
Low Fat Recipes for Reliable Programming
Languages

Alastair F. Donaldson, Imperial College London, UK

Huawei Global Technology Summit, July 2022

Programming language implementations need to be reliable!

return inst_->NumOperands() > operand_index_ &&
 inst_->GetOperand(operand_index_).words[0] == origi
 inst_->GetOperand(operand_index_).type == original_

Correct source program

Buggy executable

Defective compiler

Programming language specifications need to be clear!

Language
spec Compiler

Programmer

CompilerVerifier

The dream: mechanised programming languages and tools

Formal semantics

Formal semantics

High level
language

Low level
language

Verified compiler

return inst_->NumOperands() > operand_index_ &&
 inst_->GetOperand(operand_index_).words[0] ==
 inst_->GetOperand(operand_index_).type == ori

Correct source program

Correct executable

The reality

● New languages in state of flux
● Not enough expertise in formal semantics
● Verified compilers are expensive to create
● Verified compilers are expensive to maintain

Low fat recipes for reliable programming languages

Let us look at pragmatic approaches for making programming languages more
reliable

● Randomized testing
● Lightweight formal methods

Part 1: Randomized testing

Generate random programs

Check that compilers do the right thing with them

Great for finding bugs!

Great for highlighting murky corners of the language

Appealing idea: randomized testing for compilers

return inst_->NumOperands() > operand_index_ &&
 inst_->GetOperand(operand_index_).words[0] == origi
 inst_->GetOperand(operand_index_).type == original_

Generated program

Executable

Compiler

Result

Run

Random program
generator

But … the oracle problem for compiler testing is hard!

Is this expected?

return inst_->NumOperands() > operand_index_ &&
 inst_->GetOperand(operand_index_).words[0] == origi
 inst_->GetOperand(operand_index_).type == original_

Generated program

Executable

Compiler

Result

Run

Random program
generator

Pseudo-oracle: differential testing

Random program
generator

Pseudo-oracle: differential testing

Program Random program
generator

 Compiler 1

Pseudo-oracle: differential testing

Program

 Compiler 2

Random program
generator

 Compiler 1

Pseudo-oracle: differential testing

Program

Executable 1

 Compiler 2

Executable 2

Random program
generator

 Compiler 1

Pseudo-oracle: differential testing

Program

Executable 1

 Compiler 2

Executable 2

Result 1 Result 2

Run Run

Random program
generator

 Compiler 1

Pseudo-oracle: differential testing

Program

Executable 1

 Compiler 2

Executable 2

Result 1 Result 2

Run Run

Result mismatch
=> bug!

Random program
generator

 Compiler 1

Pseudo-oracle: differential testing

Program

Executable 1

 Compiler 2

Executable 2

Result 1 Result 2

Run Run

Result mismatch
=> bug???

Random program
generator

Pseudo-oracle: metamorphic testing

Program Program’

Semantics-preserving

Le et. al, PLDI’14
Donaldson et al., OOPSLA’17

Randomized
mutator

Compiler

Executable Executable’

Le et. al, PLDI’14
Donaldson et al., OOPSLA’17

Pseudo-oracle: metamorphic testing

Program Program’

Semantics-preserving

Randomized
mutator

Compiler

Executable Executable’

Le et. al, PLDI’14
Donaldson et al., OOPSLA’17

Pseudo-oracle: metamorphic testing

Program Program’

Semantics-preserving

Randomized
mutator

Result Result’

Run Run

Compiler

Executable Executable’

Le et. al, PLDI’14
Donaldson et al., OOPSLA’17

Pseudo-oracle: metamorphic testing

Program Program’

Semantics-preserving

Randomized
mutator

Result Result’

Run Run
Result mismatch => bug!

Compiler

Executable Executable’

Le et. al, PLDI’14
Donaldson et al., OOPSLA’17

Pseudo-oracle: metamorphic testing

Program Program’

Semantics-preserving

Randomized
mutator

Result Result’

Run Run
Result mismatch => bug???

Success stories

Yang et al., PLDI 2011
Most influential paper award at PLDI 2021

Differential:

Success stories

Yang et al., PLDI 2011
Most influential paper award at PLDI 2021

Equivalence
Modulo Inputs
Testing (EMI)

Differential: Metamorphic:

Le et al., PLDI 2014

Success stories

Yang et al., PLDI 2011
Most influential paper award at PLDI 2021

Equivalence
Modulo Inputs
Testing (EMI)

Differential: Metamorphic:

Le et al., PLDI 2014

Led to finding and fixing of thousands of GCC and LLVM bugs

GraphicsFuzz: metamorphic testing for graphics compilers

https://github.com/google/graphicsfuzz

Amazon: testing the Dafny verification language + compiler

Solidity

Writing randomized compiler testing tools isn’t that hard!

