
Key Technology in Trusted Programming

Department：Trusted PLDI Lab / Ireland Research Center / European Research Institute

Author：Professor Yijun Yu (Huawei Ireland and The Open University UK)

on behalf Huawei’s MemSafePro ITMT project members and Rust community experts

Date：July 7, 2022 @ 2012 Labs Global Software Technology Summit

Version：1.0

Trusted Programming we develop enhance the efficiency and the proficiency of new programming technology

towards high productivity in creating high quality software, which guarantee safety and performance.

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential Page 2

Optimize CRustS to increase the proportion of safe code and check temporal safety issues.
• The innovative method solves the raw pointer

to reference refactoring transformation, breaks

through the original TXL ceiling, and increases

the safe code ratio to 53%, surpassing

[OOPSLA21] and our Phase 1 [ICSE22] work

(40%). In addition, innovative check analysis

algorithms are used to detect time-related

memory safety issues. The CWE401, CWE415,

CWE416, and CWE122 reach 17% to 49%

respectively, surpassing Microsoft Checked C.

• Develop the Playground demos, which helps

the experience and promotion of Rust in the

company, and released code and binary to the

intersource community to enable C/C++

product line to switch to Rust.

• Wireless Q922 module, BaseBIOS base

software pilot and board verification, and

HiSilicon Kirin platform xloader: C-to-Rust

code conversion functions are complete and

correct, which are auxiliary and reference for

pilot projects.

Requirements

To ensure safety, the C code

needs to be migrated to the Rust

code. Due to the huge legacy of

C code in product lines and the

steep learning curve of the Rust

language, an automated C-to-

Rus code conversion tool was

developed to assist in manual

secure code migration.

Target Product

Product lines with existing C

codes and requirements for

converting to Rust codes.

Dependencies

The target C code can be

compiled normally in the original

environment and architecture.

BaseBIOS of Central
Hardware

Improving raw pointer to reference refactoring since phase 1:

✓ Enhance the detection capability of time memory safety

vulnerabilities for C code that could not be detected by

Microsoft Checked C.

✓ For Rust code that can be translated resulting in a higher

safety code ratio:

✓ By reducing the number of unsafe regions involving

raw pointer expressions

• Michael Ling, Yijun Yu, Haitao Wu, Yuan Wang, James

Cordy, Ahmed HassanI. " In Rust we Trust: Translating

Unsafe C to Safer Rust", ICSE 2022.

• Emre, Schroeder, Dewey, Hardekopf, "Translating C to

Safer Rust", In: OOPSLA, 2021.

• Yamaguchi, Matsuda, David, Wang, "Synbit: Synthesizing

Bidirectional Programs using Unidirectional Sketches", In

OOPSLA 2021.

Memory safety
Issues

NIST Class No. of
Samples

Detected Ratio

Memory leakage CWE401 612 234 38.2%

repeated release CWE415 336 156 46.4%

dangling pointer CWE416 150 74 49.3%

Heap Buffer
Overflow

CWE122 3656 631 17.2%

NIST Juliet 1.3 2017 Dataset C/C++ Memory safety

Detection, while Microsoft Checked C could not check

Wireless Q922
Module

HiSilicon Kirin xLoader has been put into
commercial use with Harmony 3.0 phones.

Verify 100% correct and enabled development.

A playground has been deployed in Huawei.

Code has been released to intersource community

Rust：an efficient language designed to be safe

Security by design

Type safety

Strong Type

Static Type

Immutable by
default

Explicit
public

Memory
Safety

Concurrency Safety

Ownership

Borrowing

Smart Pointer
& RAII

Lifetime

Static Analysis by Compiler

Multi-
threading

Lock, Mutex

atomics

TLS & Channel

Async

Generator

Feature

Data Parallel

PerformanceSafety ProductivityAlgorithm

Huawei Confidential4

• Wireless TLV encodec framework （3K LOC）

> No memory safety issues, hard to have runtime errors

> Performance speed up 4~7 times

> Learning curve 4 weeks，Memory consumption increases from C
to Rust (532K→696K when there are 161 fields)

• Central Soft OpenEuler StratoVirt （24K LOC）

> Zero vulnerabilities，No memory safety issues（passed ICSL tests）

> Learning curve 4 weeks (initial) till 6 months (master)

