
Enabling predictable computing 
on reconfigurable embedded 

accelerators
for Autonomous Vehicles

Prof. Ing. Paolo Burgio, PhD

paolo.burgio@unimore.it
paolo.Burgio@hipert.it

mailto:paolo.burgio@unimore.it
mailto:paolo.Burgio@hipert.it


Who am I?

Alma mater

✓MSC Informatics Engineering
@UniBo + Linkopings Universitet, 2007

✓PhD Electronics Engineering
@UniBo + UBS, 2013

Since 2014, Assistant Professor UniMoRe

✓Co-founder of HiPeRT Lab & Hipert Srl & Su.Tra

Expertise/research areas

✓Embedded systems programming APIs

✓Many-core architectures

✓Autonomous driving systems 2



HiPeRT Lab & Spinoff

● High-Performance Real-Time systems

● Autonomous Systems

○ 5 AD cars, LGV, delivery bots, aerial & 

(under)water drones

○ Autonomous racing: Indy Autonomous Challenge, 

AbuD Dhabi Racing Leaue, F1/10, F.SAE, Dallara F3

● ~70+ researchers/developers, 10+M€ funding

3



Three successful stories

1. Timing-Sensitive Autonomous Architectures

2. Accelerated 2D localization for embedded 
reconfigurable computers

3. Memory interference mitigation in embedded 
architectures



2022 Minerva, Public

TSAA - Timing-Sensitive Autonomous Architecture

• Based on Time-Sensitive protocol - TSN

• Target platforms: two dev-boards with
reconfigurable logics (AMD Xilinx ZCU102/106)

• Goal: removing/mitigating the interference over the Ethernet 
links

Core

Core

(Host)

Memory

System Bus

I

P

I

P

Soft-core

FPGA Memory (BRAM)

BRAM

CAN

Core

Core

(Host)

Memory

System Bus

I

P

I

P

Soft-core

FPGA Memory (BRAM)

BRAM

GbE

Maserati Quattroporte



2022 Minerva, Public

Core

Core

(Host)

Memory

System Bus

I

P

I

P

Soft-core

FPGA Memory (BRAM)

BRAM

Core

Core

(Host)

Memory

System Bus

I

P

I

P

Soft-core

FPGA Memory (BRAM)

BRAM

Timing-Sensitive Autonomous Architecture - Our original system design

ZCU102

Switch TSN

Linux

Localization

ZCU106

VM: Linux 

Planner

VM: RTOS 

Actuation

VM: RTOS

V-TSN

VM: BareMetal

Interference

GUI

CAN

Jailhouse

GbE
GbE

Bus Ivshmem

Lidar

Ivshmem

Ivshmem

GbE

Maserati Quattroporte



2022 Minerva, Public

With, and without TSAA

• Video



Cor
e

Cor
e

System Bus

(Shared)
Memory

Racing variant for Formula Student: M23-DL “Diletta”

NVIDIA Orin

Switch TSN

Linux

Localization

Kria KR260

VM: Linux 

PREEMPT-RT

VM: RTOS 

Actuation

VM: RTOS

V-TSN

VM: BareMetal

Jailhouse

GbE

Ivshmem

Lidar

Ivshmem

Ivshmem

GbE

CAN

Bus Diletta



Real-Time systems 
on embedded accelerators

Stories #2 and #3



Brief recap: Autonomous Driving in a nutshell

To simplify:

✓Three main blocks mimicking humans

✓Run in Real-Time, to meet sensors frequency (cameras, LiDARS, etc)

✓Note: Perception processes the highest quantity of data 10

Real-Time 
constraint!

10ms/
100Hz



A motivational example:
vehicle localization with 2D particle filtering

11

Localize the vehicle on a known 2D map

o Randomly generate position candidates (particles)

o For each of them, simulate the sensor model, i.e., the 
LiDAR rays

o Compare against actual sensor input

Cons

× Require thousands of particles and rays to achieve good 
accuracy for estimate position

× High computational load

× Statistical-based approach (not deterministic)

Pros

✓Can compute particles independently 

✓Embarrassingly parallel

✓High accuracy, if computation adequately optimized



Why embedded computers 
for autonomous driving?



Embedded computers are slow...

