Cloud

[USENIX OSDI 2023]

Improve data sharing
without weakening security

Share code by design
without weakening security

Compartmentalisation

June 2023 - Huawei GSTS

Memory Capabilities:
A Powerful Primitive for Security and Efficiency

• Isolation puts privileged memory management unit (MMU) at the center

• MMU always involved in sharing, e.g. inter-process communication (IPC)
– Set up shared buffers

– Execute syscalls/hypercalls

• MMU shares data at page granularity

• Incorrect sharing may expose extra data

• Insufficient sharing wastes compute and bandwidth (memory copies)

6

What if the hardware provided an efficient mechanisms to share
arbitrary-sized memory regions between otherwise isolated entities?

CHERI: Capability Hardware Enhanced RISC Instructions

June 2023 - Huawei GSTS

Memory Capabilities with CHERI

• Capabilities: Unforgeable 128-bit “fat pointers” with permissions
– Identifies memory region

(integer, array, …)

– Isolation at byte-granularity

– Protected by the hardware

• Capabilities can be used to build trustworthy software
– Can be passed via registers and memory

– New capabilities can only be derived from existing capabilities

– Limited dependency on privileged layers (OS kernel, hypervisor)

• Mix of existing and cap-aware instructions
– Existing code uses implicit capabilities -> hybrid code

– New code uses explicit capabilities -> pure-cap code

– Typically means changing memory allocators, no pointer arithmetic etc.
7

Base address Length

Permissions: {read, write, exec, ...}
Memory

June 2023 - Huawei GSTS

Real-World CHERI Hardware Available

8

• Morello: Armv8-A architecture
with CHERI support
– Available since Spring 2022

• Supports existing software stacks
– FreeBSD, Linux port (ongoing), …

• Part of UK’s cybersecurity and
semiconductor strategy

June 2023 - Huawei GSTS

Memory Capabilities and RISC-V

9

• Microsoft CHERI implementation
for embedded RISC-V
– 32-bit RISC-V32E micro-controller

– Based on lowRISC Ibex core

– 64-bit capabilities in all registers

• New RISC-V CHERI working group
– Led by Google

– Focus on applications and embedded

source: https://msrc-blog.microsoft.com/2022/09/06/whats-
the-smallest-variety-of-cheri/

Waiting for CHERI RISC-V hardware

June 2023 - Huawei GSTS

(1) CAP-VMs: Capability-Based Isolation
and Sharing in the Cloud

[USENIX OSDI 2022]

10

Isolation and Communication in the Cloud

11

Application

OS

Hypervisor

Firmware

Hardware

Application

OS

Hypervisor

Firmware

Hardware

Hyperscaler’s perspective: Tenant’s perspective:
- Reduce cost through consolidation - Data sharing across apps/services

?

Fundamental tension to handle isolation and communication

June 2023 - Huawei GSTS

Isolation and Communication: VMs

12

Application

OS

Application

OS

Hypervisor

Firmware

Hardware

+ Strong isolation
+ Small TCB (hypervisor)

- Expensive communication (TCP/IP)
- Expensive transitions (hypercalls)

June 2023 - Huawei GSTS

Isolation and Communication: Containers

13

Application Application

OS

Hypervisor

Firmware

Hardware

+ Lightweight isolation
+ Efficient communication (IPC)

- Large TCB (host OS)

OSOS

June 2023 - Huawei GSTS

VMs & Containers: Isolation → Communication

• Challenge: Efficient communication,
Strong isolation with small TCB

Requirements at odds with current designs (containers vs. VMs)

Tension between compatibility and whole-system redesign

14

Goal: Efficiency of container communications,
Strong isolation and small TCB of VMs,
Compatible with existing codebases

Use CHERI to isolate, while removing dependency on host OS

June 2023 - Huawei GSTS

A Cloud Stack with Hardware Capabilities

How to design a new software stack for cloud environments that uses
hardware memory capabilities?