• Central Soft Light-weight container（20K LOC）

> No memory safety issues

> Learning curve: 4 weeks (initial) till 6 months (master)

> Learning through excellent open-source projects

• 5G Core UDG Flow Module （11K LOC）

> No Memory Safety issues

> Memory, CPU consumptions and performance level off to C

> Learning curve 2~4 weeks

Some Rust projects inside Huawei
• Hisilicon Camera Dirt Detection algorithm（8K LOC）

> No memory safety issues

> Performance enhances to 25%（2.004 -> 1.603 ms/frame）

> Memory fluctuation reduces by 50%

> Learning curve 2~4 weeks

> Shared library (SO) size（97K->107K）

• Ylong-Rust (100 KLOC), available on OpenX

> No memory safety issues

> Async concurrency framework，Crypto，JSON/XML parsing，hot
patches, etc..

> Learning curve 2~4 weeks

> 1 old·+··1 new paired programming for 2 months ·5K LOC/per person

• Central Hardware BaseBIOS（6K LOC）

> Support ARM Cortex，M and RISC-V MCU hardware abstraction

> Learning curve 3~5 weeks, pure embedded bare metal with no-std

> CRustS converts Rust code can compile and run with good efficiency，
but some manual adjustments needed for commits

PerformanceSafety ProductivityAlgorithm

Harmony and Open Harmony: Network Management modules

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential 5

Our Vision of Trustworthy System Programming (Rust):

Automated Programming for Better Safety, Performance, and Productivity

Memory Safety = Zero-cost Memory Abstraction

Fearless Concurrency = Lambda Calculus for FP

+ Neural Network Representations of Code

Legacy C/C++ code：
LOC >80%，Vulnerabilities >50%

Challenges in Trusted Programming

for Huawei Systems
Impact

Auto migration of systems in 3 days

with safe ratio 60% and

no performance penalty from C 100%

Technology breakthroughs

Code transformation of safer Rust code【ICSE22】
Commercial development in BaseBIOS (CH)、
xloader (Hisilicon)【Harmony OS 3.0】

Bidirectional Transformations of MDD【ICSE’12】
InferCode Pre-training【ICSE21】
Corder: Cross SE tasks ML【AAAI’21, SIGIR21】

Rust Roadmap contributions: Async/Await、Futures

Inline Assembly, Cross Compilation [Wireless BU】
Crypto、SIMD libraries【Camera of Hisilicon】
Fearless Concurrency【Scoped Threads，Mutex, FFTS】

Developing new systems in Rust：
- Steep learning curve: 2-4 months

- Undefined behaviour in unsafe code

Low code model-driven development：
Sanyapo battle：lack debugging

capabilities for meta-programming

Theoretical Foundations

of Trusted Programming Research

Made 9 Rust roadmap contributions to

language, compiler, standard library；

Accurate unsafe Rust classification 98%

classify assembly code accuracy 77%；
Performance boost of Camera applications 25%

Lock performance >2x

.Reduce Open Euler Rust toolchain build

bottleneck by 3.5 times.

Matching Strategic Innovation Project (STIP) needs in support for the ITMT project《MemSafePro》:

Recruited top Rust experts from Rust Foundation and community leading teams from Europe:

Amanieu d’Antras (Standard library, UK），Mara Bos（Rust Library Co-Leader, Nederland），Guillaume Gomez (DevTools, France),

Vadim Petrochenkov (Language, Russia), David Wood (Compiler, UK) and Bastian Kauschke（Compiler, Germany）

Collaboration with top universities world-wide:

The Open University UK – Helen Sharp《Bug Localization》，Bristol University UK -- Meng Wang《eDSL Debugging》 Cristina David《C2Rust Program Synthesis》（EPSRC、Royal Society)

Lero Ireland -- Bashar Nuseibeh《RE4AI》 , SMU Singapore -- Lingxiao Jiang《Deep Learning of Code》
Peking University China -- Zhenjiang Hu《FP Core semantics for C and Rust》，Yingfei Xiong《Beyond Alpha Code – Synthesis Rust Algorithms》

5 Top-Conference publications，2 Patents

PerformanceSafety ProductivityAlgorithm

Huawei Proprietary - Restricted Distribution6

Mobile Rust：Safe Programming for Mobile Ecosystem with Fearless Concurrency and High Productivity

