Low Fat Recipes for Reliable Programming
Languages

Alastair F. Donaldson, Imperial College London, UK

Huawei Global Technology Summit, July 2022

Programming language implementations need to be reliable!

Correct source program \/(

@

[ﬁ Defective compiler }

V

Buggy executable

Iy W

. o

Programming language specifications need to be clear!

Programmer

TEST(MutationRemoveStatementTest, BasicTest) {
std::string original = "void foo() { 1 + 2; }"; l I

std::string expected =

.
R"(void foo() { if (__dredd_enabled_mutation() !=) C O m | | e r
std::function<MutationRemoveStatement(clang: :ASTContext&]
[1(clang::ASTContext& ast_context) -> Mutat]i S eC
auto statement = clang::ast _matchers::match§
Matcher: clang: :ast_matchers::binaryOperator().bind(f
EXPECT_EQ(vali: 1, val2: statement.size());

return MutationRemoveStatement(

The dream: mechanised programming languages and tools

High level
language

Low level
language

Formal semantics

Correct source program

N\

V

[-Q- Verified compiler Vf

/

Formal semantics

V

Correct executable

{

The reality

New languages in state of flux

Not enough expertise in formal semantics
Verified compilers are expensive to create
Verified compilers are expensive to maintain

Low fat recipes for reliable programming languages
Let us look at pragmatic approaches for making programming languages more
reliable

e Randomized testing
e Lightweight formal methods

Part 1. Randomized testing

Generate random programs
Check that compilers do the right thing with them
Great for finding bugs!

Great for highlighting murky corners of the language

Appealing idea: randomized testing for compilers

Generated program

L

ke,

Compiler

e

Executable

@Run

Result

ol

Random program
generator

J

But ... the oracle problem for compiler testing is hard!

Random program
Generateéprogram <j [generator }

[Q Compiler }
L

Executable

@Run

Result | — Is this expected?

Pseudo-oracle: differential testing

Random program
generator

Pseudo-oracle: differential testing

Random program
Program <j [generator }

Pseudo-oracle: differential testing

Random program
@Program <j [generator }

>
[QCompiIeH } [QCompiIerZ }

Pseudo-oracle: differential testing

Program

N

<j [Random program

generator

1

[QCompiIeH } [
>

<>
-Q- Compiler 2 }

Executable 1

L

Executable 2

Pseudo-oracle: differential testing

Program

N

<j [Random program

generator

1

[QCompiIeH } [
>

<>
-Q- Compiler 2 }

Executable 1

L

Run @
Result T

Executable 2

Run @
Result 2

Pseudo-oracle: differential testing

Program

N

<j [Random program

generator

1

<>
[QCompiIeH } [QCompiIerZ }
>

L

Executable 1

Executable 2

Run @

Result mismatch

Run @
Result 2

Result 1 = bug!

Pseudo-oracle: differential testing

Program

N

<j [Random program

generator

1

<>
[QCompiIeH } [QCompiIerZ }
>

L

Executable 1

Executable 2

Run @

Result mismatch

Run @
Result 2

Result 1 —> bug???

Le et. al, PLDI'T4
: . Donaldson et al.,, OOPSLA17
Pseudo-oracle: metamorphic testing

Semantics-preserving

Program C>£ REICEE }:> Program

mutator

Le et. al, PLDI'T4
: . Donaldson et al.,, OOPSLA17
Pseudo-oracle: metamorphic testing

Semantics-preserving

Program @[REICEE }@ Program

mutator

~~ ~~

[Q- Compiler

~ <

Executable Executable’

Le et. al, PLDI'T4
: . Donaldson et al.,, OOPSLA17
Pseudo-oracle: metamorphic testing

Semantics-preserving

Program @[REICEE }@ Program

mutator
IS ~
[Q Compiler /
- -
Executable Executable
Run J_L Run J L

Result Result’

Le et. al, PLDI'T4
: . Donaldson et al.,, OOPSLA17
Pseudo-oracle: metamorphic testing

Semantics-preserving

Program @[REICEE }@ Program

mutator
Iy ~
[Q Compiler /
- -
Executable Executable
Run J_L Run J L

Result mismatch => bug! ’
Result Result

Le et. al, PLDI'T4
: . Donaldson et al.,, OOPSLA17
Pseudo-oracle: metamorphic testing

Semantics-preserving

Program @[REICEE }@ Program

mutator
Iy ~
[Q Compiler /
- -
Executable Executable
Run J_L Run J L

Result mismatch => bug???

