
https://sconedocs.github.io

Confidential Computing with SCONE
- Protecting Data, Code, and Secrets of Applications -

Christof Fetzer

https://sconedocs.github.io

https://sconedocs.github.io

Motivation

• Role: application owner

Objectives:

• provide an application to clients

• protect data, code, and secrets of the
application

2

https://sconedocs.github.io

Motivation
• Role: application owner

Objectives:

• provide an application to clients

• protect data, code, and secrets of the
application

• Role: clients

• can connect to the application

• access their data 
 

3

https://sconedocs.github.io

Requirements
- example domain: eHealth -

https://sconedocs.github.io

Isolation of data

• Role: application owner

Objectives:

• provide an application to clients

• protect data, code, and secrets of the
application

• Role: clients

• can connect to the application

• access their data

• application isolates data of clients

5

https://sconedocs.github.io

Limited Access by Owner & Staff

6

Example: eHealth

https://sconedocs.github.io

Divide and Conquer

7

https://sconedocs.github.io

Divide and Conquer

8

https://sconedocs.github.io

Objective eHealth: Support Machine
Learning

- Protecting Data, Code and Keys -

https://sconedocs.github.io

Use Case: Multiple Stakeholder Computation!

10

• Confidential workflow 
connects confidential
services

• Each stakeholder controls its
IP via own policies

• Even operator of workflow
cannot look 
into individual service

Managed Kubernetes clusterExample: eHealth - future

Example: manufacturing

https://sconedocs.github.io

Business Problem

https://sconedocs.github.io

Problem Description

Problem: application owner cannot operate
the application

• lack of data centers || trusted
infrastructure staff

• lack of application service staff

12

https://sconedocs.github.io

Problem Description

Problem: application owner cannot operate
the application

• lack of data centers || trusted
infrastructure staff

• lack of application service staff

13

https://sconedocs.github.io

Approach: Outsource!

Approach: external entities

• operate data centers, and

• manage application 
development

14

https://sconedocs.github.io

Technical Problem Description
- a small selection -

https://sconedocs.github.io

Problem: Hardware & Admin Access

16

https://sconedocs.github.io

Problem: Encrypted Disks

17

https://sconedocs.github.io

Problem: Key Management

18

https://sconedocs.github.io

Supporting Different CPUs/GPUs

19

Intel SGX

Intel TDX

AMD SEV SNP

ARM REALMs

Amazon Nitro Enclave

NVIDIA GPUs

SCONE architecture is independent of hardware:
it requires access to some TEE.

ongoing

ongoing

completed

paused

after SEV

https://sconedocs.github.io

Threat Model & Implications
- we need to support untrusted components / stakeholders -

https://sconedocs.github.io

Threat Model

21

FULL

https://sconedocs.github.io

Threat Model: Modified Code

22

FULL

https://sconedocs.github.io

Example: Machine Learning Code

23

FULL

Machine Learning might leak information!

potentially  
malicious ML provider

cannot 
inspect

https://sconedocs.github.io

Approach

https://sconedocs.github.io

1. Level: No Direct Data Access by Service Staff

25

limit service staff
access to

infrastructure

https://sconedocs.github.io

Level 2: TEE + Sandbox
- protecting data, code & secrets under policy control -

all communication 
of services controlled

by policies

https://sconedocs.github.io

3. Level: Governance

27

https://sconedocs.github.io

4. Level: Non-Repudiation

28

https://sconedocs.github.io

Details

https://sconedocs.github.io

Sconification
- Transforming Native Application into Confidential Application -

https://sconedocs.github.io

„3“ Steps To Confidential App

Build app-specific
images

Build application
mesh

Start application
(with generated

helm chart)

build the application by building images and using custom images

sconectl apply -f FastApi.yml # generates a confidential image

sconectl apply -f Meshfile.yml # generates and uploads the policies 

deploy the application

helm install secure-doc-management target/helm # use helm chart to install

1
 2
 3

31

https://sconedocs.github.io

„3“ Steps To Confidential App

Build app-specific
images

Build application
mesh

Start application
(with generated
helm chart)

build the application by building images and using custom images

sconectl apply -f FastApi.yml # generates a confidential image

sconectl apply -f Meshfile.yml # generates and uploads the policies 

deploy the application

helm install secure-doc-management target/helm # use helm chart to install

1
 2
 3
build in
a trusted

environment

test &
code audit

32

https://sconedocs.github.io

„3“ Steps To Confidential App

Build app-specific
images

Build application
mesh

Start application
(with generated
helm chart)