2021-2022 Imperial College Undergraduate projects:

● Hasan Mohsin: WebGPU shading language fuzzer
● Hana Watson: WebGPU shading language fuzzer
● Rayan Hatout: SPIR-V shading language fuzzer
● Mayank Sharma: Rust language fuzzer
● Kerry Xu: Rust language fuzzer

Talented students, but working alone and part time

Found dozens of bugs, achieved significant extra test coverage

Part 2: Lightweight formal methods

Full blown compiler verification is largely out of scope

Major exception: CompCert

But: major benefit can be obtained by formalising parts of languages

Graphics shaders

Graphics shader written in shading
languages

OpenGL
shading

language

High Level
Shading

Language

Metal
Shading

Language
OpenCL C

Graphics shaders

Graphics shader

GPU-specific
machine code

written in shading
languages

OpenGL
shading

language

High Level
Shading

Language

Metal
Shading

Language
OpenCL C

Shader compiler

GPUs from many vendors: AMD, Apple, ARM, Huawei,
Imagination, Intel, NVIDIA, Qualcomm

Graphics shaders

Graphics shader

GPU-specific
machine code

written in shading
languages

OpenGL
shading

language

High Level
Shading

Language

Metal
Shading

Language
OpenCL C

Shader compiler

GPUs from many vendors: AMD, Apple, ARM, Huawei,
Imagination, Intel, NVIDIA, Qualcomm

Shader compiler: the most complex part of a GPU device driver

SPIR-V: Standard, Portable Intermediate Representation

Shading
language A

Shading
language B

Shading
language C

Multiple different shader compilers

Motivation

GPU-specific machine code

Every GPU vendor has to maintain their
own set of shader compilers: a lot of work

SPIR-V: Standard, Portable Intermediate Representation

Shading
language A

Shading
language B

Shading
language C

Industry standard,
GPU-agnostic translators

Motivation

GPU-specific machine code

Every GPU vendor writes a compiler for
SPIR-V - reduces overall burden

SPIR-V

SPIR-V specification had some major problems

Problems related to sophisticated rules about control flow

Intended to help developers and compiler writers

Not helping in practice:

● Dzmitry Malyshau, Mozilla: Horrors of SPIR-V
● Sean Baxter, Circle compiler: Targeting SPIR-V is super easy and the

structurization requirements totally won't make you want to throw yourself off
a cliff

● Hans-Kristian Arntzen, Arntzen Software: My personal hell of translating DXIL
to SPIR-V

http://kvark.github.io/spirv/2021/05/01/spirv-horrors.html
https://twitter.com/seanbax/status/1348780718797807622
https://twitter.com/seanbax/status/1348780718797807622
https://twitter.com/seanbax/status/1348780718797807622
https://themaister.net/blog/2021/09/05/my-personal-hell-of-translating-dxil-to-spir-v-part-1/
https://themaister.net/blog/2021/09/05/my-personal-hell-of-translating-dxil-to-spir-v-part-1/

Sources of truth about SPIR-V

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Best-effort initial
interpretation

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Formulate solutions to
known problems

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Formulate solutions to
known problems

Solutions informed
by experts

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Cross-check
against test suites

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Cross-check
against test suites

Fix ill-formed tests

Consult with
experts

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Cross-check
against test suites

Fix ill-formed tests

Consult with
experts

Fix flaws in model
identified by tests

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Agreement

Interesting valid and
invalid control flow
graphs

Automatically
generate

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Agreement

Interesting valid and
invalid control flow
graphs

Automatically
generateCross-check

against
validator

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Agreement

Interesting valid and
invalid control flow
graphs

Automatically
generateCross-check

against
validator

Fix
validator

Consult with experts

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Agreement

Interesting valid and
invalid control flow
graphs

Automatically
generateCross-check

against
validator

Fix
validator

Consult with experts

Fix flaws in model
identified by validator

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Interesting valid and
invalid control flow
graphs

Automatically
generateCross-check

against
validator

Fix
validator

Consult with experts

Fix flaws in model
identified by validator

Cross-check
against test suites

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Interesting valid and
invalid control flow
graphs

Automatically
generateCross-check

against
validator

Fix
validator

Consult with experts

Fix flaws in model
identified by validator

Cross-check
against test suites

Fix ill-formed tests

Consult with
experts

Fix flaws in model
identified by tests

Virtuous cycle improved formal model, conformance tests + tooling

Prose specification Better conformance test suites

Better validation tooling

David Alan

Alloy
model

Experts

Agreement

AgreementAgreement

Virtuous cycle improved formal model, conformance tests + tooling

Prose specification Better conformance test suites

Better validation tooling

David Alan

Alloy
model

Experts

Agreement

AgreementAgreement

Update
specification

Our changes are now integrated into the SPIR-V specification

Better prose specification Better conformance test suites

Better validation tooling

David Alan

Alloy
model

Satisfied experts

Agreement

AgreementAgreement

Agreement

Another lightweight formal methods success

Alive toolkit Automatic verification of LLVM
optimizations

Led to finding and fixing of many
bugs

Formal guarantees for important
LLVM peephole optimizations

Outlook

Randomized compiler testing is great

Lightweight formalization can be really useful

Can we:

● Combine them?
● Get a randomized tester automatically from a formal spec?
● Create a spectrum from lightweight to heavy-weight compiler validation?

Thank you!afd@ic.ac.uk @afd_icl