Result Result’

Success stories

Differential:

Yang et al., PLDI 2011

Most influential paper award at PLDI 2021

Success stories

Differential:

Yang et al., PLDI 2011

Most influential paper award at PLDI 2021

Metamorphic:

Equivalence
Modulo Inputs
Testing (EMI)

Le et al., PLDI 2014

Success stories

Differential: Metamorphic:
Equivalence
Modulo Inputs
C h Testing (EMI)
Moot infleniialpaper award at PLDI 2021 Lo ot al, PLDI 2014

Led to finding and fixing of thousands of GCC and LLVM bugs

GraphicsFuzz: metamorphic testing for graphics compilers

Imperial College
London

https://github.com/google/graphicsfuzz

Amazon: testing the Dafny verification language + compiler

Testing Dafny (Experience Paper)

Ahmed Irfan Sorawee Porncharoenwase
sorawee@cs.washington.edu
University of Washington

rfaahm@amazon.com
Amazon Web Services (AWS)
USA

Neha Rungta
rungta@amazon.com
Amazon Web Services (AWS)
USA

ABSTRACT

Verification toolchains are widely used to prove the correctness of
critical software systems. To build confidence in their results, it is
important to develop testing frameworks that help detect bugs in
these toolchains. Inspired by the success of fuzzing in finding bugs
in compilers and SMT solvers, we have built the first fuzzing and
differential testing framework for Dafny, a high-level programming
language with a Floyd-Hoare-style program verifier and compilers
to C#, Java, Go, and Javascript.

This paper presents our experience building and using XDsmith,
a testing framework that targets the entire Dafny toolchain, from
verification to ilation. XDsmith randoml anno-
tated programs in a subset of Dafny that is free of loops and heap-
mutating operations. The generated programs include precondi-
tions, postconditions, and assertions, and they have a known verifi-
cation outcome. These programs are used to test the soundness and
precision of the Dafny verifier, and to perform differential testing
on the four Dafny compilers. Using XDsmith, we uncovered 31
bugs across the Dafny verifier and compilers, each of which has
been confirmed by the Dafny developers. Moreover, 8 of these bugs
have been fixed in the mainline release of Dafny.

CCS CONCEPTS

Zvonimir Rakamari¢
zvorak@amazon.com
Amazon Web Services (AWS)
USA

Emina Torlak
torlaket@amazon.com
Amazon Web Services (AWS)
USA

1 INTRODUCTION

The correctness of compilers, static analyzers, and formal verifi-
cation engines is key to ensuring that the programs they compile,
analyze, and verify are correct. Bugs in these tools can have serious
consequences: a soundness bug can cause the tool to accept an
incorrect program, while a precision bug can cause it to reject too
many correct programs. In principle, both kinds of bugs can be elim-
inated through formal verification. In practice, however, the cost
of formal verification remains prohibitive, with teams of experts
taking decades to verify a single toolchain (see, e.g., [32]). This cost
becomes astronomical when the target is an ecosystem of related
tools: a verifier together with a set of compilers for a rich general-
purpose language. In such a setting, effective testing becomes key
to increasing confidence in the correctness of the ecosystem—and
all applications that depend on it for their correctness.

This paper presents our experience developing and applying the
first fuzzing and differential testing framework for Dafny [12, 30],
a high-level programming language equipped with a Floyd-Hoare-
style [16, 23] verifier and compilers to C#, Java, Go, and JavaScript.
Dafny is used broadly for building verified software. For example,
it has been used to prove the correctness of high-level distributed
protocols [22, 24], as well as to build low-level verified systems, such
as a verified storage system [20] and a verified security monitor [14].

method DutchFlag(a: array<Colors)
requires a # null modifies a
» ensures ¥ 1,j - @ =<1 < j < a.Length = Ordered(
ensures multiset(a[..]) == old(multiset(a[..]))

{
a I I var r, w, b=0, 0, a.Length;
» whilew=b

invariant @ < r < w < b < a.lLength;
invariant ¥ 1 - 0 £ 1 < r=a[1] == Red
invariant multiset(a[..]) == old(multiset(a[..]
{ match a[w]
case Red =
alr], a[w] = a[w], a[r];
r,ws=r+1, w+1;
case White =
Wi=W+ 1;
case Blue =
b=b - 1;

w
R

solidity

Fuzzing the Solidity Compiler

Bhargava Shastry [@bshastry
Ethereum Foundation ¥ @ibags
O bshastry

$ EthCC3 | Fuzzing the Solidity Compiler

LN

Writing randomized compiler testing tools isn't that hard!

2021-2022 Imperial College Undergraduate projects:

Hasan Mohsin: WebGPU shading language fuzzer
Hana Watson: WebGPU shading language fuzzer
Rayan Hatout: SPIR-V shading language fuzzer
Mayank Sharma: Rust language fuzzer

Kerry Xu: Rust language fuzzer

Talented students, but working alone and part time

Found dozens of bugs, achieved significant extra test coverage

Part 2. Lightweight formal methods

Full blown compiler verification is largely out of scope
Major exception: CompCert

But: major benefit can be obtained by formalising parts of languages

Graphics shaders

Graphics shader

written in shading
languages

OpenGL
shading
language

High Level
Shading
Language

Metal
Shading
Language

OpenCL C

Graphics shaders

Graphics shader

written in shading
languages

@ Shader compiler

GPU-specific
machine code

OpenGL
shading
language

High Level
Shading
Language

Metal
Shading
Language

OpenCL C

GPUs from many vendors: AMD, Apple, ARM, Huawei,
Imagination, Intel, NVIDIA, Qualcomm