build the application by building images and using custom images

sconectl apply -f FastApi.yml # generates a confidential image

sconectl apply -f Meshfile.yml # generates and uploads the policies 

deploy the application

helm install secure-doc-management target/helm # use helm chart to install

1
 2
 3
 execution
in an

untrusted
environment

33

https://sconedocs.github.io

Example Application

confidential
application is a

confidential service mesh

34

https://sconedocs.github.io

Level 1: Isolation
- establishing trust anchor with SCONE -

https://sconedocs.github.io

Remote Kubernetes Cluster

36

https://sconedocs.github.io

Accesses Can be Logged

37

https://sconedocs.github.io

SCONE Operator

38

https://sconedocs.github.io

SCONE CAS: Policy Engine in TEE

39

https://sconedocs.github.io

SCONE CAS

40

https://sconedocs.github.io

Encrypted Policies

41

https://sconedocs.github.io

Audit Log

42

https://sconedocs.github.io

Starting Confidential Applications

43

https://sconedocs.github.io

2. Level Confidential Workflows
- TEE & Sandboxing under Policy Control -

https://sconedocs.github.io

2. Level: Confidential Workflow

45

All stakeholders: can inspect
workflow policies (no
secrets).

A policy can connect a workflow

Each policy 
protects resources  
of its stakeholder

1-step binary 
transformation 

 images

https://sconedocs.github.io

Use Case: Multiple Stakeholder Computation!

A policy can connect a workflow

Each policy 
protects resources  
of its stakeholder

Application Domains:
Federated Learning,
eHealth, Manufacturing, …

1-step binary 
transformation 

 images

https://sconedocs.github.io

Level 3: Governance
- Multiple-Eyes Principle -

https://sconedocs.github.io

Protecting Against Insider Attacks
- malicious policies / code changes -

https://sconedocs.github.io

Insider Attack

An insider with policy access could change  
the policy

• to retrieve secrets, or

• to change the service

We can prevent this by

• creating read-only policies

• exporting to a certain policy version only

• governance

We can detect this by

• auditing the immutable history of policies

49

https://sconedocs.github.io

Governance

Application owner

• wants to operate an application in a cloud

• hires admins that operate application

• most are trusted

• some might work for an adversary

• governance via governors

50

https://sconedocs.github.io

Governance

51

Application owner

• wants to operate an application in a cloud

• hires admins that operate application

• most are trusted

• some might work for an adversary

• governance via governors

https://sconedocs.github.io

Governance

Malicious Governors

• what if a majority is malicious?

• We should at least be able to detect his

• by verifying policies and audit logs

52

https://sconedocs.github.io

Example

Requires an update to a session to be signed by

• both $veto_member1 and $veto_member2

• as well as at least 2 of the 3 $voter`s.

53

access_policy:

 read: NONE

 update:

 - require-all:

 - require-at-least-2:

 - signer: $voter1

 - signer: $voter2

 - signer: $voter3

 - require-all:

 - signer: $veto_member1

 - signer: $veto_member2

https://sconedocs.github.io

Example

Extend such that

• $owner can approve independently
of the others

54

access_policy:

 read: NONE

 update:

 require-at-least-1:

 - signer: $owner

 - require-all:

 - require-at-least-2:

 - signer: $voter1

 - signer: $voter2

 - signer: $voter3

 - require-all:

 - signer: $veto_member1

 - signer: $veto_member2

https://sconedocs.github.io

Level 4: Non-Repudiation
- Audit Log -

https://sconedocs.github.io

Predecessor List
Problem:

• any vulnerability in the past?

• concurrent updates of policy?

Approach:

• we chain together all policies (with same
path name)

• chain is append only

• policies cannot be deleted (no new start!)

• one can verify the past policies

56

https://sconedocs.github.io

Audit
Problem:

• signed ledger of events needed

• hook to monitor updates in real-time

Approach:

• append-only ledger

• SCONE CAS:

• appends security relevant events

• signs all entries

• notifications via web hooks

• can also store locally and push later (across air-gap)

57

https://sconedocs.github.io

Audit Log Options

Audit-log

• mode: disabled/signed/unsigned

• sink: file / network

• file: path

• network:

• url

• server_ca_certificate

Verification:

• verify scone audit log with scone CLI

58

https://sconedocs.github.io

Summary

https://sconedocs.github.io

Governance and Audit

Services must not leak any data!

• despite managed by an external
entity

Trust in system:

• show that data cannot leak now

• show that no data was leaked in
the past

• show that we cannot leak data 
in the future

60

https://sconedocs.github.io

Enforced by SCONE CAS

Services must not leak any data!

• ensure integrity, confidentiality,
consistency of data, code, and
secrets

Trust in system:

• show that data cannot leak now

• show that no data was leaked in
the past

• show that we cannot leak data 
in the future

61

https://sconedocs.github.io

Questions?!?
info@scontain.com

