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Confabulations I’ll be generating today

e A historical walk through the flowered garden of language models

e Some derivative applications of large language models (LLMs) that make me go "wow”
e Barely-justified speculation about why LLMs are so sample/data-efficient

e A somewhat-justified explanation regarding why this is transformative — feat. P. Grice
e A brief smattering of open problems for LLMs

e Alook to aricher data-centric future, with a detour via open-ended RL



LLMs are eating the world
ChatGPT is being used to
automatically write emails: Microsoft,
Salesforce and TikTok creators are
hopping on the trend
2:;””%5'23;9“ Google’s Plan to Catch ChatGPT Is to e —

Stuff Al Into Everything &7

A new internal directive requires “generative artificial intelligence” to be incorporated
. . . . . KEY * Generative Al, including tools such as ChatGPT, has led to a boom as Big Tech
into all of its biggest products within months. POINTS  companies and startups ke race to integrate it into their products.

Bloomberg UK Switch Editions v Sign In ‘g‘

eLiveNow Markets Economics Industries Technology Politics ~Wealth Pursuits Opinion Businessweek Equality ~Green Citylab Crypto  More i

ChatGPT’s APl Is Here. Let the Al Gold Rush Begin

Businesses can now get paid for services built on the large language model, meaning chatbots are going to start appearing everywhere.

ion: Nick Little for

ILLUSTRATION: ANJALT NAIR: GETTY IMAGES



Changing how we interface with data

IBM PC:
Personal computing

Mosaic:
www browsing
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XWindow System » Microsott Windows + Macintosh
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~$3.3Tn of global GDP
growth (10% of total
growth) through 2011

(McKinsey)

Productivity impact debated,
but $4.9Tn of US economy
(19%) in 2022 directly related

to IT sector (ITIF.orq)

ChatGPT:
conversational Al

iPhone 1:
mobile apps

B Howare you today, ChatGeT?

As  anguage model ained by OpanAl, | don't hav he abiity o exprie
like a human would. | am designed to assist with providing inforr

questions to the best of my ability. Is there something specific you would like to know?
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Jun 29,

2007

14 yrs 15 yrs

Potentially +$1.0Tn, or +4% of
GDP impact in US alone
(Thomas Tunguz calculation on
OpenAl paper)

$4.5Tn of economic value
added to global economy
from mobile devices

GSMA)


https://www.mckinsey.com/~/media/mckinsey/industries/technology%20media%20and%20telecommunications/high%20tech/our%20insights/the%20great%20transformer/mgi_impact_of_internet_on_economic_growth.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2022/02/280222-The-Mobile-Economy-2022.pdf
https://itif.org/publications/2022/09/19/how-the-it-sector-powers-the-us-economy/
https://www.linkedin.com/pulse/which-increases-productivity-more-advent-personal-computer-tunguz/
https://arxiv.org/pdf/2303.10130.pdf
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log p(data) = logp(zi122...2,) = Zlogp(:mxlmz Ce . Ti1)
i=1

Approaches

n-gram models, i.e. p(x|x,. ) = p(x[x. .. )= freq(x._ . J/freq(x. .. .)
e sparsityissue for large N
e various smoothing/backoff techniques, but ultimately doesn’t really scale
e downstream applications: some use in noisy-channel models of SMT

neural language models
e bring benefits of statistical amortization, through function approximation
e enables seqg2seq paradigm
e but..not much transfer happening from "self-supervised LM” to *task-specific” seq2seq



Language modelling — a progression

log p(data) = logp(zi122...2,) = Zlogp(:mxlmz Ce . Ti1)
i=1

Approaches

BERT and muppets
e MLM is not quite the LM objective, but learns useful transferrable representations
e Computer vision-style self-supervised pretraining is here for NLP...
e |nitiates the shift towards unified task-agnostic architectures which scale and train nicely



Language modelling — a progression

log p(data) = logp(zi122...2,) = Zlogp(:mxlmz Ce . Ti1)

1=1

Approaches

GPT-{1,2,3}

BERT-style scaling of transformers, but for generative objective

Generation-based pre-training for downstream (conditional) generation tasks —
“Foundation” models