⚫ Virtues：Safe, Efficient, Productive

 Memory Safety, Concurrency Safety、Thread

Safety

 As performant as C/C++

 More efficient and maintainable than C/C++

⚫ Challenges：High Learning Curve

 Borrowed many language features

 Share memory model between developer and

compiler

Safety

Efficiency

Performance

Performance Tuning for Mobile hardware platform

• Hardware friendly performance tuning for FFTS

• Cross-compilation for new processors

• Compiler optimization for LLVM backend

• Modern concurrency programming paradigms for IO/CPU-intensive apps

• Memory hierarchy optimizations

Lowering the learning curve and striking a balance between usability and

software performance

• Dynamic link for better reusability

• Interoperability between FFI languages

• Promote usability by simplifying Rust to interoperate with Rust toolchains

• DSL at the app-development level to interoperate with Java/kotlin/dart/swift。

• Migrate C/C++ modules

• Build open programming ecosystem to differentiate Swift and Kotlin

Mobile Rust

Energy Efficiency

Easy to Learn

Safety

Performance

Efficiency

Trusted
programming

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential Page 7

Huawei Making Contributions to Complete 9 Roadmap Features of Rust Community in 2022

Roadmaps Features Description Value to Huawei Engagement
Completion status (commercial
ready version)

Compiler Inline Assembly From Experimental to Stable BaseBIOS advanced safety module Driving 1.59.0

Language FFI unwind Resolve outstanding issues of cross-language interoperability FFI between DOPRA Rust and DOPRA C Participating 1.64.0 (as planned)

Compiler Cross compilation Formal tiered policy to support compilation objectives
BaseBIOS advanced safety module of Central Hardware and
HiSilicon Kirin xloader reconstruction

Driving 1.59.0

Compiler Faster compilation Compile speed 20% - 30% faster Improves Compilation and Build Speed Driving 1.61.0

Language Uninitialized Buffer Processing The I/O buffer is not initialized. Enhances Rust Compiler safety Participating 1.64.0 (as planned)

Standard
Library

std::arch SIMD standard library support Refactors of HiSilicon Graphic Camera Algorithm Driving 1.59.0

Standard
Library

std::sync Support for Mutex, RwLock and CondVar on all platforms Improves concurrency and lock performance Driving 1.63.0

Standard
Library

std::error Simplify error handling API Improves the usability of the debugging interface Participating 1.60.0

DevTools Rustdoc Navigation Cross-Document Navigation Link Generation Improves the E2E tool chain Driving 1.61.0

Standard
Library

Scoped Threads
Supports syntax extension of multithreaded concurrent code.

Improves the development of fearless concurrency Driving 1.61.0

Compiler Split DWARF Remove debugging information from binaries Reduces binary file size Driving 1.61.0

Compiler
Top Issues of LLVM affecting
Rust compiler

Stability Improvement based on LLVM Compilation Resolves three blockages Driving LLVM15

1.53.0 1.61.01.50.0 1.64.0

2022.62021.62020.9 2022.9

Stable Version Rhythm

Long-term Evolution of TechnologyKey Technology

Contributed to the roadmap features that are valued important by Huawei's product lines

Quicksort in C and C++
https://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Rust

Generic，Polymorphism

PerformanceSafety ProductivityAlgorithm

https://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Rust

Quicksort in Rust
https://c2rust.com/
https://185.190.206.130

PerformanceSafety ProductivityAlgorithm

https://c2rust.com/
https://185.190.206.130/

Quicksort in Rust （manual)
https://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Rust

Or, using functional style (slower than the imperative style

but faster than functional style in other languages):

In-place swap

PerformanceSafety ProductivityAlgorithm

https://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Rust

Quicksort in Rust
https://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Rust

Or, using functional style (slower than the imperative style
but faster than functional style in other languages):

In-place swap

Mutable
Reference
Limits
Parallelism

1) Borrow
checker
can tell
the variable
may overlap
2) Refactoring
of the &mut to &
would allow the
parallelization
3) clone the variable
could allow for
parallelization
4) scoped thread may
still parallelize it
with ease
clone the slice and
join the threads.

Special transformation
may be designed as a
compiler dataflow pass.

No dependency
between left
and right;

Recursive function can
be parallelized using
FFTS.

