Key Technology in Trusted Programming

-—ﬁ""‘“‘f:;.::__:.:, B ;‘\: Z
= [+ 0. Bristol work (1)

= 1. In Rust we Trust (3)

I+ 2. A Running Example (11)

I- 3. Rust Roadmaps Aspired R & D (6)

- 4, R&D Summary (2)

Department: Trusted PLDI Lab / Ireland Research Center / European Research Institute *

Author: Professor Yijun Yu (Huawei Ireland and The Open University UK) "
on behalf Huawei's MemSafePro ITMT project members and Rust community experts

Date: July 7, 2022 @ 2012 Labs Global Software Technology Summit

Version: 1.0

Trusted Programming we develop enhance the efficiency and the proficiency of new programming technology
towards high productivity in creating high quality software, which guarantee safety and performance. ‘
V4 HUAWEI

Optimize CRustS to increase the proportion of safe code and check temporal safety issues.

+ The innovative method solves the raw pointer

Requirements tnp;o:ng rav}:/ p;)lnter. to refer:;ce r:ffa\ctorlng since fhase E to reference refactoring transformation, breaks
To ensure safety, the C code nhance t ? etection capability of time memory safety through the original TXL ceiling, and increases
vulnerabilities for C code that could not be detected by

Microsoft Checked C.

For Rust code that can be translated resulting in a higher

the safe code ratio to 53%, surpassing
[OOPSLA21] and our Phase 1 [ICSE22] work

(40%). In addition, innovative check analysis

needs to be migrated to the Rust
code. Due to the huge legacy of v

C code in product lines and the safety code ratio:

algorithms are used to detect time-related

steep learning curve of the Rust v By reducing the number of unsafe regions involving

language, an automated C-to-
Rus code conversion tool was
developed to assist in manual

secure code migration.

raw pointer expressions

memory safety issues. The CWE401, CWE415,
CWE416, and CWE122 reach 17% to 49%
respectively, surpassing Microsoft Checked C.

Develop the Playground demos, which helps

Memory leakage CWE401 612 234 38.2% the experience and promotion of Rust in the
T t Product repeated release CWEA415 336 156 46.4% company, and released code and binary to the
arget Produc : . ,
; ; . . ++
Product lines with existing C dangling pointer CWE416 150 74 49.3% Code has been released to intersource community intersource community to enable C/C
) Heap Buffer CWE122 3656 631 17.2% product line to switch to Rust.
codes and requirements for Overflow

Verify 100% correct and enabled development. « Wireless Q922 module, BaseBIOS base

converting to Rust codes.)
Wireless Q922

Module

BaseBIOS of Central software pilot and board verification, and

NIST Juliet 1.3 2017 Dataset C/C++ Memory safety Hardware

‘ HiSilicon Kirin platform xloader: C-to-Rust
Detection, While Microsoft Checked C could not check

. code conversion functions are complete and

Dependencies : "
Michael Ling, Yijun Yu, Haitao Wu, Yuan Wang, James correct, which are auxiliary and reference for

Cordy, Ahmed Hassanl. " In Rust we Trust: Translating

Unsafe C to Safer Rust", ICSE 2022.

Emre, Schroeder, Dewey, Hardekopf, "Translating C to

Safer Rust", In: OOPSLA, 2021.

Yamaguchi, Matsuda, David, Wang, "Synbit: Synthesizing

Bidirectional Programs using Unidirectional Sketches", In

OOPSLA 2021.

Kirin /321 firmware xLoader 1210518 Rust EFRE , 1210EERIPA A&7 1FEH Rust i TERBEREHFTRE , Bk REHS A FRE, TEFRAFEA c2Rust
T ExSEfftmTisE . SERMEER] Rust (RERH TN, B3R 7 B0 Rust (RIBATH &35, IREAMS c2rust TEHP —RiHT 7 EE, 3TE
REEEICIRR T ETER . BEnZmBCE=mE{T, e 3.0 EFI~SmA.

The target C code can be pilot projects.

compiled normally in the original
HiSilicon Kirin xLoader has been put into

environment and architecture. . .
commercial use with Harmony 3.0 phones.

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential Page 2 SQ HUAWEI

Algorithm

Performance

Safety

Productivity

Rust: an efficient language designed to be safe

Type safety

Strong Type

Static Type

Immutable by
default

Explicit
public

=

Security by design
Memory

Safety

Ownership

Borrowing

Smart Pointer
& RAIl

Lifetime

Static Analysis by Compiler

Im50 i T Iy *EEQrVo =
|'|1 : ; Tock :
g 2022 rf\\ i o 7| ™ Etheraam H
VAT YA T | T : X "
pimes [l ; _ B a Y|wmpgdnw ¥eL ren
o | II ""E T Lt ,".:,"f ?nl L -
@ : i N #e & ‘i_:;l._ Y
f - 2%~ =changes R N T ‘.-1-1"-""\: .~
Concurrency Safety —mLor ol WO WmEE s -
Multi‘ ot g riakl ! reib riabl 2OE3 3014 L FUET
threading Year Year
ot s Figure 1. Rust History. (Each blue Figure 2. Time of Studied Bugs.
- point shows the number of feature (Each point shows the number of our
atomics changes in one release version. Each studied bugs that were patched during
~ red point shows total LOC in one re- a three month period.)
TLS & Channel :
lease version.)
Async User Programs risky code]
Ll
Generator Safe Rust U call : CallUUnsafe Rust
1
) Safe APIs : Unsafe APIs
Feature Ownership-based Memory Management :
exclusive mutable alias i Unsafe API
N o
lifetime validation : raw pointer
automatic destruction X dereference
J 1
J) can1 ! Jlean1
[Unsafe APIs |
access Jb ! {laccess
‘ Memory |

Understanding Memory and Thread Safety Practices
and Issues in Real-World Rust Programs

Baqin Qin’ Zeming Yu
BUPT, Pennsylvania State University Purdue Universit ty Pennsylvania State University

USA. UsA UsA

Yilun Chen*

Yiying Zhang
ersity University of California, San Diego
usA UsA

Linhai Song
Pennsylvania State Univ

Figure 1: Idea of Rust for preventing memory-safety bugs.

Algorithm Safety Performance Productivity

Some Rust projects inside Huawei

+ Wireless TLV encodec framework (3K LOC) * Hisilicon Camera Dirt Detection algorithm (8K LOC)

. . > No memory safety issues
> No memory safety issues, hard to have runtime errors y y

0 =
> Performance speed up 4~7 times > Performance enhances to 25% (2.004 -> 1.603 ms/frame)

. .. > i 0
> Learning curve 4 weeks, Memory consumption increases from C Memory fluctuation reduces by 50%

to Rust (532K—>696K when there are 161 fields) > Learning curve 2~4 weeks
* Central Soft OpenEuler StratoVirt (24K LOC) > Shared library (SO) size (97K->107K)
> Zero vulnerabilities, No memory safety issues (passed ICSL tests) * Ylong-Rust (100 KLOC), available on OpenX
> Learning curve 4 weeks (initial) till 6 months (master) > No memory safety issues
* Central Soft Light-weight container (20K LOC) > Async concurrency framework, Crypto, JSON/XML parsing, hot

. patches, etc..
> No memory safety issues

> Learning curve 2~4 weeks
> Learning curve: 4 weeks (initial) till 6 months (master) e

> 1 old-+-1 new paired programming for 2 months -5K LOC/per person

* Central Hardware BaseBIOS (6K LOC)
> Support ARM Cortex, M and RISC-V MCU hardware abstraction

> Learning through excellent open-source projects
* 5G Core UDG Flow Module (11K LOC)