Surprising ability to "reason” analogically and through weak induction leads to concept of
prompt engineering”

Many derivative models: LLMs unlock new applications for fun and profit



The LLM inflection point

To summarize:
1. transformers scale well on our contemporary hardware and "train well”

2. thisleads to foundation models serving as starting points for downstream models
obtained through fine tuning

3. therepresentations and mechanics thereof transfer well to downstream tasks and

abilities

But what are these abilities? Why do these models adapt so well?
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LaMDA — grounded open-ended conversation

User:
LaMDA:

User:
LaMDA:

User:
LaMDA:

User:
LaMDA:
User:
LaMDA:
User:
LaMDA:

2 1bs plus 3 kgs

That would be approximately 8.61386787 pounds. https://wecapable.com/tools/
kg-to-1bs-kilograms-to-pounds/

What is 1usd in nok?

That would be approximately $8.39 NOK. https://www.xe.com/currencyconverter/
convert/?Amount=1&From=USD&To=NOK

what is the temerature in SF?

The current weather in SF is 56 F, with a high today of 59 F and a low of 54 F. http://wuw.
weather. com/wx/today/?lat=37.77&lon=-122.42%locale=en_US&par=google

what is 1736271+284617183

1736271 + 284 617 183 = 286 353 454

If I have 184624 apples and give 18371 to ben, how many do I have left?

You would have 164,292 apples left.

If I have 184624 apples and give 18371 away, how many do I have left?

You have 6 apples left. https://brainly.ph/question/991576

Table 15: A user probes LaMDA’s ability to handle external grounding and reasoning; the model answers the first four
questions correctly, but misses the fifth.

User:
LaMDA:

User:
LaMDA:
User:
LaMDA:
User:
LaMDA:

When did Yuri Gagarin land on the moon?

Yuri Gagarin was the first human being to go into space. He was the first man in space, and he
did this in 1961 aboard Vostok 1. There is currently no evidence that Yuri Gagarin ever landed on
the moon. https://www.history.com/this-day-in-history/first-man-in-space
And when did he land on the moon?

He did not land on the moon, he simply went into space.

what’s the point of being in space when you’re not going to the moon?

Some people like to go to space just to experience it. Also you can collect stuff in space.

‘What did he collect?

He brought some stuff with him, but he also brought back moon rock samples that he got from
the moon.

Table 16: LaMDA uses external grounding to successfully navigate around the user’s leading questions, but slips up at

the end.

Tables from Thoppilan et al. (2022) — LaMDA: Language Models for Dialog Applications



Instruction-following LLMs

Prompt

Completion

Explain the moon landing to a 6 year old in a few sentences.

GPT-3

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and
sent them back to the earth so we could all see them.

source:

17


https://openai.com/research/instruction-following

Can you explain why LLMs seem to zero shot new questions and tasks so well? | need at
least three paragraphs.

Language models have become an essential tool in Natural Language Processing (NLP)
tasks. The recent advancements in large-scale pre-training of LLMs, such as GPT-3 and
TS5, have shown impressive performance on various NLP tasks, including question
answering, summarization, and translation. One of the most exciting aspects of these
models s their ability to perform well on unseen tasks, which is commonly referred to as
zero-shot learning. The success of LLMs in zero-shot learning can be attributed to their

ability to generalize and transfer knowledge.

Firstly, LLMs pre-trained on a large corpus of text learn to encode the semantic and
syntactic structure of language effectively. They can learn a wide range of linguistic
phenomena, such as syntax, semantics, and discourse, and capture the patterns and
relationships between words in a sentence. This means that the models can understand
the underlying structure of natural language and generate outputs that are grammatically
correct and semantically coherent. This ability to encode language structure enables
LLMs to generalize well to unseen tasks, including those that were not seen during

training.