Challenges of a capability-based cloud stack:

1. Support capability-unaware software

2. Compatible with existing OS APIs

3. Provide small-TCB shared stack in the host

4. Enable efficient capability-based IPC interfaces

15June 2023 - Huawei GSTS

CAP-VMs: Fusing VMs and Containers

1. Per-container strong isolation
– Shared page table + CHERI RISC-V default

capabilities (similar to i386 default segments)

– Transparent to applications

2. Per-container library OS
– LKL (vanilla Linux as a library)

– Per-container OS, trivially isolated

3. Communication API
– Asynchronous buffer, file, and call APIs

(capability-unaware API, capability-accelerated)

– Controlled by small TCB (intravisor)

16

CAP-VM

Analytics

libOS

CAP-VM

Storage

libOS

Intravisor
(small TCB)

Host OS

Container

Analytics

Container

Storage

Host OS

API

(1) (1)

(2) (2)

(3)

June 2023 - Huawei GSTS

Experimental Evaluation: CAP-VMs

Experiments on two platforms:

CHERI RISC-V 64-bit
– Cycle-accurate single-core simulator

– FPGA simulator running on AWS-F1 instances

SiFive HiFive RISC-V Unmatched
– Quad-core ASIC

– No CHERI support, but same software stack

Source code: https://github.com/lsds/intravisor

June 2023 - Huawei GSTS 17

https://github.com/lsds/intravisor

Results: Multi-tier Cloud Service

Is communication efficient?

• YCSB queries on NGINX + Redis

• Docker+TCP/IP vs. CAP-VMs

→ 1.5x throughput
at 95th percentile latency
+
stronger isolation

18

CAP-VM CAP-VM

June 2023 - Huawei GSTS

(2) Single-Copy Objects (SCOs):
Reducing the Cloud’s Memory
Footprint using Capabilities

[USENIX OSDI 2023]

19

Duplicate Software Components in the Cloud

Many VMs/containers have similar memory content

• Virtual machines (VMs) have their own guest OS kernel
– Usually the same across VMs

• VMs and containers run similar applications
– E.g. many users deploy the same NGINX web server

• Different applications built on top of typical frameworks/dependencies
– E.g. use the same Python runtime

– E.g. many dynamic libraries will be the same (lib*.so)

June 2023 - Huawei GSTS 20

Example: Microservice Architecture

21

Each mongoDB instance is a container:

148M Nov 5 2021 mongosh
104M Dec 19 2013 mongod
72M Dec 19 2013 mongos
56M Dec 19 2013 mongo
17M Oct 12 2021 mongofiles
17M Oct 12 2021 mongorestore
16M Oct 12 2021 mongodump
16M Oct 12 2021 mongoimport
16M Oct 12 2021 mongoexport
16M Oct 12 2021 mongostat
16M Oct 12 2021 mongotop
14M Oct 12 2021 bsondump
3.4M Oct 19 2020 perl
3.4M Oct 19 2020 perl5.30.0
1.2M Jun 18 2020 bash
1.1M Jan 6 2021 gpg
875K Jan 6 2021 gpgcompose
736K Aug 23 2021 openssl

Substantially duplicates memory usage:
518 MB out of 640 MB ➔ ~80%

Source: Y. Gan et al., ASPLOS 2019

Microservice architecture of a typical
e-commerce cloud application
(DeathStarBench)

June 2023 - Huawei GSTS

State-of-the-Art: Hypervisor-led Memory Deduplication

• Kernel Same-Page Merging (KSM) done by Linux KVM hypervisor

• Periodically compares memory pages and removes duplicate pages

22

VM1 VM2

Hypervisor (Linux)
Merged pages

KSM module

June 2023 - Huawei GSTS

KSM Works with VM-level Isolation, But:

• Only hosting provider benefits from KSM
– Deduplication decisions and overheads are

outside of user control

• KSM is probabilistic in nature
– Deduplication should be predictable and

guaranteed

• KSM consumes CPU cycles
– Deduplication should have minimal overheads

Active KSM:
100% CPU👎

First KSM run:
memory reduces
13 GB ➔ 2.2 GB

Next KSM run:
memory reduced
13 GB ➔ 11 GB

👍

👎

June 2023 - Huawei GSTS 23

Our Approach: Single-Copy Objects (SCO)

24

kern

Intravisor

DB

libC

App1

Shared → Single-Copy Objects

kern

DB

libC

App2

SCO#DB

SCO#libC

Intravisor

SCO#kern

kern

DB

libC App2App1

Unique
components

Single-Copy
Components

• Sharing by design -> break application down into reusable components

June 2023 - Huawei GSTS

X
X
X

SCO: Challenges

• Challenge 1: Code decomposition
– Must support existing code

– Requires lightweight isolation between components

– Needs fast switches between isolated components

• Challenge 2: Appropriate memory sharing
– Not everything is shared within an SCO

– SCOs must access different state according to calling CAP-VM

• Challenge 3: Trusted sharing of untrusted objects (see paper)
– Must allow untrusted programs to load and create objects

– Do not rely on trusted code (smaller TCB size)

25

Solved by CAP-VMs
&

CHERI memory
capabilities

June 2023 - Huawei GSTS

Challenge 2: Appropriate Memory Sharing

26

init_rnd(x):
seed = x;  0xaa

random():
hash(seed)

App 1 librandom.so

uint32_t seed = 0xaa

init_rnd(0xaa);
r=random();

init_rnd(x):
seed = x;  0xbb

random():
hash(seed)

App 2

uint32_t seed = 0xbb

init_rnd(0xbb);
r=random();

Components have state (e.g. variables)

State must not be shared

Naïve SCO deduplication → state corruption

init_rnd(x):
seed = x;  0xaa, then 0xbb

random():
hash(seed)

App 1

uint32_t seed = ?? race

init_rnd(0xaa);
r=random();

App 2

init_rnd(0xbb);
r=random(); Despite different seeds,

App1 and App2 will receive
the same random value

June 2023 - Huawei GSTS

librandom.so

librandom.so

Compartment-Local Storage

• SCOs do not store state

• Introduce compartment-local
storage (CLS) to access state
within SCO
– Replicated on each CAP-VM (App 1/2)

• New linker relocation, using
memory capabilities
– Similar to thread-local storage (TLS)

– Implemented as LLVM pass

27

init_rnd(x):
seed@CLS = x;

random():
hash(seed@CLS)

App 1

librandom.so

uint32_t seed;

init_rnd(0xaa);
r=random();

App 2

init_rnd(0xbb);
r=random();

uint32_t seed = 0xaa

uint32_t seed = 0xbb

V=1

V=2

June 2023 - Huawei GSTS

Experimental Evaluation: SCOs

Question: How efficient are SCOs compared to KSM?

28

libav + libOS + libC

FFmpeg FFmpeg FFmpeg...

libav + libOS + libC

ffmpeg

libav + libOS + libC

ffmpeg
..

With SCOs

With KSM

Scenario:

▪ On-demand realtime video transcoding micro-service
(lots of sharing potential)

▪ Limited by either memory or CPU time

– Needs low launch and deduplicate latency for new processes

– Must have low CPU overhead

Environment:
▪ ffmpeg video transcoder + libraries + library OS

(110 MB, 10% SCO-shareable + heap)

