
Rust for Linux
Overview and Status

Miguel Ojeda
ojeda@kernel.org

ojeda.dev

mailto:ojeda@kernel.org
https://ojeda.dev

Rust for Linux

● The project aims to bring Rust support to the Linux kernel as a first-class
language.

● This includes providing support for writing kernel modules in Rust, such as
drivers or filesystems, with as little unsafe code as possible (potentially none).

Languages in the kernel

*if merged

Number of files per language

Why Rust for the kernel?

Why Rust for the kernel?

● Decreased chance of memory safety bugs.

Why Rust for the kernel?

● Decreased chance of memory safety bugs.
○ In other words, bugs related to how memory is used:

■ Uses after free

■ Double frees

■ Out of bounds accesses

■ Uninitialized memory reads

■ Invalid inhabitants

○ They are often security issues.

○ It also prevents data races.

Why Rust for the kernel?

● Decreased chance of memory safety bugs.
○ In other words, bugs related to how memory is used:

■ Uses after free

■ Double frees

■ Out of bounds accesses

■ Uninitialized memory reads

■ Invalid inhabitants

○ They are often security issues.

○ It also prevents data races.

Why Rust for the kernel?

● Decreased chance of memory safety bugs.
○ In other words, bugs related to how memory is used:

■ Uses after free

■ Double frees

■ Out of bounds accesses

■ Uninitialized memory reads

■ Invalid inhabitants

○ They are often security issues.

○ It also prevents data races and other forms of Undefined Behavior.

What is the result of this program?
#include <vector>

int main() {
 std::vector<int> v;

 v.push_back(42);
 v.push_back(43);

 const auto it = v.cbegin();
 v.push_back(44);

 return *it;
}

Is memory safety important?

~70%
of vulnerabilities in C/C++ projects come from UB

See more at https://www.memorysafety.org/docs/memory-safety/

https://www.memorysafety.org/docs/memory-safety/

The cost of memory unsafety

— https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/

https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/

The cost of memory unsafety

— https://langui.sh/2019/07/23/apple-memory-safety/

https://langui.sh/2019/07/23/apple-memory-safety/

The cost of memory unsafety

— https://www.chromium.org/Home/chromium-security/memory-safety

https://www.chromium.org/Home/chromium-security/memory-safety

The cost of memory unsafety

— https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

Why Rust for the kernel?

● Decreased chance of memory safety bugs.

● Help decrease logic bugs.

○ Stricter type system.

○ Language features that may improve the quality of kernel code.
■ Pattern matching and sum types (variants, tagged unions)

■ Destructors and RAII (“Resource Acquisition Is Initialization”)

■ Traits

■ Generics

■ Asynchronous Rust (“async”)

■ ...

Why Rust for the kernel?

● Decreased chance of memory safety bugs.

● Help decrease logic bugs.

○ Stricter type system.

○ Language features that may improve the quality of kernel code.
■ Pattern matching and sum types (variants, tagged unions)

■ Destructors and RAII (“Resource Acquisition Is Initialization”)

■ Traits

■ Generics

■ Asynchronous Rust (“async”)

■ ...

Why Rust for the kernel?

● Decreased chance of memory safety bugs.

● Help decrease logic bugs.

○ Stricter type system.

○ Language features that may improve the quality of kernel code.
■ Pattern matching and sum types (variants, tagged unions)

■ Destructors and RAII (“Resource Acquisition Is Initialization”)

■ Traits

■ Generics

■ Asynchronous Rust (“async”)

■ ...

Why Rust for the kernel?

● Decreased chance of memory safety bugs.

● Help decrease logic bugs.

● Easier development and reviewing drivers.

Why Rust for the kernel?

● Decreased chance of memory safety bugs.

● Help decrease logic bugs.

● Easier development and reviewing drivers.

● Less risky refactoring of drivers in the future.

Why Rust for the kernel?

● Decreased chance of memory safety bugs.

● Help decrease logic bugs.

● Easier development and reviewing drivers.

● Less risky refactoring of drivers in the future.

● A chance to raise the bar in other areas.