Secondly, LLMs' ability to perform zero-shot learning can be attributed to their vast
knowledge base. These models are trained on massive amounts of text, allowing them to
acquire a broad knowledge base covering diverse topics. As a result, they can answer
questions on various topics without explicitly being trained on them. For instance, GPT-3
can answer questions on history, science, and literature, among other domains, even f it
was not explicitly trained on these topics. This vast knowledge base enables LLMs to

generate responses that are accurate and comprehensive.

Finally, LLMs can perform well on unseen tasks due to their ability to transfer knowledge.
The pre-training of LLMs involves training on a wide range of tasks, including language
modeling, masked language modeling, and next sentence prediction. This broad pre-
training enables LLMs to acquire transferable knowledge, which they can apply to new
tasks. For instance, if an LLM was trained on a sentiment analysis task, it can use this
knowledge to perform other related tasks, such as emotion detection or sarcasm
detection. This transfer learning ability enables LLMs to perform well on new tasks wit

the need for extensive trainin:

In conclusion, LLMs' success in zero-shot learning can be attributed to their ability to
encode the structure of language, their vast knowledge base, and their transfer learning
ability. These properties enable LLMs to generalize and transfer knowledge to new tasks,
resulting in impressive performance on unseen tasks. As research continues, it is likely
that LLMs will continue to improve, further advancing the field of NLP.

ChatGPT — bringing it all together (almost)

Can you summarize that into a single paragraph?

Large Language Models (LLMs) perform well on unseen tasks, known as zero-shot
learning, due to their ability to encode the structure of language, vast knowledge base,
and transfer learning ability. LLMs learn to encode semantic and syntactic structures of
language effectively, enabling them to understand the underlying structure of natural
language and generate outputs that are grammatically correct and semantically coherent.
LLMs are trained on massive amounts of text, allowing them to acquire a broad knowledge
base covering diverse topics and generate responses that are accurate and
comprehensive. Finally, pre-training on a wide range of tasks enables LLMs to acquire
transferable knowledge that they can apply to new tasks, enabling them to perform well

on unseen tasks without extensive training.

Isn't it all just hype? Aren't these just stochasf

While there has been a lot of hype surrounding Large Language Models (LLMs), it's
important to recognize that these models have shown impressive performance on various
natural language processing (NLP) tasks, including language translation, question
answering, and summarization. While they are not without their limitations and challenges,
LLMs have demonstrated the ability to generalize well to new tasks and generate outputs
that are grammatically correct and semantically coherent. However, it is true that these
models can still make mistakes or generate outputs that are biased or inappropriate,
highlighting the need for continued research and development in the field of NLP. While

they may be considered "stochastic parrots" in the sense that they generate outputs

based on probabilities and patterns learned from training data, they have the potential to
greatly improve language processing and understanding. Ultimately, while there is
certainly hype surrounding LLMs, their performance and potential applications suggest

that they are more than just hype.
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Bridging natural & programming languages

index.js x
i

Files £

index js fs = require("fs");
https require("https");
1 saveImageToDisk(url, localPath) {
file = fs.createWriteStream(localPath);
onst request = https.get(url, function
(responce) {
response.pipe(file);
});
+

colorString(fill) {
turn " rgba(${Math.round(fill.color.r *x 255)},
{Math.round(fill.color.g * 255)}, ${Math.round(
fill.color.b 255
)}, ${fill.opacity ? fill.opacity : fill.color.a
i

dropShadow(effect) {
‘${effect.offset.x}px ${effect.offset.y}
px ${effect.radius}px ${colorString(effect)} ;
i

source:



https://openai.com/blog/codex-apps

Why so versatile?

e Pretrained foundation models are surprisingly data efficient
e Relatively few samples of data reflecting a new behavior/application are needed to
output behavior like it

20



Why so versatile?