> No Memory Safety issues

, > Learning curve 3~5 weeks, pure embedded bare metal with no-std
> Memory, CPU consumptions and performance level off to C

> CRustS converts Rust code can compile and run with good efficiency,

> i ~ . .
LEEITING SRS 25 TREls but some manual adjustments needed for commits

Harmony and Open Harmony: Network Management modules
4 Huawei Confidential s% HUAWEI

Algorithm Safety Performance Productivity

Our Vision of Trustworthy System Programming (Rust):
Automated Programming for Better Safety, Performance, and Productivity

Theoretical Foundations
of Trusted Programming Research

Memory Safety = Zero-cost Memory Abstraction
Fearless Concurrency = Lambda Calculus for FP
+ Neural Network Representations of Code

N

Challenges in Trusted Programming
for Huawei Systems

Legacy C/C++ code:
LOC >80%, Vulnerabilities >50%

Developing new systems in Rust:
- Steep learning curve: 2-4 months
- Undefined behaviour in unsafe code

Low code model-driven development:
Sanyapo battle: lack debugging
capabilities for meta-programming

Technology breakthroughs

Code transformation of safer Rust code [ICSE22]
Commercial development in BaseBIOS (CH).
xloader (Hisilicon) [Harmony OS 3.0]

Rust Roadmap contributions: Async/Await. Futures
Inline Assembly, Cross Compilation [Wireless BU]
Crypto. SIMD libraries [Camera of Hisilicon]

Fearless Concurrency [Scoped Threads, Mutex, FFTS]

Bidirectional Transformations of MDD [ICSE’12]
InferCode Pre-training [ICSE21]
Corder: Cross SE tasks ML [AAAI'21, SIGIR21]

5 Top-Conference publications, 2 Patents

Impact

Auto migration of systems in 3 days
with safe ratio 60% and
no performance penalty from C 100%

Made 9 Rust roadmap contributions to
language, compiler, standard library;

Accurate unsafe Rust classification 98%

classify assembly code accuracy 77%;
Performance boost of Camera applications 25%
Lock performance >2x

Reduce Open Euler Rust toolchain build
bottleneck by 3.5 times. /

Matching Strategic Innovation Project (STIP) needs in support for the ITMT project {MemSafePro) :

Recruited top Rust experts from Rust Foundation and community leading teams from Europe:
Amanieu d’Antras (Standard library, UK) , Mara Bos (Rust Library Co-Leader, Nederland) , Guillaume Gomez (DevTools, France),
Vadim Petrochenkov (Language, Russia), David Wood (Compiler, UK) and Bastian Kauschke (Compiler, Germany)

Collaboration with top universities world-wide:

The Open University UK — Helen Sharp {Bug Localization) , Bristol University UK -- Meng Wang {eDSL Debugging) Cristina David {C2Rust Program Synthesis) (EPSRC. Royal Society)
Lero Ireland -- Bashar Nuseibeh {RE4Al) , SMU Singapore -- Lingxiao Jiang {Deep Learning of Code)
Peking University China -- Zhenjiang Hu {FP Core semantics for C and Rust) , Yingfei Xiong {Beyond Alpha Code — Synthesis Rust Algorithms}

HUAWEI TECHNOLOGIES Co., Ltd.

HUAWEI Confidential S

&2 Huawel

Mobile Rust: Safe Programming for Mobile Ecosystem with Fearless Concurrency and High Productivity

&

» Efficiency

.
G .
.
’
.
.
U ’

Performance

Virtues: Safe, Efficient, Productive
o Memory Safety, Concurrency Safety, Thread
Safety
o As performant as C/C++
o More efficient and maintainable than C/C++
Challenges: High Learning Curve
o Borrowed many language features
o Share memory model between developer and
compiler

Huawei Proprietary - Restricted Distribution

Mobile Rust
Safety

[[

Efficiency Easyto Learn

Performance

Energy Efficiency
Migrate C/C++ modules

Build open programming ecosystem to differentiate Swift and Kotlin

Performance Tuning for Mobile hardware platform
» Hardware friendly performance tuning for FFTS
» Cross-compilation for new processors
» Compiler optimization for LLVM backend
* Modern concurrency programming paradigms for IO/CPU-intensive apps
* Memory hierarchy optimizations
Lowering the learning curve and striking a balance between usability and
software performance
« Dynamic link for better reusability
* Interoperability between FFI languages
* Promote usability by simplifying Rust to interoperate with Rust toolchains
» DSL at the app-development level to interoperate with Java/kotlin/dart/swift|

2 HUAWEI

Huawei Making Contributions to Complete 9 Roadmap Features of Rust Community in 2022

Contributed to the roadmap features that are valued important by Huawei's product lines

Compiler Inline Assembly From Experimental to Stable BaseBIOS advanced safety module Driving 1.59.0
Language FFl unwind Resolve outstanding issues of cross-language interoperability FFl between DOPRA Rust and DOPRA C Participating 1.64.0 (as planned)
. o . . e I BaseBIOS advanced safety module of Central Hardware and ..
Compiler Cross compilation Formal tiered policy to support compilation objectives HiSilicon Kirin xloader reconstruction Driving 1.59.0
Compiler Faster compilation Compile speed 20% - 30% faster Improves Compilation and Build Speed Driving 1.61.0
Language Uninitialized Buffer Processing The 1/0 buffer is not initialized. Enhances Rust Compiler safety Participating 1.64.0 (as planned)
standard darch SIMD standard lib Ref f Hisilicon Graphic Camera Algorith Drivi 1.59.0
Library std::arc standard library support efactors of HiSilicon Graphic Camera Algorithm riving .59.
Eitgg?;rd std:sync Support for Mutex, RwLock and CondVar on all platforms Improves concurrency and lock performance Driving 1.63.0
Standard d: impli handling API | he usability of the debugging interf Participati 1
Library std:error Simplify error handling mproves the usability of the debugging interface articipating .60.0
DevTools Rustdoc Navigation Cross-Document Navigation Link Generation Improves the E2E tool chain Driving 1.61.0
Eitgrr;dnalrd Scoped Threads Supports syntax extension of multithreaded concurrent code. Improves the development of fearless concurrency Driving 1.61.0
Compiler Split DWARF Remove debugging information from binaries Reduces binary file size Driving 1.61.0
Compiler Top Issues of LLVM affecting Stability Improvement based on LLVM Compilation Resolves three blockages Driving LLVM15
Rust compiler
2020.9 2021.6 Key Technology 2022.6 Long-term Evolution of Technology ~ 2022.9
Stable Version Rhythm

HUAWEI TECHNOLOGIES Co., Ltd.

HUAWEI Confidential

Page 7

&‘VA HUAWEI

-

Algorithm

Safety

Performance

Productivity

Quicksort in C and C+ +

https://rosettacode.org/wiki/Sorting algorithms/Quicksort#Rust

vold quicksort(int *A, int len) {

if (len < 2) return;

int pivot = A[len / 2];

int i, j;

for (1 = @, j
while (A[1i]
while (A[7]

B

if (i »= j) break;

int temp
A[i]
AL3]

ALL];
ALTI;
temp;

quicksort(A, 1);

guicksort(A + i, len

¥

len - 1; ; i++, j--) {
pivot) i++;
pivot) j--;

i);

#include <iterator>
#include <algorithm> // for std::partition
#include <functional> // for std::less

template<typename RandomAccessIterator,
typename Order:
void guicksort(RandomAccessIterator first, RandomAccessIterator last, Order order)
i
if (last - first > 1)
!
RandomfccessIterator split = std::partition({first+l, last, std::bindZnd(order, *first));
std::iter swap(first, split-1);
quicksort(first, split-i, order);
quicksort(split, last, order);
¥
¥

template<typename RandomAccessIterator:
void gquicksort(RandomAccessIterator first, RandomAccessIterator last)

i

quicksort{first, last, std::less<typename std::iterator_ traits<RandomAccessIterator:::value typex());

¥

Generic, Polymorphism

https://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Rust

Algorithm Safety Performance Productivity

Quicksort in Rust

httDS ://CZ rUSt.CO m/ Ling, Michael; Yu, Yijun; Wu, Haitao; Wang, Yuan; Cordy, James and Hassan, Ahmed

(2022). CRustS: A Transpiler from Unsafe C to Safer Rust. In: 44th International
https://185.190.206.130 o .
Conference on Software Engineering (ICSE 2022), 22-27 May 2022, Pittsburgh, USA.