Graphics shaders

Graphics shader

_ _ . OpenGL High Level Metal
written in shading shading Shading Shading OpenCL C
languages language Language Language

@ Shader compiler

GPU-specific
machine code

GPUs from many vendors: AMD, Apple, ARM, Huawei,
Imagination, Intel, NVIDIA, Qualcomm

Shader compiler: the most complex part of a GPU device driver

SPIR-V: Standard, Portable Intermediate Representation

Motivation
Shading Shading Shading
language A language B language C

———

GPU-specific machine code

Every GPU vendor has to maintain their
own set of shader compilers: a lot of work

SPIR-V: Standard, Portable Intermediate Representation

Motivation
Shading Shading Shading
language A language B language C

¢ & I

GPU-specific machine code

Industry standard,
GPU-agnostic translators

Every GPU vendor writes a compiler for
SPIR-V - reduces overall burden

SPIR-V specification had some major problems

Problems related to sophisticated rules about control flow
Intended to help developers and compiler writers
Not helping in practice:

e Dzmitry Malyshau, Mozilla: Horrors of SPIR-V
Sean Baxter, Circle compiler: Targeting SPIR-V is super easy and the
structurization requirements totally won't make you want to throw yourself off
a cliff

e Hans-Kristian Arntzen, Arntzen Software: My personal hell of translating DXIL
to SPIR-V

http://kvark.github.io/spirv/2021/05/01/spirv-horrors.html
https://twitter.com/seanbax/status/1348780718797807622
https://twitter.com/seanbax/status/1348780718797807622
https://twitter.com/seanbax/status/1348780718797807622
https://themaister.net/blog/2021/09/05/my-personal-hell-of-translating-dxil-to-spir-v-part-1/
https://themaister.net/blog/2021/09/05/my-personal-hell-of-translating-dxil-to-spir-v-part-1/

Sources of truth about SPIR-V

Prose specification Conformance test suites

Validation tooling

ﬁﬁr

David Alan

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Best-effort initial
interpretation

T

Alloy
model

Validation tooling

ﬁﬁr

David Alan

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Alloy
model

Validation tooling Q
Formulate solutions to
known problems

David Alan

Modelling SPIR-V control flow in Alloy

Prose specification

Alloy
model

Conformance test suites

Solutions informed
by experts

Validation tooling Q \ Experts

Formulate solutions to
known problems

David Alan

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Cross-check

against teW

Alloy
model

Validation tooling

ﬁﬁr

David Alan

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Cross-check

against test suites
/ Fix ill-formed tests

Alloy
model Consult with

experts

Validation tooling

ﬁﬁr

David Alan

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Cross-check

against test suites
/ Fix ill-formed tests

Alloy
model Consult with

experts

Validation tooling

ﬁﬁr

Fix flaws in model
identified by tests

David Alan

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Alloy
model

Validation tooling
Automatically

generate

Interesting valid and
invalid control flow

graphs David Alan

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Alloy
model

Validation tooling

Cross-check
against
w Interesting valid and
invalid control flow

graphs David Alan

Automatically
generate

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Alloy
model

Validation tooling
Automatically

Cross-check generate
against
w Interesting valid and
_ invalid control flow
Fix graphs

David Alan
validator
Consult with experts /

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Fix flaws in model Agreement
identified by validator /
Alloy
model

Validation tooling
Automatically

Cross-check generate
against
w Interesting valid and
_ invalid control flow
Fix graphs

David Alan
validator
Consult with experts /

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Cross-check
against test suites

Fix flaws in model

identified by validator /
Alloy
model

Validation tooling
Automatically

Cross-check generate
against
w Interesting valid and
_ invalid control flow
Fix graphs

David Alan
validator
Consult with experts /

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Cross-check
against test suites

Fix flaws in model
identified by validator
Fix ill-formed tests

Alloy

Fix flaws in model

model| | identified by tests Consult with
experts

Validation tooling Experts
Automatically ,

Cross-check generate

against
w Interesting valid and
invalid control flow
Fix graphs

David Alan
validator
Consult with experts /

Virtuous cycle improved formal model, conformance tests + tooling

Prose specification Better conformance test suites

Alloy
model

Better validation tooling

n # Agreement Agreement

David Alan

Virtuous cycle improved formal model, conformance tests + tooling

Prose specification Better conformance test suites
Update
Wﬂcatlon Ag W
Alloy
model

Better validation tooling

n # Agreement Agreement

David Alan

Our changes are now integrated into the SPIR-V specification

Better prose specification Better conformance test suites
Agreement
\ AQW
i,}W/
. Alloy
model

Better validation tooling Satisfied experts

n # Agreement Agreement

David Alan

Another lightweight formal methods success

Alive toolkit

Automatic verification of LLVM
optimizations

Led to finding and fixing of many
bugs

Formal guarantees for important
LLVM peephole optimizations

Outlook

Randomized compiler testing is great
Lightweight formalization can be really useful
Can we:

e Combine them?
e Getarandomized tester automatically from a formal spec?
e C(reate a spectrum from lightweight to heavy-weight compiler validation?

afd@ic.ac.uk @afd_icl Thank you!