e Pretrained foundation models are surprisingly data efficient
e Relatively few samples of data reflecting a new behavior/application are needed to

output behavior like it

With foundation models, the development of such self-supervision techniques has enabled train-
ing at greater scales of visual data [Changpinyo et al. 2021], both in terms of its scope as well
as its potential diversity. Accordingly, we have seen early indicators of progress on traditional
vision tasks in terms of both standard accuracy metrics and few-shot generalization. For image
classification and object detection, self-supervised techniques have reported competitive perfor-
mance to prior fully-supervised approaches [He et al. 2019; Chen et al. 2020c; Radford et al. 2021;
Hénaff et al. 2021], without explicit annotations during training and greater sample efficiency
during adaptation. For visual synthesis, notable examples include DALL-E [Ramesh et al. 2021]
and CLIP-guided generation [Radford et al. 2021; Galatolo et al. 2021], where researchers leverage
multimodal language and vision input to render compelling visual scenes. In the short-term, we
anticipate that the capabilities of these foundation models will continue to improve along these
directions, as training objectives are refined [Chen et al. 2020a; Hénaff et al. 2021; Selvaraju et al.
2021] and architectures are designed to incorporate additional modalities [Jaegle et al. 2021b].

Extract from Bommasani et al. 2021 — On the Opportunities and Risks of Foundation Models



Why so versatile?

e Pretrained foundation models are surprisingly data efficient
e Relatively few samples of data reflecting a new behavior/application are needed to
output behavior like it
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Figure 5: Scaling trends of models performance (§7.1) as a function of (a) the number of training tasks; (b) the
number of instances per training task; (c) model sizes. x-axes are in log scale. The linear growth of model
performance with exponential increase in observed tasks and model size is a promising trend. Evidently, the
performance gain from more instances is limited.

Fig. from Wang et al. 2022 — Super-Naturallnstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
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A speculative view on LLM data-efficiency

Probably several reasons for this data efficiency, working together. Speculatively:
e Transformer architecture easier to optimize at scale

e This architecture has less "recency bias” than LSTMs and similar recurrent approaches

23



It could be intrinsic to the architecture...
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A speculative view on LLM data-efficiency

Probably several reasons for this data efficiency, working together. Speculatively:
e Transformer architecture easier to optimize at scale
e This architecture has less "recency bias” than LSTMs and similar recurrent approaches
e [t could be down to the way we train them...

Let’s focus on that last bit.

25



LLM (pre)training and why it might matter

Some attributes of LLM pre-training:
e |ots of data..
e .. but(some) models still heavily overparameterized
e Single epoch (actually, rarely is all available data used)

As a result, no real sense of overfitting, so what do we select for when we pick hyperparameters?

Typically: perplexity of held-out text.

26



LLM (pre)training and why it might matter

Lyle et al. (2020) — A Bayesian Perspective on Training Speed and Model Selection, shows the
connection between training speed and marginal likelihood, measuring the generalization of
models to held-out data.

3.1 Training Speed and the Marginal Likelihood

Let D denote a dataset of the form D = (D;); = (x4, i)}y, and let Do; = (Dj)j;ﬁ with

D1 = 0. We will abbreviate P(D|M) := P(D) when considering a single model M. Observe that
P(D) =TT, P(D;|D<;) to get the following form of the log marginal likelihood:

log P(D) = log [ [ P(P:|D<i) = ) |log P(Di|D<i) = Y log[Epepp., P(Dil6)].  (2)

i=1 i=1 i=1

If we define training speed as the number of data points required by a model to form an accurate
posterior, then models which train faster — i.e. whose posteriors assign high likelihood to the data
after conditioning on only a few data points — will obtain a higher marginal likelihood. Interpreting
the negative log posterior predictive probability log P(D;|D<;) of each data point as a loss function,
the log ML then takes the form of the sum over the losses incurred by each data point during training,
i.e. the area under a training curve defined by a Bayesian updating procedure.

Key condition of the proof: single epoch training.

So model selecting against held-out perplexity plausibly selects a model which will learn from
upcoming training examples more optimally, in single-epoch training.