C Code & Test Cases C Build Scripts'®

c-builder /cc

compile_commands json

Rust Tests

build-fixer /rustc

< O @ A Notsecure | 185.190.206.130 [D] Cargotoml] A a g L
Select a C code: edit or upload your own C code: you will see output Rust code from C2Rust: and CRustS:
Jrosetta_code/determine_if_a_string_has_all_«

[rosetta_code/cut_a_rectangle/main.c
Jrosetta_code/hilbert_curve/main.c C Source of ./gsort/gsort.c H C2Rust output of /gsort/gsort.c H CRustS output of ./gsort/gsort.c
Jrosetta_code/magic_8_ball/main.c 3 ol Sepne 3, o A
I{rosena codefcheck Output device is a ten 3 int t = *a; 3 - #![allow(dead_code, mutable_transmutes, non_camel case_types, non_snake_case, 3 w![allow (dead_code, mutable_transmutes, non_camel_case_types, non_snake_case,
b — — = = = = 4 *a = *b; 4 non_upper_case_globals, unused assignments, unused_mut)] 4 ! [register_tool (cirust)]
I,frosena c_ode‘{memory a"ocation!main c 5 *h = t; 5 #l[register_tool{cZrust)] 5 #![feature (register_tool)]
. | — - 8 } ?’ :[!:Featu'\i{;egis-.er_-.:-cl]] ,E: n[zc—_n:ngle.]l ‘e X . - i

7 no_mangle = pub extern "C n swap (mut a @ * met 133, mu : ¥ mut i32)
';rose‘ta—mde‘{cr032!maln'c & int partition {int arr[], int low, int high) 8~ pub E‘sage extern "C" fn swap(mut a: * i B~ ’ unsafe { ?

i ar g9~ b: * bec:: let m i3z = v og;
.frosetta_codefcartesmnjroduct_pf_two_or_r 18 ! int pivet = arr[high]; 1: let mut t: libc::c_int = :Ut JZ ‘e: = ;,- n 5
Jrosetta_code/mandelbrot_set/main.c o it dsdaw - 3 = e = oree

. P N N N : : = o - ¥
Jrosetta_code/arbitrary_precision_integers/m: Ol o it 3 don g o bigh - 3 g B e - K
[rosetta_code/horners_rule_for_polynomial_e 15 e 15+ pub unsafe extern "C" fn partition(mut arr: * c_i 15 #lnomangle] . . o
— — — — — 16 swap(Barr[i], &arr[3]); 16 Jow: 16~ pub extern "C" fn partition (mut arr @ * mut 132, mut low : 132, mut high : i
[rosetta_code/next_highest_int_from_digits/m 1 } 7= 17 unsafe {
- L . - — 18 ¥ . o 18 18 :_et mut |:_:i\-':n_: i * arr.offset (high as isize};
Jrosetta_codefemirp_primes/main.c b swap(Earr(i + 1], Sarrlhigh]); b b lermuticd "4
— — 2 return i + 1; : : _ let mut j ¢ i ;
rosetta_code/matrix_multiplication/main.c 2} - wnile g <= high - 1 a- while 3 <= high - 14 _
- It . 22) . . .) . 22 if 'gr‘r.aFFse‘t(] as L if '_ar'r'_c-FFse"t (j as isize) <= piwvot {
Jrosetta code/null ObJecﬂmam.c 2% void quickSort{int arr[], int low, int high) 23 i4=1; 23 i+=1;
— — 24 { 24 swap{&mut *arr.offset(i as isize), Bmut *arr.offset(j as isize)); 24 swap (& mut * arr.offset (i as isize), & mut * arr.offset (j =
[rosetta_code/nim_game/main.c 257 i (low < high) | = ! 2 }
— 26 int i = partition{arr, low, high); 26 j+=1 26 j+=1
27 ick s dow, 1 - 1); - }
quorlquorlc 28 :Ejik:g::E:;:, :ic? 1:‘ hi;h_‘.; i; iwap(&-ut “arr.offset((i + 1 as libc::c_int) as isize), j; swap (& mut * arr.offset ((i + 1i32) as isize), & mut * arr.offset (hi
_f|ibxm|2}re|axng_c 0 } 29 &mut 'arr‘.c-FF: gh as isize)); 29 return i + 13
£ 30 return 1+ 1 as 1i int; 38 1
NibXmI2/SAX2.c nf ag o oy
32 #[no_mangle 32
Jlibxm|2fentities.c ;:»5 = pub E‘sage extern "C" fn quickSort{mut libc:oze_i 33 n[nc—_nangle.:!) X .) .

. 34 mut z 34= pub extern "C" fn guickSert (mut arr @ * mut 132, mut low @ 132, mut high : i:
Jlibxml2/xmiregexp.c 35~ nut high: 18- unsafe |

. 36~ if low < high { 35~ if low < high {

_fllb)(m|2b(m|cata|()g_c 37 let mut i: 1i i i 37 let mut i : 132 = partition {arr, low, high);

. . 38 quicksort{arr, i _: H 38 guicksort {arr, low, i - 1);
I|r||l‘:))(["|"]|2,’(d|ctC 39 quickSort{arr, i + 1 as libc::c_int, high); 39 quicksort {arr, i + 1, high);

. . 48 i 48 HH
Jlibxml2/encoding.c - N i,

. . i}

Jlibxml2/xmistring.c

Jlibxmi2/threads.c

Jlibxml2/pattern.c . .
Jlibxml2/globals.c

Jlibxml2/buf.c 4| Upload | Translate | Query Download c2rust.rs | Refactor | Query Download crusts.rs | Query | Predict Unsafe

https://c2rust.com/
https://185.190.206.130/

Algorithm Safety Performance Productivity

Quicksort in Rust (manual)

https://rosettacode.org/wiki/Sorting algorithms/Quicksort#Rust

fn guick _sort<T,F>(v: &mut [T], f: &F)
where F: Fn(&T,&T) -» bool

1
let len = v.len();
if len »>= 2 {
let pivot_index = partition(v, f);
quick sort(&mut v[@..pivot_index], f);
quick_sort(&mut v[pivot_index + 1..len], f);
¥
¥

fn partition<T,F>(v: &mut [T], f: &F) -> usize
where F: Fn(&T,&T) -> bool
{
let len = v.len();
let pivot_index = len [2;
let last_index = len - 1;

v.swap(pivot_index, last_index);

let mut store_index = @;
for i in 8..last_index {
if f{&v[1i], &v[last_index]) {
v.swap(i, store_index);
store_index 4= 1;

h

v.swap(store_index, len - 1);
store_index

} In-place swap

fn quick sort<T, E>{mut v: T) -> Vec<E>»
where

T: Iterator<Item = E>,

E: PartialOrd,

1
match v.next() {
MNone =»> Vec::new(),
Some(pivot) => {
let (lower, higher): (Vec<_ >, Vec<_>) = wv.partition(|it| it < &pivot);
let lower = quick_sort(lower.into_iter());
let higher = quick sert(higher.into iter(});
lower.into iter()
.chain(core: :iter: :once{pivot))
.chain(higher.into iter())
.callect()
¥
b
¥

