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Digital Twin

=Virtual representation of an object or
system that spans its lifecycle
= updated from real-time data

= uses simulation, machine learning and reasoning to
help decision making
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= Common plot device used
(and maybe overused) in
fictional narratives where
one of the characters is
the evil identical twin,
clone or counterpart of
another character




Digital Evil Twin

= Digital twin representing the worst-case
behaviour of the physical object or system
= performance, energy dissipation, temperature, etc.

= useful for performance-sensitive systems

= stress testing

= |oad admission control
= safety bounds

= optimisation

= regular digital twins are not suitable for the job

= higher complexity
= focus on actual behaviour

= worst-case behaviour may have not yet been experienced by
physical system



= Digital Evil Twins o

= |dentification of worst-case behaviours
using real-time analysis

= guiding optimisation

= Semi-automatic synthesis of worst-case
real-time analysis models

= Open areas of research



Real-Time Analysis

= Family of analytical models aiming to establish if
a system meets its timing requirements even in
the worst-case scenario

= based on decades of research by the real-time systems
community

= e.g. response-time analysis, real-time calculus, network calculus
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Real-Time Analysis

= Example: chains of software tasks running
over multiple processing elements of a
network-on-chip interconnect

= System configuration
= wormhole switching
= XY routing
= priority-preemptive arbitration U5

= credit-based flow control

= sporadic tasks U6




Real-Time Analysis
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= Worst-case end-to-end behaviour of each task of the chainis r; + R,
= Can be used to ensure that each task of the chain will always have
all the data it needs by the time it starts its execution

L.S. Indrusiak, “End-to-End Schedulability Tests for Multiprocessor Embedded Systems based on Networks-on-Chip with Priority-Preemptive

Arbitration”, Journal of Systems Architecture, v. 60, n. 7, Aug 2014.
L.S. Indrusiak, A. Burns, B. Nikolic, “Buffer-aware bounds to multi-point progressive blocking in priority-preemptive NoCs”, in Design Automation

and Test in Europe (DATE), 2018. (Best paper award)




Optimising worst-case behaviour

Optimisation
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task allocation for performance
(ReCoSoC 2011, 2012, ACM Computing
Surveys 2017, Leibniz Trans Emb Sys 2017),
energy dissipation (ISVLSI 2013, RTNS
2013) and security (ReCoSoC 2017,
Microprocessors & Microsystems 2019)

memory partitioning (PDP 2018)

multi-mode operation (RTNS 2015,
ISORC 2016, EURASIP JES 2017)

priority assignment (PDP 2015)

interconnect routing and topology
(under review)

Optimising worst-case behaviour

# unschedulable tasks and packets
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L.S. Indrusiak, P. Dziurzanski, A. K. Singh, Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing,
River Publishers, 2016.




Resilience against timing attacks

= Secure network-on-chip supporting hard
real-time guarantees

= packet flows must meet their deadlines even in worst-case
scenarios

= packet flows may carry sensitive information

= vulnerable to timing attacks, i.e. side channel attacks where the
timing of packets can be correlated to the sensitive information

they carry

= Clear trade-off between
= time predictability

= timing attack resilience

L.S. Indrusiak, J. Harbin, C. Reinbrecht, J. Sepulveda, “Side-channel protected MPSoC through secure real-time networks-on-chip”, Microprocess.
Microsystems, v.68, p. 34-46, 2019.
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Route randomisation

= Reduces attack surface
= attackers can’t easily monitor timing behaviour

= |ncreases communication latency
variability
= additional timing interference inflates worst-case

= analytical models must take that into account

= Optimisation approach

= randomise as much as possible until worst-case is
barely acceptable

L.S. Indrusiak, J. Harbin, C. Reinbrecht, J. Sepulveda, “Side-channel protected MPSoC through secure real-time networks-on-chip”, Microprocess.
Microsystems, v.68, p. 34-46, 2019.
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Experimental results

4x4 mesh network-on-chip

Flow schedulability after improvement using a GA
under various models — 100 flowsets per data point
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Flow schedulability after improvement using a GA

under various models — 100 flowsets per data point
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L.S. Indrusiak, J. Harbin, C. Reinbrecht, J. Sepulveda, “Side-channel protected MPSoC through secure real-time networks-on-chip”, Microprocess.

Microsystems, v.68, p. 34-46, 2019.
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= Digital Evil Twins o

= |[dentification of worst-case behaviours o
using real-time analysis

= guiding optimisation

= Semi-automatic synthesis of worst-case
real-time analysis models

= Open areas of research



Synthesis of worst-case analytical models

= Worst case models are manually derived
by researchers and practitioners
= error-prone, impractical for many complex systems

= Approach for evolutionary synthesis

= candidate models (equations) encoded according to
a grammar

= evolution: fitness of candidate equations given by
how well they capture the worst case behaviour of
the system, observed in a large number of simulation
scenarios

P. Dziurzanski, R. Davis, L. S. Indrusiak, “Synthesizing Real-Time Schedulability Tests using Evolutionary Algorithms: A Proof of Concept”, Real-Time
Systems Symposium (RTSS), 2019.
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set of all design configurations

set of schedulable design configurations




set of all design configurations

set of schedulable design configurations
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set of all design configurations
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set of all design configurations
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set of all design configurations
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set of all design configurations
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set of all design configurations
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Synthesis of worst-case analytical models

= Proof of concept was able to evolve equations
providing sufficient worst-case analysis for hard
real-time messages over an automotive CAN
bus (in-vehicle network used in most cars)
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= Expert assistance still needed
= e.g. to provide a proof that the test is sufficient

P. Dziurzanski, R. Davis, L. S. Indrusiak, “Synthesizing Real-Time Schedulability Tests using Evolutionary Algorithms: A Proof of Concept”, Real-Time
Systems Symposium (RTSS), 2019.
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= Digital Evil Twins o

= |[dentification of worst-case behaviours o
using real-time analysis

= guiding optimisation

= Semi-automatic synthesis of worst-case o
real-time analysis models

= Open areas of research



Digital Evil Twins — open areas of research
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Digital Evil Twins — open areas of research

operational
data

(meta) heuristics
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current approaches: created manually
or semi-automatically using simulation
coming next: improve analysis models
with operational data (or with digital twin,
if available)



Digital Evil Twins — open areas of research

current approaches: search-based
metaheuristics (e.g. GAs, simulated annealing)
coming next: ML
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Digital Evil Twins — open areas of research

operational
data
(meta) heuristics
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coming next: improve performance
through parallelisation, hardware
acceleration, exploring trade-off between
model speed and tightness



Digital Evil Twins — open areas of research
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collaborations
welcome
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