Why Rust for the kernel?

● Decreased chance of memory safety bugs.

● Help decrease logic bugs.

● Easier development and reviewing drivers.

● Less risky refactoring of drivers in the future.

● A chance to raise the bar in other areas.

○ Establish and enforce policies, e.g. “SAFETY” requirements, type invariants...

○ Improved, closer-to-the-code documentation

○ Automatically formatted code

How does Rust work in the kernel?

 Driver APIs

Forbidden!

Safe
 Safe Abstractions

Unsafe
...

Encapsulating unsafety

Subsystem
2

Subsystem
1

Safe and unsafe code

Unsafe code: code inside an unsafe block.

It has access to all operations.

Safe code: code that is outside an unsafe block (i.e. the default).

It cannot perform a few operations (e.g. calling unsafe functions or
dereferencing raw pointers).

Safe and unsafe APIs

Safe function: a function that does not trigger undefined behavior in any context and/or
for any possible inputs.

That is, it does not have any precondition (regarding undefined behavior).

In other words, whatever a caller does, it does not produce undefined behavior.

Unsafe function: a function that is not safe, prefixed with the unsafe keyword.

This means it has safety preconditions.

Callers have to declare they are upholding the contract.

drivers/

my_foo
driver

include/

bindgen

bindings
crate

kernel
crate

foo
subsystem

bar
subsystem

foo/

Forbidden!

Safe

Safe Abstractions

Unsafe

Linux tree

...

rust/library/

builtins
crate

macros
crate

alloc
crate

kernel
crate

alloc
crate

core
crate

exports helpers

include/

bindgen

bindings
crate

Rust tree Linux tree

The last year

The last year – Infrastructure

● Removed panicking allocations.

● Moved to Edition 2021 of the Rust language.

● Moved to stable releases of the Rust compiler.
○ And started to track the latest version.

● Added arm (32-bit) and riscv architecture support.

● Testing support.
○ Including running documentation tests inside the kernel as KUnit tests.

● Support for “hostprogs” written in Rust.

● On-the-fly generation of target specification files based on the kernel configuration.

The last year – Abstractions

● PrimeCell PL061 GPIO example driver.

● Functionality for platform and AMBA drivers, red-black trees, file descriptors,
efficient bit iterators, tasks, files, IO vectors, power management callbacks, IO
memory, IRQ chips, credentials, VMA, Hardware Random Number Generators,
networking...

● Synchronization features such as RW semaphores, revocable mutexes, raw
spinlocks, a no-wait lock, sequence locks...

● Replaced Arc and Rc from the alloc crate with a simplified kernel-based Ref.

● Better panic diagnostics and simplified pointer wrappers.

● The beginning of Rust async support.

The last year – Related projects

● Rust stabilized a few unstable features we used.

● Improvements on the Rust compiler, standard library and tooling.
○ e.g. rustc_parse_format compile on stable, the addition of the no_global_oom_handling and

no_fp_fmt_parse gates...

● binutils/gdb/libiberty got support for Rust v0 demangling.

● Intel's 0Day/LKP kernel test robot started testing a build with Rust support enabled.

● Linaro's TuxSuite added Rust support.

● rustc_codegen_gcc (the rustc backend for GCC) got merged into the Rust repository.

● GCC Rust (a Rust frontend for GCC) gained a second full time developer.

● Compiler Explorer added the alternative compilers for Rust, as well as other features such as MIR
and macro expansion views.

The last year – Events

● Linaro Virtual Connect Fall

● Clang Built Linux Meetup

● Linux Plumbers Conference (LPC)

● Samsung Engineering Summit

● Open Source Summit Japan

● Rust Cross Team Collaboration Fun Times (CTCFT)

● Rust Linz

● Open Source Summit North America

● Linux Foundation Live Mentorship Series

The last year – Industry support

“Google supports and contributes directly to the Rust for Linux project.

Our Android team is evaluating a new Binder implementation and

considering other drivers where Rust could be adopted.”