Or, using functional style (slower than the imperative style
but faster than functional style in other languages):

https://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Rust

Performance

Algorithm Safety Productivity

Quicksort in Rust
https://rosettacode.org/wiki/Sorting algorithms/Quicksort#Rust

fn quick sort<T,F>(wv: &mut [T], f: &F)
where F: Fn(&T,&T) -* bool

{
let len = v.len();
if len »= 2 {
Mutable let pivot_index = partition(v, f);
Reference quick_sért{&mut v[@..pivot_index], f);
Limits quick sort(&mut v[pivot index + 1..len], f);
Parallelism
¥
¥
1) Borrow
checker
can tell fn partition<T,F>(v: &mut [T], f: &F) -> usize
the variable where F: Fn({&T,&T) -> bool
may overlap {
2) Refactoring let len = v.len();
of the &mut to & let pivot_index = len / 2;
would allow the let last_index = len - 1;
parallelization
3) clone the variable . .)
could allow for v.swap(pivot_index, last_index);
parallelization
4) scoped thread may let mut store_index = @;
still parallelize it for 1 in @..last_index {
with ease if f(&v[i], &v[last_index]) {
clone the slice and v.swap(i, store_index);
join the threads. store index += 1;
Special transformation ¥
may be designed as a ¥
compiler dataflow pass.
v.swap(store_index, len - 1);
store_index
¥

In-place swap

Safe Rust makes it easier to achieve
parallelization

fn quick sort<T, E>{mut w: T) -> Vec<E>
where

T: Iterator<Item = E»,

E: PartialOrd,

1
match v.next() { No dependency
None => Vec::new(), between left
and right;
Some(pivot) => {
let (lower, higher): (Vec< », Vec< >) = wv.partition(|it| it < &pivot);
let lower = quick sort{lower.into iter())}; Recursive function can
let higher = quick sort(higher.into_iter()); be parallelized using
lower.into_iter() FFTS.
.chain(core: :iter: ::once{pivot))
.chain(higher.into_iter())
.collect()
h
¥
¥

Or, using functional style (slower than the imperative style
but faster than functional style in other languages):

https://rosettacode.org/wiki/Sorting_algorithms/Quicksort#Rust

Algorithm

Safety Performance Productivity

How do we parallelize sequential QuickSort in Rust?

fn quick_sort<T,F>(v: &mut [T], f: &F)
where F: Fn(&T,&T) -»> bool

{
let len = wv.len();
if len >= 2 {
let pivot index = partition(v, f);
quick sort(&mut v[@..pivot_index], f);
quick _sort(&mut v[pivot_index + 1..len], f);
T
}

fn partition<T,F>{v: &mut [T], f: &F) -> usize
where F: Fn(&T,&T) -» bool
{

let len = v.len();
let pivot_index = len [/ 2;

let last_index = len - 1;
v.swap(pivot_index, last_index);

let mut store_index = @;
for i in @..last_index {
if f{&v[i], &v[last_index]) {
v.swap(i, store_index);
store_index += 1;

1
J

v.swap(store_index, len - 1);
store_index

1. Scoped Threads (available in nightly Rust, will be stablized in 1.61.0)

#![feature(null, scoped_threads)]
std:-thread;

quick_sort<T,F>(v: & [T], f: &F)
F: Fn(&T,&T) -> bool

len = v.len();
iflen >=2{
pivot_index = partition(v, f);

(lower, rest) = v.split_at_mut(pivot_index);
(mid, higher) = restsplit_at_mut(1);
thread::scope(Js| {
s.spawn(]| {
quick_sort(lower, f);

13-
ih

quick_sort(higher, f);

Performance: 1024*1024 Array random numbers,

1100 ms (Single thread)
37 ms (Multi-threaded)

Algorithm Safety Performance Productivity

2. Rayon library

https://docs.rs/rayon/latest/rayon/fn.join.html

fn quick_sort<T:PartialOrd+Send>(v: &mut [T]) {
if v.len() > 1 {
let mid = partition(v);
let (lo, hi) = v.split_at_mut(mid);
rayon::join(|| quick_sort(lo),
|| quick_sort(hi));

Conceptually, calling join () is similar to spawning two threads, one executing each of the
two closures. However, the implementation is quite different and incurs very low overhead. The
underlying technique is called “work stealing™: the Rayon runtime uses a fixed pool of worker
threads and attempts to only execute code in parallel when there are idle CPUs to handle it.

When join is called from outside the thread pool, the calling thread will block while the
// Partition rearranges all items <= to the pivot

// item (arbitrary selected to be the last item in the slice)
// to the first half of the slice. It then returns the
// "dividing point" where the pivot is placed.

fn partition<T:PartialOrd+Send>(v: &mut [T]) -> usize {
let pivot = v.len() - 1; however closure B has been stolen, then it will look for other work while waiting for the thief to

closures execute in the pool. When jo1in is called within the pool, the calling thread still
actively participates in the thread pool. It will begin by executing closure A (on the current
thread). While it is doing that, it will advertise closure B as being available for other threads to
execute. Once closure A has completed, the current thread will try to execute closure B; if

let mut i = 0 fully execute closure B. (This is the typical work-stealing strategy).
for j in 0..pivot {
if v[j] <= v[pivot] {

v.swap(i, j); Performance: 1024*1024 Array random numbers,
} T 1100 ms (Single thread)
} 37 ms (Multi-threaded)
VoSTERGly [PUEE)5 19 ms (Multi-threaded using thread pooling and rayon::join)

_‘I

https://docs.rs/rayon/latest/rayon/fn.join.html

Algorithm Safety

Performance

Productivity

3. Rayon overhead estimates

https://github.com/rayon-rs/rayon/blob/fcfd463d503¢c1f510fc7b47eec636d989¢c1389f5/src/slice/quicksort.rs#L750

This threshold is necessary when

the slice is small.

735
736
737
738
739
748
741
742
743
744
745
746
747
748
749
758
751
752
753
754
755
756
757
758
759

A Sorts Tv' recursively.
i
£ff If the slice had a predecessor in the original array, it is specified as “pred’.
i
FAF T1limit” is the number of allowed imbalanced partitions before switching to “heapsort™. If zero,
JfF this function will immediately switch to heapsort.
fn recurse<'s, T, Fe{mut v: &'a mut [T], is_less; &F, mut pred: Option<&'a mut T, mut limit: w32)
where
T: Send,
F: Fn(&T, &T) -» bool + Sync,

ff 5lices of up to this length get sorted using insertion sort.

const MAX_INSERTION: usize = 28;

ff{ If both partitions are up to this length, we continue sequentially. This number is as small
/f @s possible but so that the overhead of Rayon's task scheduling 1s still negligible.

const MAX_SEQUENTIAL: usize = 2@888;

ff True if the last partitioning was reasonably balanced.
let mut was_balanced = true;
ff True if the last partitioning didn't shuffle elements (the slice was already partitioned).

let mut was_partitioned = true;

loop {

let len = w.len();

https://github.com/rayon-rs/rayon/blob/fcfd463d503c1f510fc7b47eec636d989c1389f5/src/slice/quicksort.rs#L750

Algorithm

Safety Performance

Productivity

Architectural Design on top of Rust Compiler

Rust Source

<d—

f(); ...