▪ 16 GB memory, 4 CPU cores

June 2023 - Huawei GSTS

Benchmarking SCO and KSM on Arm Morello

29

Theoretical: ~180 instances

Auto-tuned KSM (KSM-tuned):
128–176 workers, 120–290 secs

June 2023 - Huawei GSTS

176 @ 290s

128 @ 120s

Benchmarking SCO and KSM on Arm Morello

30

Theoretical: ~180 workers

SCO: 143 workers, 11 secs

Auto-tuned KSM (KSM-tuned):
128–176 workers, 120–290 secs

June 2023 - Huawei GSTS

128 @ 120s

176 @ 290s

143 @ 11s

Benchmarking SCO and KSM on Arm Morello

31

Theoretical: ~180 workers

SCO: 143 workers, 11 secs

Always-on KSM:
100–140 workers, 80–170 secs

Auto-tuned KSM (KSM-tuned):
128–176 workers, 120–290 secs

June 2023 - Huawei GSTS

143 @ 11s
128 @ 120s

176 @ 290s

Benchmarking SCO and KSM on Arm Morello

32

Theoretical: ~180 workers

SCO: 143 workers, 11 secs

Always-on KSM:
100–140 workers, 80–170 secs

→ Always-on KSM performs worse

KSM deduplicates more (data
pages), if run for a lot longer

→ SCO always deduplicates immediately,

and has much faster spawning

Auto-tuned KSM (KSM-tuned):
128–176 workers, 120–290 secs

June 2023 - Huawei GSTS

143 @ 11s
128 @ 120s

176 @ 290s

Conclusions: Slashing the Cloud Tax

• Traditional cloud environments have efficiency/isolation trade-offs
– Require strong isolation between tenants

– Efficient data communication between isolation domains

– Redundant memory contents at all levels (application, libraries, OS, …)

• Let’s rethink the cloud stack
– Use new hardware memory capabilities to avoid traditional OS & MMU overheads

– Design to minimize disruption to existing applications

– Cloud affords us changes across hardware and software stack

•
CAP-VMs: Strong isolation while enabling fine-grained data sharing

• Single-Copy Objects: Consolidate memory through sharing-by-design

33

Lluís Vilanova
<vilanova@imperial.ac.uk>

June 2023 - Huawei GSTS

	Default Section
	Folie 1: Rethinking service isolation to reduce the cloud tax
	Folie 2: Our Goal: Trustworthy and Efficient Clouds
	Folie 3: Security Challenges in Cloud Environments
	Folie 4: The Cloud Tax: A Systemic Inefficiency Problem
	Folie 5: Roadmap: Slashing the Cloud Tax
	Folie 6: Memory Capabilities: A Powerful Primitive for Security and Efficiency
	Folie 7: Memory Capabilities with CHERI
	Folie 8: Real-World CHERI Hardware Available
	Folie 9: Memory Capabilities and RISC-V
	Folie 10: (1) CAP-VMs: Capability-Based Isolation and Sharing in the Cloud [USENIX OSDI 2022]
	Folie 11: Isolation and Communication in the Cloud
	Folie 12: Isolation and Communication: VMs
	Folie 13: Isolation and Communication: Containers
	Folie 14: VMs & Containers: Isolation  Communication
	Folie 15: A Cloud Stack with Hardware Capabilities
	Folie 16: CAP-VMs: Fusing VMs and Containers
	Folie 17: Experimental Evaluation: CAP-VMs
	Folie 18: Results: Multi-tier Cloud Service
	Folie 19: (2) Single-Copy Objects (SCOs): Reducing the Cloud’s Memory Footprint using Capabilities [USENIX OSDI 2023]
	Folie 20: Duplicate Software Components in the Cloud
	Folie 21: Example: Microservice Architecture
	Folie 22: State-of-the-Art: Hypervisor-led Memory Deduplication
	Folie 23: KSM Works with VM-level Isolation, But:
	Folie 24: Our Approach: Single-Copy Objects (SCO)
	Folie 25: SCO: Challenges
	Folie 26: Challenge 2: Appropriate Memory Sharing
	Folie 27: Compartment-Local Storage
	Folie 28: Experimental Evaluation: SCOs
	Folie 29: Benchmarking SCO and KSM on Arm Morello
	Folie 30: Benchmarking SCO and KSM on Arm Morello
	Folie 31: Benchmarking SCO and KSM on Arm Morello
	Folie 32: Benchmarking SCO and KSM on Arm Morello
	Folie 33: Conclusions: Slashing the Cloud Tax