— https://lore.kernel.org/lkml/20210704202756.29107-1-ojeda@kernel.org/

https://lore.kernel.org/lkml/20210704202756.29107-1-ojeda@kernel.org/

The last year – Industry support

“Arm recognises the Rust value proposition and is actively working

with the Rust community to improve Rust for Arm based systems.

A good example is Arm’s RFC contribution to the Rust language which

made Linux on 64-bit Arm systems a Tier-1 Rust supported platform.

Rustaceans at Arm are excited about the Rust for Linux initiative and

look forward to assisting in this effort.”

— https://lore.kernel.org/lkml/20210704202756.29107-1-ojeda@kernel.org/

https://lore.kernel.org/lkml/20210704202756.29107-1-ojeda@kernel.org/

The last year – Industry support

“Microsoft's Linux Systems Group is interested in contributing to

getting Rust into Linux kernel.

Hopefully we will be able to submit select Hyper-V drivers written in

Rust in the coming months.”

— https://lore.kernel.org/lkml/20210704202756.29107-1-ojeda@kernel.org/

https://lore.kernel.org/lkml/20210704202756.29107-1-ojeda@kernel.org/

The last year – Industry support

“There is interest in using Rust for kernel work that Red Hat is considering.”

— https://lore.kernel.org/lkml/20211206140313.5653-1-ojeda@kernel.org/

https://lore.kernel.org/lkml/20211206140313.5653-1-ojeda@kernel.org/

The last year – Academia

“Rust for Linux is a key step towards reducing security-critical kernel bugs,

and on the path towards our ultimate goal of making Linux free of

security-critical bugs. We are using Rust in our OS research, and adoption is

easier with an existing Rust in the Linux kernel framework in place”

— Researchers at the University of Washington

They recently published “An Incremental Path Towards a Safer OS Kernel”
https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s09-li.pdf

https://sigops.org/s/conferences/hotos/2021/papers/hotos21-s09-li.pdf

The last year – Academia

“We used Rust for Linux because are convinced that Rust is changing the

landscape of system programming by applying the research done on

programming languages in the last decades. We wanted to see how the

language was able to help us write code we are really comfortable with thanks

to the extensive static checking.”

— Members of LSE (Systems Research Laboratory) at EPITA
(École pour l'informatique et les techniques avancées)

https://www.abetterinternet.org/
https://www.memorysafety.org/blog/memory-safety-in-linux-kernel/

The last year – Prossimo project

https://www.abetterinternet.org/
https://www.memorysafety.org/blog/memory-safety-in-linux-kernel/

Today

Status

● Experimental, but usable for:

○ Working on new abstractions for subsystems.

○ Writing drivers and other modules.

○ Writing new subsystems from scratch.

○

● Example modules: GPIO and Binder.

○ Plus a small assortment of small samples.

○ As well as a Rust out-of-tree template.

Supported architectures

arm (armv6 only)

arm64

powerpc (ppc64le only)

riscv (riscv64 only)

x86 (x86_64 only)

See Documentation/rust/arch-support.rst

The target specification file is generated from the kernel
configuration.

GCC codegen paths should open up more.

Rust unstable features

cfg(no_fp_fmt_parse)
cfg(no_global_oom_handling)
cfg(no_rc)
cfg(no_sync)

-Zallow-features
-Zbinary_dep_depinfo=y
-Zbuild-std
-Zcrate-attr
-Zunpretty=expanded
-Zfunction-sections
-Zsymbol-mangling-version=v0

feature(allocator_api)
feature(alloc_error_handler)
feature(associated_type_defaults)
feature(bench_black_box)
feature(coerce_unsized)
feature(concat_idents)
feature(const_fn_trait_bound)
feature(const_fn_transmute)
feature(const_mut_refs)
feature(const_panic)
feature(const_ptr_offset_from)
feature(const_raw_ptr_deref)
feature(const_refs_to_cell)

feature(const_trait_impl)
feature(const_unreachable_unchecked)
feature(core_panic)
feature(dispatch_from_dyn)
feature(doc_cfg)
feature(generic_associated_types)
feature(global_asm)
feature(maybe_uninit_extra)
feature(more_fallible_allocation_methods)
feature(ptr_metadata)
feature(receiver_trait)
feature(try_reserve)
feature(unsize)

https://github.com/Rust-for-Linux/linux/issues/2

https://github.com/Rust-for-Linux/linux/issues/2

Rust codegen paths for the kernel

rustc_codegen_llvm Rust GCCrustc_codegen_gcc

Main one
Already passes most
rustc tests and can

bootstrap it

Looking into compiling
core, maybe getting
merged next release

The next year

Next milestones

● More users or use cases inside the kernel, including example drivers.