<

i Farsing and Desugarng

HIR

l Type checking

MIR

Borrow checking

Optimization .

LLVM IR

i Optimization

Machine Code

8();

Basic solution: From the HIR, using Type Checker to obtain IN/OUT sets of variables from Lambda function descriptions
thread::scope(|s|) {

s.spawn(f);
s.spawn(g);

Auto parallelization: From the MIR, using BorrowChecker (Polonius/NLL) to obtain the datalog outputs,
from which we obtain IN/OUT sets of variables at any function call site. For functions f and g, if they are not dependent
on each other, we can parallelize them through code transformation on the HIR.

Annotations indicate whether certain variables shall not be included in the IN/OUT sets of variables, and whether
it is better not to generate parallel threads.

Algorithm Safety Performance Productivity

Extract relevant information from MIR dumps

Using rustc 1.62.0-nightly (52ca603da 2022-04-12)

bb5: {
StorageDead(_13); // scope 1 at /rustc/52ca603da73
>rm _rf mir dump StorageDead(_24); // scope 1 at /rustc/52ca603da73
- . . StorageDead(_21); // scope 1 at /rustc/52ca603da73
> rustc —Z dump_m|r=y SrC/maln.rS StorageDead(_20); // scope 1 at /rustc/52ca603da73
StorageDead(_16); // scope 1 at /rustc/52ca603da73
println!("Sort numbers in descending order"); 5t°rage°ead:—12;; 4F S00Ra 1 ik JTUSIR/BAcadi0ns
_ . StoragelLive(_25); // scope 1 at @3.rs:32:5: 32:43
leF mut numbers = [4, 65, 2, -31, @, 99, 2, 83, 782, 1I; StoragelLive(_26); // scope 1 at 03.rs:32:16: 32:28
println!("Before: {:?}", numbers); StorageLive(_27); // scope 1 at 03.rs:32:16: 32:28
quick_sort(&mut numbers, &|x,y| x > y); // IN: {numbers, closurel}, OUT: {numbers} StoragelLive(_28); // scope 1 at @3.rs:32:16: 32:28
. _28 = &mut _11; // scope 1 at 03.rs:32:16: 32:28
| n . .') n 0
33 printin!("After: {:7}\n", numbers); _27 = &mut (x_28); // scope 1 at ©3.rs:32:16: 32:28
_26 = move _27 as &mut [i32] (Pointer(Unsize)); // scope 1 at 03.
StorageDead(_27); // scope 1 at @3.rs:32:27: 32:28
StorageLive(_29); // scope 1 at 03.rs:32:30: 32:42
StorageLive(_30); // scope 1 at 03.rs:32:30: 32:42
_153 = const main::promoted[11]; // scope 1 at ©3.rs:32:30: 32:42
S d // mir::Constant
ource coade // + span: 03.rs:32:30: 32:42
// + literal: Const { ty: &l[clos
_30 = &(%_153); // scope 1 at ©03.rs:32:30: 32:42
YETE - debuglS BRER _29 = &(%_30); // scope 1 at @03.rs:32:30: 32:42
APEXHZR g{; =7 bb5[19] _25 = quick_sort::<i32, [closure@@3.rs:32:31: 32:42]>(move _26, m
debug numbers => _11; 71 BTG talE
debug strings => _55; // + span: @03.rs:32:5: 32:15
// + literal: Const { ty: for<'r
=AREnEY :
let mut _153: &[closure@®@3.rs:32:31: 32:42]; // in scope 1 at ©03.rs:32:30: 32:42
let mut _148: &[closure@®@3.rs:39:31: 39:42]; // in scope 2 at 03.rs:39:30: 39:42 m|r_dump/ma|n.ma|n.002—009.S|mpI|fnyg—e|aborate—drops.after.mlr

let mut _143: &[closure@@3.rs:45:31: 45:54]; // in scope 2 at ©3.rs:45:30: 45:54

Compute data dependencies using Borrow Checker Polonius

https://github.com/rust-lang/polonius

The name comes from the famous quote "Neither a borrower nor a lender be", which was said by the character
Polonius to his son Laertes in Shakespeare's Hamlet.

rustc —Znll-facts src/main.rs

main, main#closurel, 2, 3, quicksort, partition
* MIR => Datalog facts (Origin, Loan, Point, Variable, Path)

loan_issued_at(origin, loan, point)
cfg_edge(point, point)
loan_killed_at(loan, point)
subset_base(origin, origin, point)
loan_invalidated_at(point, loan)
var_used_at(variable, point)
var_defined_at(variable, point)
var_dropped_at(variable, point)

use_of var_derefs_origin(variable, origin)
drop_of var_derefs_origin(variable, origin)
child_path(path, path)

path_is_var(path, variable)
path_assigned_at_base(path, point)
known_placeholder_subset(origin, origin)
Placeholder(origin, loan)

loan_killed_at

IN: variable used_at—loans_invalidated_at

OUT: variable_defined_at —loans_killed at

Implementation tools: Polonius + Soufle (Datalog engine)

F OUTAG IN={} andF INAG OUT={} =>F || G

"Mid(bb0[0])"
"Mid(bb0[1])"
"Mid(bb0[2])"
"Mid(bb0[3])"

5" "Mid(bbO[4])"
"_156" "Mid{bbO[5])"
" 5" "Mid(bbO[e])"
"Mid(bbO[7])"
"Mid(bbO[8])"
"Mid(bbO[9])"
"Mid(bb0[10])"
"Mid(bb0[11])"
"Mid(bb0[12])"
155" "Mid(bbO0[13])"
" "Mid(bb0[14])"
"Mid(bb0[15])"
"Mid(bb0[16])"
"Mid(bb0[17])"
"Mid(bb0[18])]
"Mid(bb1[0])"
"Mid(bb1[1])"
"Mid(bb1[2])"
"Mid(bb2[0])"
"Mid(bb2[1])"

loan_invalidated at Vvar_defined_at

1 " 156" "Mid(bb0[6])"
" 5 "Mid(bbO[7])"
"Mid{bbO[8])"

* 155" "Mid(bb0[14])"

* *Mid(bbO[15])"
"Mid(bbO[16])"
"Mid(bbO[18])"
"7 "Mid(bbO[18])"
" 2" "Mid(bb1[2])"
" "Mid(bb2[6])"
" "Mid(bb2[13])"
' "Mid(bb2[14])"
' "Mid(bb2[15])"
"Mid{bb2[24])"
"Mid{bb2[25])"
"Mid{bb
"Midi{bb
"Midi{bb
"Midi{bb
"Midi{bb
"Midi{bb
"Midi{bb
"Midib :
11" "Mid(bb5[10])"
" 28" "Mid(bb5[11])"

var_used_at

https://github.com/rust-lang/polonius
https://literarydevices.net/neither-a-borrower-nor-a-lender-be/

Understanding Polonius facts: we are able to Using rustc 1.62.0-nightly (52ca603da 2022-04-12)
extract IN/OUT data dependencies > rm —rf mir_dump

_ > rustc —Z dump_mir=y src/main.rs
> rustc —Z nll-facts src/main.rs

bb5: {

StorageDead(_13); // scope 1 at /rustc/52ca6@3da73
main StorageDead(_24); // scope 1 at /rustc/52ca603da73
StorageDead(_21); // scope 1 at /rustc/52ca603da73
StorageDead(_20); // scope 1 at /rustc/52ca603da73
e L e StorageDead(_16); // scope 1 at /rustc/52ca603da73
Mi_#155r" "bw2" "Mid(bb5[101)" //XE _28 = &mut _11; 2;2:23:3?32:-;& x 2222: 1 :I g;ui?g;?;‘_’ﬁg;ﬁ?