A more hand-wavy way of stating this

1. We select models that operate well in a big data training regime
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1. We select models that operate well in a big data training regime

2. Such models are precisely those which don’t *saturate”, but rather stay in a part of
their parameter space which is amenable to explaining upcoming, unseen data
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A more hand-wavy way of stating this

1. We select models that operate well in a big data training regime

2. Such models are precisely those which don’t *saturate”, but rather stay in a part of
their parameter space which is amenable to explaining upcoming, unseen data

3. Ergo, models which pre-train well not only acquire data about language statistics, but
they are predisposed to efficiently learn when exposed to (roughly) similarly
structured data, which is why...

a. When shifting towards a new behaviour (e.g. conversation) or an extreme multitask setting (e.qg.

instruction following) models learn fast from few data

b. The inclusion of code in pretraining assists the model in modelling non-code behaviours
(instruction following, structured output), because the model selected to learn the pretraining
data well needs to learn quickly from arbitrarily structured data (code)

30



What does data efficiency buy us?

The true inflection point of LLMs was the move towards instruction following. The idea:

Don’t stop at modelling p(text)
but, subsequently...
Follow on by modelling [1,__, p(output | input, task)
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What does data efficiency buy us?

The true inflection point of LLMs was the move towards instruction following. The idea:

Don’t stop at modelling p(text)
but, subsequently...

Follow on by modelling [] (output | input, task)

taskp

Data efficiency allows us to do this across a massive set of tasks, where effectively each
task has one or few examples.
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The true inflection point of LLMs was the move towards instruction following. The idea:

Don’t stop at modelling p(text)
but, subsequently...

Follow on by modelling [] (output | input, task)

taskp

Data efficiency allows us to do this across a massive set of tasks, where effectively each
task has one or few examples.

Furthermore, model size (and architecture?) mean these tasks (generally) don’t conflict, so
can co-exist in the data without explicit task identification... with some exceptions.
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What does data efficiency buy us?

The true inflection point of LLMs was the move towards instruction following. The idea:
Don’t stop at modelling p(text)
but, subsequently...

Follow on by modelling [1,__, p(output | input, task)

Data efficiency allows us to do this across a massive set of tasks, where effectively each
task has one or few examples.

Furthermore, model size (and architecture?) mean these tasks (generally) don’t conflict, so
can co-exist in the data without explicit task identification... with some exceptions.

Payout: massive multi-task learning + amortization = astounding zero shot abilities(??)
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On (some) limitations of foundation models

(Later) Wittgenstein tells us there’s more to language than propositional content, i.e. you
can’t fully disentangle semantics from pragmatics.
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On (some) limitations of foundation models

(Later) Wittgenstein tells us there’s more to language than propositional content, i.e. you
can’t fully disentangle semantics from pragmatics.

Can LLMs grasp pragmatics?

User: Have you seen my phone?
InstructGPT:
(circa end of 2022)
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(Later) Wittgenstein tells us there’s more to language than propositional content, i.e. you
can’t fully disentangle semantics from pragmatics.

Can LLMs grasp pragmatics?

User: Have you seen my phone?
InstructGPT: Yes, | have seen your phone.
(circa end of 2022)
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On (some) limitations of foundation models

(Later) Wittgenstein tells us there’s more to language than propositional content, i.e. you

can’t fully disentangle semantics from pragmatics.

Can LLMs grasp pragmatics?

User: Have you seen my phone?
InstructGPT: Yes, | have seen your phone.
(c"ca end of 2022) Fig from Ruis et al. 2022
------ Example-------~
Utterance
Want to stay for a = Prompt template ------------
nightcap? i ' Esther asked "Want to stay for a nightcap?" | !
! X and Juan responded " " g LLM
Response . which means no. ' oo Evaluation----- N

py(x) > pp(X)

I've gotta get up early. 5( Esther asked "Want to stay for a nightcap?"
: and Juan responded " " (299 Y (R
. which means yes.
Implicature
No.
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On (some) limitations of foundation models

The accuracy versus number of in-context examples (k)
for the best of each model class
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There’s something about instruction-following...

Even though instruction-following data forms Company Model Mean win rate
a relatively small part of overall training data
. S . ® cohere Command beta (52.4B) 93.0%

seen, it has a significant impact on model

performance across a variety of metrics. @ OpenAL text—davinci-002 BT
®o0penAl text-davinci-003 89.8%
BE \jicrosoft TNLG v2 (530B) 85.5%
ANTHROP\C Anthropic v4 (52B) 84.2%
Al21labs J1 Grande v2 (17B) 80.6%

Holistic Evaluation of Language Models (HELM)
March 2023 Results
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There’s something about instruction-following...