● Splitting the kernel crate and managing dependencies to allow better
development.

● Extending the current integration of the kernel documentation, testing and
other tools.

● Getting more subsystem maintainers, companies and researchers involved.

● Seeing most of the remaining Rust features stabilized.

● Possibly start compiling the Rust code in the kernel with GCC.

● And, of course, getting merged into the mainline kernel!

Upcoming events

● Kangrejos, the Rust for Linux Workshop, face-to-face this time

○ https://kangrejos.com

● Linux Plumbers Conference 2022

○ The Rust MC (microconference) will cover talks and discussions on both Rust
for Linux as well as other non-kernel Rust topics.

○ The Call for Proposals is open! https://lpc.events/event/16/contributions/1159/

● Three more Linux Foundation Live Mentorship Series are coming

○ https://events.linuxfoundation.org/lf-live-mentorship-series/

https://kangrejos.com
https://lpc.events/event/16/contributions/1159/
https://events.linuxfoundation.org/lf-live-mentorship-series/

Thank you!

Questions?

Rust for Linux
Overview and Status

Miguel Ojeda
ojeda@kernel.org

ojeda.dev

mailto:ojeda@kernel.org
https://ojeda.dev

Backup slides

Safety

Safety in Rust

=
No Undefined Behavior

i.e. memory safe, data race free, etc.

Safety

Safety in Rust

≠
Safety in safety-critical

as in functional safety (DO-178B/C, ISO 26262, EN 50128…)

What is Undefined Behavior?

— N2596 C2x Working Draft

Can Undefined Behavior happen in this function?

int f(int a, int b) {
 return a / b;
}

Unsafe function

int f(int a, int b) {
 return a / b;
}

UB ∀x f(x, 0);

Unsafe function

int f(int a, int b) {
 return a / b;
}

UB ∀x f(x, 0);
UB f(INT_MIN, -1);

Safe function

int f(int a, int b) {
 if (b == 0)
 abort();

 if (a == INT_MIN && b == -1)
 abort();

 return a / b;
}

/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
///
/// Used for interoperability with kernel APIs that take C strings.
///
/// # Invariants
///
/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
pub struct CString {
 buf: Vec<u8>,
}

impl CString {
 /// Creates an instance of [`CString`] from the given formatted arguments.
 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
 // ...

 // INVARIANT: We wrote the `NUL` terminator and checked above that no
 // other `NUL` bytes exist in the buffer.
 Ok(Self { buf })
 }
}

An example from the kernel

impl Deref for CString {
 type Target = CStr;

 fn deref(&self) -> &Self::Target {
 // SAFETY: The type invariants guarantee that the string is
 // `NUL`-terminated and that no other `NUL` bytes exist.
 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
 }
}

An example from the kernel

Writing examples

/// A red-black tree with owned nodes.
///
/// It is backed by the kernel C red-black trees.
///
/// # Invariants
///
/// Non-null parent/children pointers stored in instances of the `rb_node`
/// C struct are always valid, and pointing to a field of our internal
/// representation of a node.
pub struct RBTree<K, V> {
 // ...
}

Writing examples
/// ...
///
/// # Examples
///
/// In the example below we do several operations on a tree.
/// We note that insertions may fail if the system is out of memory.
///
/// ```
/// # use kernel::prelude::*;
/// use kernel::rbtree::RBTree;
///
/// fn rbtest() -> Result {
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_insert(20, 200)?;
/// tree.try_insert(10, 100)?;
/// tree.try_insert(30, 300)?;
///
/// ...