"' #156r" "bw3" "Mid(bb5[11])" //FR _27 = &mut (*_28); Sy oy i i
StorageLive(_26); // scope 1 at ©03.rs:32:16: 32:28
fmain/var_used_at. factse StorageL%ve(_27); // scope 1 at 03.rs:32:16: 32:28
" 26" "Mid(bb5[19])" StoragelLive(_28); // scope 1 at 03.rs:32:16: 32:28
W 29 "Mid(bb5[19])" _28 = &mut _11; // scope 1 at 03.rs:32:16: 32:28
- _27 = &mut (%_28); // scope 1 at 03.rs:32:16: 32:28
#Emain/loan invalidated at.facts : _26 = move _27 as &mut [i32] (Pointer(Unsize)); // scope 1 at @3.
- - N .) StorageDead(_27); // scope 1 at 03.rs:32:27: 32:28
"Start(bb5[101)" “bw2" // ZEFMKRM, MEMAFissue StorageLive(_29); // scope 1 at 03.rs:32:30: 32:42
"Start(bb5[11])" "bw3" // The loan bw3 7EStart(bb5[11]) %%k StorageLive(_30); // scope 1 at 03.rs:32:30: 32:42

_153 = const main::promoted[11]; // scope 1 at ©3.rs:32:30: 32:42
// mir::Constant
// + span: 03.rs:32:30: 32:42
// + literal: Const { ty: &[clos

fEmain/var_defined_at. facts# :
"_25" "Mid(bb5[191)" //_25E#AERAFER

fEmain/loan_killed_at.facts# :

_30 = &(%_153); // scope 1 at 03.rs:32:30: 32:42
¢ ' ' ' ' . _29 = &(%_30); // scope 1 at @03.rs:32:30: 32:42
B FTEpRISprEEENeaN ubuntu > VY rust = » 2 asciinema play demo.ca 25 = quick_sort::<i32, [closure@@3.rs:32:31: 32:42]>(move _26, m
~ cargo new quicksort = - ! T =
binary (application) ‘quicksort’ package bb5[19] // mir::Constant
~ cd quicksort // + span: 03.rs:32:5: 32:15
THE X cp —r . : o_dir // + literal: Const { ty: for<'r
cp demo_dir, oExa e.r /main.r }
rm —rf mir_dump
souffle -F nll-facts/main -D ./IDB demo_dir/compute_INOUT_for_mainCalll.dl
qu . x cat IDB/final_in_varNameset.csv
S mir_dump/main.main.002-009.SimplifyCfg-elaborate-drops.after.mir

closurel

x cat IDB/final_out_varNameset.csv

5 x exit
8 fraphispre@@d92 ubuntu } rust ~

18 Huawei Confidential gré HUAWEI

Huawei has contributed over 1/3 of Rust roadmap features since 2020,
aspiring our R&D on Rust++
https://trusted-programming.github.io/

Rust community has come up several important roadmaps, where Huawei is
making substantial contributions:

Compiler » Language Roadmap
More information on Diagnostic Translation here. c Compiler Team Roadmap
» Library Roadmap

More information of Inline Assembler here.

R e Here is the list of opensource work in progress by Huawei employees. If you want to

More information on Polymorphization here. look at our existing open-source contributions, take a look here.
More information on Split DWARF here.

L M H
anguage We are also initiating the standardization of Rust.

More information on FFI Unwind here.

More information on Panic Exception handling here.

Compared to C/C++ standardization, Rust++ standardization can be seen
more as coming up with an invariant list of features that the beloved
language should retain during its evolution and innovation.

They offer certainty and guarantee to the adopters of the language.

Library
More information on Aspect Oriented Programming (AOP) here.
More information on Crypto Library here.
More informatio
More information dr-parkinglot here.

More information on stdarch here.

Next, | will present two examples of such R & D.

Tools

More information on CRustS here. 1) Adding unsafe behavior classification of assembler;
More information on Clone Detection Tool here.
More information on Docs.rs improvements 2) Adding mutex support for fearless concurrency;

s her
More information on Rustup Cl improvement here.
s her

More information on Rustdoc improvements

https://trusted-programming.github.io/

Algorithm Safety Performance Productivity

RustConf 2021 keynote on Mutex issues
https://www.youtube.com/watch?v=DnYQKWSs 7EA

https://github.com/rust-lang/rust/issues/93740

Compared to C
pthread_mutex_t,
Rust implementation is

o MUTUAL EXCLUSTON JEcetes

TR

) % performant, and also
() consuming less

5x less memory per lock

Prefers readers: causes writer starvation*
Undefined behaviour when moved*

Undefined behaviour when dropped while locked*

Mara Bos - Project te: Libs Team
gBosSRrestipdareiLibsiicy Implementation hard to validate/review

std::sync::Mutex on Linux std::sync::Mutex on Linux

Speed Size
Rust 1.61 Rust 1.62 Speedup Rust 1.61 Rust 1.62
Test 1: extreme contention 58.51 ms 27.65 ms x2.1 Mutex 16 bytes + 40 bytes allocation 8 bytes + no allocation Call to libc/libpthread, dynamically linked
Test 2: hlgh contention 8.1 ms 1.82 ms x 4.5 RwLock 16 bytes + 48 bytes allocation 8 bytes + no allocation Depends on external C Iibrary
Test 3: low contention 2.80 ms 0.78 ms x 3.6 ; A
(most common case) Condvar 8 bytes + 48 bytes allocation 4 bytes + no allocation Cannot be inlined

Cannot change/improve behaviour,
. stuck with POSIX and libc ABI
.No more allocator overhead when constructing a Mutex
Total time for 32 threads each locking and unlocking 10°000 times

Tested on a AMD Ryzen Threadripper 3990X 64-Core/128-Thread Processor -No more indirection: better for cache

std::sync::RwLock on Linux

Rust 1.61 - pthread_rwlock_t % Rust 1.62 - Pure Rust RwLock
Prefers writers, like Windows SRW locks
Movable

Dropping is a no-op and always safe

Implementation easy to validate/review

Rust’s locks on Linux

std::sync::{Mutex, RwLock, Condvar}

Rust 1.61 — pthread based locks % Rust 1.62 — Pure Rust locks

Part of Rust’s standard library
No external dependencies
Fast path is inlined

More improvements can be made in Rust,
independent from POSIX or C

https://www.youtube.com/watch?v=DnYQKWs_7EA
https://github.com/rust-lang/rust/issues/93740

Algorithm Safety Performance Productivity

It is done for Windows, Linux and BSD, only missing Mac OSX ! Next to
explore its application to our products, e.g. Harmony OS

std::sync::Mutex on Linux

Scalability in extreme conditions

= 5id after this PR ¥ curment/old st parking Jot 0

60,00 ms
150.00 e

140,00 ms A e
130,00 ms

120,00 ms

110,00 ma

Most popular
locking library
(parking_lot)

80.00ms

somm
racoms
60.00 ms.
$0.00 ms
Total time “*™

(lower is
better)

2000ms

30,00

L
10.00 ms po

.

0.00 e

Total time of all threads performing
10'000 lock and unlock operations
each, with extremely high contention

°
Normal

situation situation

Rust 1.61

Number of running threads

P K (up to 128)

Can we automatically leverage the performance features

using Rust compiler?