Ground truth

All stack on ARM

13

Particle filter running on a single core

• (F1/10 autonomous racing vehicle)

• Either you slow down…

• …or you crash



…but they are heterogeneous architectures

14

Vehicles will feature few ECUs/domain controllers with:

• Host (ARM-like) multi-cores

• Real-Time processors (e.g. Aurix Tricore)

• Embedded data crunching accelerators

For the accelerators, there are multiple choices

• GPGPUs are prominent, and very good
for prototyping

• In-house ASICs for highest Perf/Watt

• Programmable logics enable HW
design space exploration

Sharing memory blocks to implement
efficient data transfers



Data crunching accelerators – How to use them?

Perception/Localization

Typically, O(n2) / O(n3) computational complexity, and parallel workloads

> 80% of data and computation time 15

Real-Time 

constraint!

10ms/100

Hz



Step 1: profiling of Particle Filter stages

16



Parametrizable

• Can process N rays in parallel

Target: AMD Xilinx FPGAs

• Standard AMBA AXI4 interface

Highly data intensive

• Data stored in system DRAM

Step 2: our Ray Marching Engine (RME) IP

17



• Localization is still too slow

• We need to cap the maximum speed of the vehicle to avoid crashes

• Still needs improvement, in racing

First results - Simulator and the F1/10

18

Ground truth

Only ARM

With RME



Find the sweetspot: accuracy vs performance

Few particles
Too many particles

Bad localization

Bad localization

High computational 

cost

Particles

19Must lower the speed, to avoid crashes

Maximum achievable speed



Find the sweetspot: final results

Few particles
Too many particles

Bad localization

Bad localization

High computational 

cost

Particles

20

2 target platforms, from AMD Xilinx

• ARM multi-core as reference

1. Ultra96 – low-end (smaller programmable area)

2. ZCU 102 – high-end (larger programmable area)

Must lower the speed, to avoid crashes

Area of interest



Main issue:

Data transfer to/from the system 
DRAM banks are still deteriorating 

overall performance

Basic system design

21

Ray 

marching 

Engine

80 particles

Each has a PCL (60 

rays float)

➔ 60*80*4 = 19.2 Kb 



Reduce data transfer time, by offloading other modules

22

Ray 

marching 

Engine

Traded issue:

area in the programmable logics is limited,
so the HW system design is not feasible



Optimal solution: proxy core and local data

23

Key features:

• Deploy only data-crunching IP 

(RME), together with a 

programmable proxy soft-core

• Run other computations on the 

proxy core, to tackle area 

limitations

• Data is stored in BRAM local 

memory, to minimize transfer 

latency



Take-aways and research ideas

Goals achieved:

✓System design with proxy core
to tackle area limitations

✓Reduce data transfers through
local BRAM buffers

✓Generic methodology, can be applied
to any data-intensive algorithm

Ongoing research:

1. System HW/SW codesign will be
automated

2. Programming model (mixed HW/SW API)

3. High contention on memory banks, system quickly becomes unpredictable
24



Goals achieved:

System design with proxy core
to tackle area limitations

Reduce data transfers through
local memory buffers

Generic methodology, can be applied
to any data-intensive algorithm

Ongoing research:

1. System HW/SW codesign will be
automated

2. Programming model (mixed HW/SW API)

3. High contention on memory banks, system quickly becomes unpredictable

Take-aways and research ideas

25

System design can be integrated within the programming API, e.g., OpenMP
• We are creating a fully automated design flow to create accelerator-rich 

platforms starting from code written in high-level language
• Accelerator programming library and API that bridges between proprietary low-

level code, and high-level code
• Analyze and tackle memory interference, and propose techniques to mitigate it, 

and enabling safety-critical systems



Take-aways and research ideas

1

2

3

4

Contention points!!

Accelerator

26

Goals achieved:

System design with proxy core
to tackle area limitations

Reduce data transfers through
local memory buffers

Generic methodology, can be applied
to any data-intensive algorithm

Ongoing research:

1. System HW/SW codesign will be
automated

2. Programming model (mixed HW/SW API)

3. High contention on memory banks, system quickly becomes unpredictable



Tasks are split into N jobs

• ri request time (arrival time ai )
• si start time
• Ci worst-case execution time (WCET)
• di absolute deadline
• Di relative deadline
• fifinishing time

Recap: Real-time tasks model

ri si fi di
t

job τi

Ci

Di

27

Task



“Standard” model for Task scheduling

• Jobs from multiple tasks (here, 3) are scheduled onto the available core

RT scheduling in single cores

28

Task

Task

Task

Core 0



RT scheduling in multi cores

29

Core 0

Core 1

Core N-1

The problem scales well
to multi-core systems

(…more or less…)



Uncontrolled memory accesses in multi cores

Memory
Hierarchy

C
a

ch
e 

m
is

se
s

Task

2 tasks / 2 cores

30

1

2

3

4

A lot of contention points!!