Safe Rust makes it easier to achieve
parallelization

PerformanceSafety ProductivityAlgorithm

https://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Rust

1. Scoped Threads (available in nightly Rust, will be stablized in 1.61.0)

How do we parallelize sequential QuickSort in Rust?

Performance：1024*1024 Array random numbers，
1100 ms （Single thread）

37 ms（Multi-threaded）

PerformanceSafety ProductivityAlgorithm

https://docs.rs/rayon/latest/rayon/fn.join.html

2. Rayon library

Performance：1024*1024 Array random numbers，
1100 ms （Single thread）

37 ms（Multi-threaded）
19 ms（Multi-threaded using thread pooling and rayon::join）

PerformanceSafety ProductivityAlgorithm

https://docs.rs/rayon/latest/rayon/fn.join.html

https://github.com/rayon-rs/rayon/blob/fcfd463d503c1f510fc7b47eec636d989c1389f5/src/slice/quicksort.rs#L750

3. Rayon overhead estimates

This threshold is necessary when
the slice is small.

PerformanceSafety ProductivityAlgorithm

https://github.com/rayon-rs/rayon/blob/fcfd463d503c1f510fc7b47eec636d989c1389f5/src/slice/quicksort.rs#L750

Architectural Design on top of Rust Compiler

Basic solution：From the HIR, using Type Checker to obtain IN/OUT sets of variables from Lambda function descriptions
thread::scope(|s|) {

s.spawn(f);
s.spawn(g);

}

Auto parallelization: From the MIR, using BorrowChecker (Polonius/NLL) to obtain the datalog outputs，
from which we obtain IN/OUT sets of variables at any function call site. For functions f and g, if they are not dependent
on each other, we can parallelize them through code transformation on the HIR.

Annotations indicate whether certain variables shall not be included in the IN/OUT sets of variables, and whether
it is better not to generate parallel threads.

{
f(); …
g();

}

PerformanceSafety ProductivityAlgorithm

Extract relevant information from MIR dumps

PerformanceSafety ProductivityAlgorithm

> rm –rf mir_dump
> rustc –Z dump_mir=y src/main.rs

Source code

mir_dump/main.main.002-009.SimplifyCfg-elaborate-drops.after.mir

bb5[19]

Using rustc 1.62.0-nightly (52ca603da 2022-04-12)

rustc –Znll-facts src/main.rs

main, main#closure1，2，3, quicksort, partition

• MIR => Datalog facts (Origin, Loan, Point, Variable, Path)
• loan_issued_at(origin, loan, point)
• cfg_edge(point, point)
• loan_killed_at(loan, point)
• subset_base(origin, origin, point)
• loan_invalidated_at(point, loan)
• var_used_at(variable, point)
• var_defined_at(variable, point)
• var_dropped_at(variable, point)
• use_of_var_derefs_origin(variable, origin)
• drop_of_var_derefs_origin(variable, origin)
• child_path(path, path)
• path_is_var(path, variable)
• path_assigned_at_base(path, point)
• known_placeholder_subset(origin, origin)
• Placeholder(origin, loan)

Compute data dependencies using Borrow Checker Polonius

https://github.com/rust-lang/polonius
The name comes from the famous quote "Neither a borrower nor a lender be", which was said by the character
Polonius to his son Laertes in Shakespeare's Hamlet.

cfg_edge

var_defined_at var_used_atloan_killed_at loan_invalidated_at

• IN：variable_used_at – loans_invalidated_at

• OUT：variable_defined_at – loans_killed_at

Implementation tools：Polonius + Soufle (Datalog engine)

• F_OUT ^ G_IN = {} and F_IN ^ G_OUT = {} => F || G

https://github.com/rust-lang/polonius
https://literarydevices.net/neither-a-borrower-nor-a-lender-be/

Huawei Confidential18

Understanding Polonius facts: we are able to
extract IN/OUT data dependencies > rm –rf mir_dump

> rustc –Z dump_mir=y src/main.rs

mir_dump/main.main.002-009.SimplifyCfg-elaborate-drops.after.mir

bb5[19]

> rustc –Z nll-facts src/main.rs

main, main#closure1, main#closure1, main#closure1,main#closure3,
quicksort, partition

Using rustc 1.62.0-nightly (52ca603da 2022-04-12)

Huawei has contributed over 1/3 of Rust roadmap features since 2020,
aspiring our R&D on Rust++
https://trusted-programming.github.io/

We are also initiating the standardization of Rust.