Community reactions
—

The Rust “std::sync::Mutex’ on Linux has been
remarkably speed up, github.com/rust-lang/rust....

kS Tweet Analytics

® Mara Bos @ ou e 17h
{8 As of Rust 1.62 (going into beta this week)
stz synoz:Mutex, RwLock, and Condvar no longer do any
allocations on Linus, Jk

Benchmarking locks is extremely tricky, as their performance _
Congrats @m_ou_se for the hard work!

. .,. i #rustlang #mutex #thread #performance Ryan Leviek
v 4 yan _levick
1,037 142 10
‘ Colin Elliotté Amazing work by @m_ou_se! The code and the tracking
a_* @colindoesgood issue are really interesting reads.
Impressions Engagemerits Detail expands h
96,126 4,743 1,498 Replying to @mnt io and @m ou_se
This is huge. Great work @m_ou_se and team!
Richard Dodd 7:22 PM - May 5, 2022 - Twitter Web App 4 Lachezar Lechew
0 @richard_o dodd @elpiel

fasterthanlime [l
@fasterthanlime

Replying 1o @mnt_io and @m_ou_se

Amazing wark in a great community

In case you missed it, Mara did some excellent work
there. Think of all the things that'll go faster thanks to
this!

This is really laborious and hard work, with all the
benchmarking, that will make a real difference to loads
of users, even if they don't realise it!

9:44 AM - May 5, 2022 - Twitter Web App

Reactions in open-source projects

Several big open-source projects are discussing
the benefits of the new std::sync::Mutex

-rs/ jo Pubic a . F g
| tokio-rs/tokio Fw O otey | | O E8S Ay O Thomasdezeeuw/inbox ru ©Wah 1 - 4 Fox 0

<> Code (O Issues 184 17 Pulirequests 45 (3 Discussions (5 Actior ¢> Code ()lssues ¢ [Pulirequests 1 () Actions () Securty |~ Insights

Switch back to std::sync::Mutex? #4623 Consider switching to use std::sync::Mutex #37

AT <110FRAH FY Ananad thie lecin Ane . 10 rammante XA ...
use parking_lot #2
asivision wants o mevge 1 commit . aste tvistonimastee (0
@ bevyengine / bevy O Spomor @ Wakn 255 - Fork 18 o
<> Code (O Issues 745 17 Pullrequests 281 () Discussions () Actions [Projects () Security taikl-e commented 17 days ago
Closing -- std mutex enough fast since rust-lang/rust#85035

Consider moving from parking_lot back to std locks #4610

taiki-e closed this 17 days a

®

Algorithm

Performance Productivity

Safety

1 #I[featuresm)]

r ket xv ubd:

= omsafle |

¥ asm?("mow_ | }_5%, oul{ncz) x);
s)

6 asscrl oglis, Sk

Figure 2: Inline assembler in Rust throwgh the asm! proce-
dural macro, where platform-independent assembler instruc-
tions could be embedded along with high-level Bust statements.,

Inline Assembly makes Rust on par

with C in performance!

1 foosafe readipir: &032) — 32 | =pir }
2 umsalfe fo unsafe pesdiplr: scomst 32) —= 032 | =pir }

Fizure 3: These Bust functions compile to the same assembly.

However, they remove knowledge
about unsafe behaviors in Rust code

HUAWEI TECHNOLOGIES Co., Ltd.

Obeservation 1. Rust compiler canmot tell, determmedly,
whether a picce of Rust code 1s unsafe.

Probabilistic Prediction of Undefined Behaviour by Classifying Idiomatic
Rust Code and Inline Assembly

Category No. Rust functions No. Asm functions

= . Safe 42,681 27,100

Obscrvation 2. 1t is not possible to tell, determinedly, whether | Unsafe 5,927 3,822

a picce of assembly code 15 unsafe through code reviews.

R{:_III Cosmipared 1:u- human judzement of undefined hd1lml iour | Safe Unsafe Weighted

in unsafe labels in Bust code, how accurate cun machine

learning alsorithms predict them after training on idiomatic Model Precision Recall F1 Precision Recall F1 Precision Recall Fl
| Rust code?) BILSTM 0.96 1.00 0.98 0.98 0.67 0.79 0.96 096 0.96
- - : - ", CNN 0.98 .00 0.99 0.96 0.85 0.90 0.98 098 0.98
thiif'?’”:"m“““i o fh“;“"tlf“‘_’“““'f‘ri”‘f“““":i"“h““’“T TBCNN 099 099 099 094 089 091 098 098 098
sxhibit in the wsafe Rust, haw accarsic can machin lcam- CodeBERT 100 L00 1.00 098 096 097 099 099 099

ing algorthms predict the assembly implementation withouwt
hints from the high-level Bust code constructs?

[-

* model
CNMN
v TBGNN

CodeBERT
BiLETM
Y . I
training testing
has undefined
bahaviour? i
wal {:IatingI

safe/unsafe via
traceability links

Assembler code
.asm I

disassembler
“objdump -5"
rustfilt’

Rust code
= I

cargo build
“ruste’
‘e

Linkable
k] Il

Figure 5: Overview of the predictor architecture

8

=

8

812

35 undefine 813
behaviour?
814

8

r

unsafe fn context backtrace<C>(e: Ref<Errorlmpl>) —>
Option<&Backtrace>
where
C: 'static,

let unerased = e.cast:<Errorlmpl<ContextError<C,
Error>>>().deref();
let backtrace =

Errorlmpl::backtrace(unerased. object.error.inner.by_ref());

816 Some(backtrace)
817}
Figure 7: ‘Mis-classified Rust code in ‘anyhow-

1.0.55/sre/error.rs®, Lines 810-817

HUAWEI Confidential

Out perform human experts!

&2 Huawel

Grow A Functional Programming Language from the Safe Semantics in Rust Core

Requirements Technical scheme: The Rust2C IDE is automatically generated based on the definition of a

Objectives

The learning curve of Rust code is steep, growable host language based on the syntax sugar Rust/C, and the Rust2C IDE is automatically

+ Implements System FR core semantics,

and C is not safe. Ideally to develop Rust ~ generated by the bidirectional transformation technology. Lambda calculus System F extends

supports secure C/Rust languages, and

program with C IDE and generate safe C Rust core semantics to support pointers and ownership

challenges to cover more language features.

code with Rust code.

Syntax Evaluation t—t RGNVar r t (pointer semantics) * AUtomatlca”y generate the IDE built based
t = terms: ’ H H e
. variable _buon (-AvP1) values of type t allocated in region r on VSCode. The IDE has the capabilities of
Ax:T.t abstraction Ut —hHt (h)
inition = te application t—t RGN ri{ownership semantics code supplementation, type navigation
Language Definition . AX.t type “b“,rfm:o" o —wn i (E-App2) computations in region r returning values of typet PP - YP g !
Vocabulary + Grammar + Semantics el OPEAPIEAON | (i Tyy 1) va — [x = valtrz (E-AvPARS) variable name change, and error checking.
Vo= values: G — e
Ax:T.t abstraction value (E-TApp)

) ty [T2] — t [T2]
type abstraction value

AX.t
New language

Automatic generation of an integrated development
environment for new languages

[Extension Development Host] - Test.surf — Demo
(AX.t12) [T2] — [X = Ta2]t12 (E-TAPPTABS)

) Test.surf M X

desugar resugar

New language is defined as follows: Integrated development environment:

Translate into another existing language The behavior of the integrated

(Syntax Sugar Based on Context-Independent Grammar) development environment using the

Rectangle §{

struct rectangle { Language Server Protocol Point topleft;
intx;
ity width;
int width;
growable host language ::tnlelight; t height;

- combinable
- vocabulary is expandable.
- semantics is extensible

(1) Fluet, Matthew, & Morrisett, Greg. (2004). Monadic
regions. Pages 103-114 of: Proceed-ings of the 9th ACM
SIGPLAN International Conference on Functional
Programming (ICFP'04).