Task

Accelerator

Paolo Burgio, Andrea Marongiu, Paolo Valente, Marko Bertogna, A memory-centric approach to enable 

timing-predictability within embedded many-core accelerators, 2015 CSI Symposium on Real-Time and 

Embedded Systems and Technologies (RTEST)



Uncontrolled memory accesses in multi cores

Memory
Hierarchy

C
a

ch
e 

m
is

se
s

Task

2 tasks / 2 cores

31

1

2

3

4

A lot of contention points!!

Task

Accelerator

Paolo Burgio, Andrea Marongiu, Paolo Valente, Marko Bertogna, A memory-centric approach to enable 

timing-predictability within embedded many-core accelerators, 2015 CSI Symposium on Real-Time and 

Embedded Systems and Technologies (RTEST)



Uncontrolled memory accesses in multi cores

Memory
Hierarchy

C
a

ch
e 

m
is

se
s

Task

2 tasks / 2 cores

32

Task

Paolo Burgio, Andrea Marongiu, Paolo Valente, Marko Bertogna, A memory-centric approach to enable 

timing-predictability within embedded many-core accelerators, 2015 CSI Symposium on Real-Time and 

Embedded Systems and Technologies (RTEST)

Cores #1-2 Cores #3-7 Accelerator

Experiments show that, memory interference from 

accelerator logics can slow down task execution up to 

16 times, on host cores



State-of-the-art in RT systems

• Prefetch to local buffers (likewise we did for 
Particle Filters)

• Tasks run non-preemptively (C)

• Schedule also Memory (M)

In literature, this is known as PREM, LET, etc…

• This computation model makes the system 
more analyzable

• Researchers (including us) proved that the 
scheduling analysis produce more accurate 
Worst-Case Execution Time bounds

• This means that the system is more predictable 
system

Fun fact: prefetching is known since decades
in embedded the systems community!

Current SOTA: split task into Memory and Computation

33

MEM

C
a

ch
e 

m
is

se
s

TT

Uncontrolled

TT

C

M

C

M

Pre-fetch

Memory
scheduler

Paolo Burgio, Andrea Marongiu, Paolo Valente, Marko Bertogna, A memory-centric approach to enable timing-predictability within 

embedded many-core accelerators, 2015 CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST)



Co-scheduling of memory and computation

Memory access profile (bandwidth)

for each task, given by the memory 
schaduler

G. Brilli et al., "Fine-Grained QoS Control via Tightly-Coupled Bandwidth Monitoring and 

Regulation for FPGA-based Heterogeneous SoCs," 2023 60th ACM/IEEE Design 

Automation Conference (DAC), San Francisco, CA, USA 34

“Traditional” task scheduling on multi-cores



HW design for memory bandwidth monitoring and regulation

35

RBR: monitors the memory activity and 
regulates the bandwidth

o Comparisong against other approaches

o 6x faster than LCMT-RBR;

o 10x faster than LCMT-QoS400;

o 114x faster than LCMT-SW-DMA.

Memory access profile (bandwidth)

for each task, given by the memory 
schaduler



Given a memory bandwidth profile:

• Can schedule memory phases of 
~30microsec

• Comparable to a context switch in modern 
OSses

Can be effectively adopted

in real settings

HW IP for memory bandwidth monitor and regulator

36

RBR: monitors the memory activity and 
regulates the bandwidth

o Comparisong against other approaches

o 6x faster than LCMT-RBR;

o 10x faster than LCMT-QoS400;

o 114x faster than LCMT-SW-DMA.

Memory access profile (bandwidth)

for each task, given by the memory 
schaduler



Wrapping up and plans
Scaling up, out, and industrialization

✓Research funded by EU projects, and industry

✓With our two startups…or other partners

Current (TRL 4) prototypes: NVIDIA GPGPUs, AMD/Xilinx, RISC-V

✓Design a common methodology/framework for any HW

An integrated approach compliant with the V-model

✓System design (for reconfigurable platforms)

✓Integration within programming model

✓Extending our custom RBR module to
enable predictable core-to-accelerator interaction

37

HAL4SDV
(no logo yet, just got funded)



https://hipert.unimore.it
https://hipert.it

Prof. Ing. Paolo Burgio, PhD

paolo.burgio@unimore.it

https://hipert.unimore.it/
https://hipert.it/
mailto:paolo.burgio@unimore.it

