
OWNERSHIP AND LIFETIME DRIVEN 
SYNTHESIZER FOR AUTOMATIC C TO 

RUST TRANSLATION

Meng Wang & Hanliang Zhang

University of Bristol



A FEW WORDS ABOUT ME

• Reader (Assoc. Prof.) at University of Bristol

• Head of Bristol Programming Languages Group https://bristolpl.github.io/

• Research interest — Correctness of Programs

• Programming Language Design

• Functional Programming

• Testing

• Program Synthesis

https://bristolpl.github.io/


WORK ON RUST

• First encounter in 2012 (less than 2 years of its inception)

• Seriously working on it since 2021 (with a UK government funded project)

• Bristol is becoming a major center of Rust research in the UK

• Actively collaborating with Huawei since 2022



RUST: WHAT'S 
THE FUSS?

• Multi-paradigm

• C-like syntax

• Memory safety

• Efficient





RUST’S MEMORY SAFETY

Controlled 
Pointer Aliasing

Ownership 
System

Lifetime System



OWNERSHIP

Rust’s ownership rules:

• Each value in Rust has a 
variable that’s called its 
owners

• There can only be one 
owner at a time

• When the owner goes out 
of scope, the value will be 
dropped



OWNERSHIP

Uniqueness of

owned

pointers (no

alias)

Avoiding

DOUBLE-

FREE



BORROWING

• Borrowing allows ownership to be 

temporarily transferred and automatically 

returned after use

• An address to data like the address taking 

operation in C and C++

• Borrowing comes with two kinds of 

permission

• &T a read-only reference

• &mut T a mutable reference

Manually passing ownership around can be

tedious in programming:



LIFETIME

• Exclusive-Or Principle: At any given time, you can 

have either one mutable reference or any number of 

immutable references

• Lifetime is another mechanism used by the Rust compiler

to ensure this principle.



LIFETIME

Read-only, share 

reference
Mutable, unique 

reference





UNSAFE RUINS (OR ENABLES?) 
EVERYTHING

• Unrestricted Pointer Aliasing…

• It is now programmers' responsibility to 

ensure memory safety



POINTERS IN C VS RUST

Pointers in C: raw pointers Pointers in Rust:

1. Raw Pointers

2. Reference (&mut T, &T), which 

is temporary borrow of some value

3. Smart Pointers (for example Box<T>), 

that support proper memory 

management.



EXISTING TECHS ON TRANSLATING C 
TO RUST

• C2Rust

• Industrial strength Syntax-Directed Basic C to Rust Translator

• 0% unsafe code ratio

• CRustS (Huawei)

• Preprocessing steps that remove unnecessary unsafe, fix build errors, etc.

• Limited success at expression-level unsafe ratio

• Laertes [Emre et el. OOPSLA21]

• Extended rewrite steps that rely solely on the compiler error msg.

• Ad hoc approach that does not make use of the core ownership concept of safe Rust





ORC ‘Ownership Scheme’: Is a pointer in charge of 

allocating, releasing some computational 

resource at a specific program point? If so, is 

the role of allocation and deallocation unique 

to this pointer?

In other words, does this pointer conceptually 

own some computational resources?

Orc focuses on the ownership model 

of safe Rust. It tries to discover an 

underlying ‘ownership scheme’ for an 

unsafe Rust program (typically 

translated from C program). W.r.t. this 

scheme, Orc re-types pointers and 

rewrite their usages into safer ones.



C Code Unsafe

Rust

Code

External

Base

Translator

ORC

Analyzer

Ownership

Schemes

Safer

Rust

Code

ORC

Rewriter



Is it possible to find a proper 

ownership scheme for this 

program?



Yes!

Yes!

1. On line 1, p allocates an integer. At this program 

point, p conceptually owns this integer

2. One line 2, the ownership of this integer is 

transferred from p to q (this guarantees 

uniqueness)

3. On line 3, q is responsible for releasing resources,

therefore q should have ownership

How about q?

A possible

ownership

transfer

Does p own an 

integer?



The ownership scheme found by ORC 

analyzer is then adapted to real Rust’s 

ownership model, by re-typing owning 

pointers to Box pointers.



Unsafe

Rust

Code

ORC

Analyzer

Ownership

Schemes

Safer

Rust

Code

ORC

Rewriter

• Fully context-sensitive, flow-

sensitive static analyzer that infers all 

possible ownership transfer relations 

between program variables.

• A dedicated solver that transforms 

those relations into 0-1 integer linear 

constraints and finds solutions

• Adapt calculated ownership schemes 

into real Rust’s ownership model

• Re-type pointers

• Re-type struct fields

• Rewrite pointer usages based on

types





SUMMARY

• Infer proper ownership schemes, thereby infer correct smart pointer types to 
help rewrite C programs

• Properly handle the ownership of function parameters and local variables

• Able to rewrite some fundamental data structures and their usages (typically 
singly linked lists, which prevail in C projects)

• In Progress: handle lifetime mechanism

• Further enhance safety ratio

• In Progress: Evaluation with Huawei

• Rosetta Stone, Fundamental Data Structure

• Larger Projects (PtrDist, Busybox)

• Prototype tool by the end of 2022!



THANK YOU