(2) Launchbury, John, & Sabry, Amr. (1997). Monadic state:

Axiomatization and type safety. Pages 227-237 of:
Proceedings of the 2nd ACM SIGPLAN International
Conference on Functional Programming (ICFP'97).

ki

int arearect(struct rectangle rect) {
return rect.width * rect.height;

}

void main() {

struct rectangle recta;
recta.x=0;

recta.y = 0;

recta.width = 10;

recta.height = 20;
printf("%d\n", arearect(recta));

C/Rust translation Racket (FP)

surface language

internal language void main() {

Rectangle rect;

Ln17,Col 21 Spaces:4 UTF-8 LF Surface & 0

Algorithm Safety Performance

Productivity

Lower the learning curve of Rust through Machine Learning

Shuofei Zhu, Ziyi Zhang, Bogin Qin, Aiping Xiong, Linhai Song. Learning and Programming
Challenges of Rust: A Mixed-Methods Study, ICSE 22.

Experience from AWS:
Firecracker, S3

Kani formal verifications

A

Average 2-4 weeks

2-4 months <«

Using Lightweight Formal Methods to Validate a

. Key-Value Storage Node in Amazon S3
Software Architects —_— N

Learning - N
Garbage Collection Makes Rust Easier to Use: A Randomized

Manual Learning
Controlled Trial of the Bronze Garbage Collector \\

GC learning unsafe lifetime Algorithms learning
[ICSE22] label labels AlphaCode from

DeepMind

| \

Rust Rust idiomatic _____—— Rust community experts

Simplifications code v\

Rust code translation tools

Machine offloading to

<

Rajeev Joshi
mazon Web Ser

Competitive programming with
AlphaCode

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential

&2 Huawel

| Security by design \
Type satety Messary
Zafety
Srong Type Owrantin
Static Type Boromieg
detautt RAY & |
Bk Tetre I
oubbc Leetme ———
Oata acked

0 of chavoes

nguage designed to be safe

) of boge

s =
Figure 1. Rust History. (Each blue Figure 2, Time of Studied Bugs

point shows

the number of feature (Each point shows the number of our

changes in one release verston. Each studied bugs that were patched during
red point shows total LOC in one re- a three month period.)

lease version.

Uakerutandug Meuaary mat Thomad Sufity Pusstbns

s i s sl st Prgras

| Maoeithm | sebety | performance | prosuceaity

)

1
risky code |

User Programs
Safe Rust LL <ali H (allﬂi.luulolutl
Unsafe APIs

Safe APIs :
Owrarship-Dased Monoey Managesent '

LW Tau | BT
[Ussafe APTy
access [} ' Jaccess
Memory

Figure 1: 1dea of Rust for preventing memory-safety bugs.

Itis done for Windows, Linux and BSD, only missing Mac OSX ! Next to

exploreits a

conditions

QM

Rust 161

=5 <

_Me” e A

HUAWEI TECHNOLOGIES Co., Ltd.

ation to our products, e.g. Harmony OS

reactions
-1 . v o=
- [Tt o e~y Rty

o s Ao s 4 il ety
.] . Vi) e snit ek
o gy Bl g e S O

—
-

Reactions in open-source projects

oty

Several big opan-souros projects are discussing
the benefits of the new sid:sync:Mutex

. — -

Switch back 1 st syne: Mulex? 466

Conmdet taring bom kil Back ¥ 9 locks £9010

Optimize CRustS to increase the proportion

Requirements

To enswe safety the C code
newch to be migrated to the Rus
code, Dus 1o the huge legacy of
C code In product Fnes and the
stwep leaming curve of the Rust
language. an automated C-10-
Rus code comwenion tool was
developed to suiet n manual

SO SO M aton.

Target Product
Product §res with exsting C
codes and recuirements far

corveming 10 Rust codes

Dependencies

The target C cocle can be
comgiled normally in the origing
wmeirorment and erchitecture.

Imgeowing raw pointer 10 reference ref

10deg snce phase T
trharce the detecton capatinty of trme memosy wfety
wilrerabl b for © code that cocls not Se detected by
Wicrzacét Crecked
For Rust code thet can te trandeted sewsting n 8 mighe
wfety code rabo
By reducng the rumier of ursale sagions Paoning
I DLArkes enpeRisons

the sade code rafic 8o 53%, wrpmeng
[COPSLAZY] and ow Fhase 1 [ICSE22] work
1403 in addcn, inrovative check analysin
sigorithms are used to detect time-raleed
memory safety oues The CWE4TS
CWESAIE and CAE122 reach
respectvely, swpassing Microsol Checked C
Devwicp $w Mayground demon, which helox

%o 40

Mevaons ek age wrson 2 e 383 w the expadence and promotion of Rust in the
oprited iehniie CwEaE % 156 _an [company, and released code and binary to the
diaghag pastm CeEaie "e ™" an Code has bee Wtersowce communiy 10 enable C/Cr ¢

Mty et CwEiz2 e 2 LEESY productlne to swich to Rust,

ortee arby 100% correct and enakied desscpment. v Wicelwes Q022 module, BmeB S bave

* Mchesiing Y Y *ats: Wa Yisr Warg, Javes
Cordy, Abewed =assert * 0 Sust we Trust Trarsletn)
Craate C % Sader Runt, K52 2032

+ Ewre, Sohrcecer, Dewey, =eroekant Tracskety) C 1

Sader Rant’, b DOPSLA, 2020
. wra)n v Mysuce, Daed. Werg, “Synt Syrtvwesang

cirectoas Prograrm warg Sridrectote Shexhes”, n
93-‘1.,-\ a0

1 Corrrw e vebs

Connidor switching t uam sk ayne: Mo 437

HUAWE! TECHNOLOGIES Co., Lid,

[Wagesithm | Sabety | Performance | Productivity

Lower the learning curve of Rust through Machine Learning

Shaoked T, i Zhang, Bogin G, Ajping Xong, Linha' Song. Leaming
Chalenges of Rust A Miced-Methods Study, I05SE 22

Average 2-4 weeks

Machine

offloading to

Software Architects

Learning
gt s s et

"= N

GC learning unsafe lifetime
[IC8E22) label labels

| \Deepmmd /
o
kY

| ., /

Rust Rust idiomatic
Simplifications code

HUAWET TECHNOLOGIES Co., Ltd.

HUAWEI Confidential

M
\

Manual Learning
s

Algorithms learning /
AlphaCode from /

W

—— Rust community experts

T
 Rust code translation toals

HUAWEL Confidential

Page 8

Zwvgmaben pragrmmeeg =l
b e

software pihor and boardverification, snd
HSEcon Kinm olatiorm sloader: C.oo-Ruse
code comverson functions are compless and
corrmet, which ave susiiary and reference for

prot progects

siSEzen Kid

merca

E, BEASKHS AR, NEERRME Rt
+ MERGS cret TR\ —Ri#TT 228, #IA

&2 Huawer

AC

Hame in Armeen 53

B2 Huawer

&2 Huawel

Safety Efficiency

\ Quality /

Productivity
e

Software \
Performance Proficiency

Trusted Programming we develop enhance the efficiency and the proficiency of new programming technology
towards high productivity in creating high quality software, which guarantee safety and performance.

HUAWEI TECHNOLOGIES Co., Ltd. HUAWEI Confidential g@ HUAWEI