Compared to C/C++ standardization, Rust++ standardization can be seen
more as coming up with an invariant list of features that the beloved
language should retain during its evolution and innovation.
They offer certainty and guarantee to the adopters of the language.

Next, I will present two examples of such R & D.

1) Adding unsafe behavior classification of assembler;

2) Adding mutex support for fearless concurrency;

https://trusted-programming.github.io/

RustConf 2021 keynote on Mutex issues
https://www.youtube.com/watch?v=DnYQKWs_7EA

PerformanceSafety ProductivityAlgorithm

https://github.com/rust-lang/rust/issues/93740

Compared to C
pthread_mutex_t,
Rust implementation is
36% more
performant, and also
consuming less
5x less memory per lock

https://www.youtube.com/watch?v=DnYQKWs_7EA
https://github.com/rust-lang/rust/issues/93740

It is done for Windows, Linux and BSD, only missing Mac OSX ! Next to
explore its application to our products, e.g. Harmony OS

PerformanceSafety ProductivityAlgorithm

Can we automatically leverage the performance features
using Rust compiler?

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential

Probabilistic Prediction of Undefined Behaviour by Classifying Idiomatic
Rust Code and Inline Assembly

PerformanceSafety ProductivityAlgorithm

Inline Assembly makes Rust on par

with C in performance!

However, they remove knowledge

about unsafe behaviors in Rust code.
Out perform human experts!

Grow A Functional Programming Language from the Safe Semantics in Rust Core

Technical scheme: The Rust2C IDE is automatically generated based on the definition of a

growable host language based on the syntax sugar Rust/C, and the Rust2C IDE is automatically

generated by the bidirectional transformation technology. Lambda calculus System F extends

Rust core semantics to support pointers and ownership

Requirements

The learning curve of Rust code is steep,

and C is not safe. Ideally to develop Rust

program with C IDE and generate safe C

code with Rust code.

Objectives

• Implements System FR core semantics,

supports secure C/Rust languages, and

challenges to cover more language features.

• Automatically generate the IDE built based

on VSCode. The IDE has the capabilities of

code supplementation, type navigation,

variable name change, and error checking.

Language Definition =
Vocabulary + Grammar + Semantics

growable host language
- combinable
- vocabulary is expandable.
- semantics is extensible

New language

resugardesugar

RGN rt(ownership semantics)
computations in region r returning values of typet

RGNVar r t (pointer semantics)
values of type t allocated in region r

(1) Fluet, Matthew, & Morrisett, Greg. (2004). Monadic
regions. Pages 103–114 of: Proceed-ings of the 9th ACM
SIGPLAN International Conference on Functional
Programming (ICFP'04).
(2) Launchbury, John, & Sabry, Amr. (1997). Monadic state:
Axiomatization and type safety. Pages 227–237 of:
Proceedings of the 2nd ACM SIGPLAN International
Conference on Functional Programming (ICFP'97).

Automatic generation of an integrated development
environment for new languages

New language is defined as follows:

Translate into another existing language

(Syntax Sugar Based on Context-Independent Grammar)

Integrated development environment:

The behavior of the integrated

development environment using the

Language Server Protocol

translation

struct rectangle {
int x;
int y;
int width;
int height;
};

int arearect(struct rectangle rect) {
return rect.width * rect.height;
}

void main() {
struct rectangle recta;
recta.x = 0;
recta.y = 0;
recta.width = 10;
recta.height = 20;
printf("%d\n", arearect(recta));
}

C/Rust Racket (FP)

surface language internal language

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential

Lower the learning curve of Rust through Machine Learning

Average 2-4 weeks 2-4 months

Machine

Learning
Software Architects

Manual Learning

GC learning

[ICSE22]

lifetime

labels

unsafe

label

Algorithms learning

AlphaCode from

DeepMind

offloading to

Rust community expertsRust idiomatic

code

Rust

Simplifications

Rust code translation tools

Experience from AWS：
Firecracker, S3

Kani formal verifications

PerformanceSafety ProductivityAlgorithm

Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, Linhai Song. Learning and Programming

Challenges of Rust: A Mixed-Methods Study, ICSE 22.

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential

Trusted Programming we develop enhance the efficiency and the proficiency of new programming technology

towards high productivity in creating high quality software, which guarantee safety and performance.