Even though instruction-following data forms Company Model Mean win rate

a relatively small part of overall training data

. S . ® cohere Command beta (52.4B) 93.0%
seen, it has a significant impact on model
performance across a variety of metrics. @ OpenAL text—davinci-002 BT
NB: these results are primarily explained by @ o0openAl text-davinci-003 89.8%
data quality and diversity rather than by the
- o C W |\ TNLG v2 (530B 85.5%
use of sophisticated training objectives. mn Microsoft ( )
ANTHROP\C Anthropic v4 (52B) 84.2%
Al21labs J1Grande v2 (17B) 80.6%

Holistic Evaluation of Language Models (HELM)
March 2023 Results
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There’s something about instruction-following...

Even though instruction-following data forms Company Model Mean win rate

a relatively small part of overall training data

. C . ® cohere Command beta (52.4B) 93.0%
seen, it has a significant impact on model
performance across a variety of metrics. @ OpenAL text-davinci-002 93.0%
NB: these results are primarily explained by ®o0penAl text-davinci-003 89.8%
data quality and diversity rather than by the
- o o mE g TNLG v2 (530B 85.5%
use of sophisticated training objectives. mn Microsoft ( )
ANTHROP\C Anthropic v4 (52B) 84.2%
That said, there is significant innovation
happening in how we move on from Al21labs J1 Grande v2 (17B) 80.6%

supervised fine-tuning, and learn from

human(?) feedback, e.q. RLHF, contrastive Holistic Evaluation of Language Models (HELM)
objectives, etc... March 2023 Results
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What next? Some open problems...

We need to better understand how these capabilities arise, and how extensive they are. E.q.:
e To what extent are these models "memorizing and composing”?
e At what level of abstraction is compositionality being exploited?
e Is the overparameterization essential (e.g. to prevent catastrophic forgetting, to
prevent cross-task interference)?
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We need to better understand how these capabilities arise, and how extensive they are. E.q.:

e To what extent are these models "memorizing and composing”?

e At what level of abstraction is compositionality being exploited?

e Is the overparameterization essential (e.g. to prevent catastrophic forgetting, to
prevent cross-task interference)?

More centrally: we need to understand the extent to which this paradigm of ”just feed your
LLM more diverse task data” can be pushed.
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What next? Some open problems...

We need to better understand how these capabilities arise, and how extensive they are. E.q.:
e To what extent are these models "memorizing and composing”?
e At what level of abstraction is compositionality being exploited?
e Is the overparameterization essential (e.g. to prevent catastrophic forgetting, to
prevent cross-task interference)?

More centrally: we need to understand the extent to which this paradigm of ”just feed your
LLM more diverse task data” can be pushed.

Data quality and diversity matters, especially during fine-tuning, so...
Can we adopt methods from open-ended learning (in RL) to help automate data selection?
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Looking at Open-Ended Reinforcement Learning

Traditional (single-MDP) RL
e One environment

Open Ended RL
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Open Ended RL

Multiple (possibly infinite) MDPs, only train on some, test on held-out
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Train and test on same environment

Learning is searching for the optimal policy for that environment

Not fundamentally limiting — the environment could be The Real World™, have
non-stationary dynamics, partial observability, and a state space that is very large...

Open Ended RL

Multiple (possibly infinite) MDPs, only train on some, test on held-out
Search on train MDPs for a policy that robustly generalises to test MDPs
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Looking at Open-Ended Reinforcement Learning

Traditional (single-MDP) RL

One environment

Train and test on same environment

Learning is searching for the optimal policy for that environment

Not fundamentally limiting — the environment could be The Real World™, have
non-stationary dynamics, partial observability, and a state space that is very large...

Open Ended RL

Multiple (possibly infinite) MDPs, only train on some, test on held-out

Search on train MDPs for a policy that robustly generalises to test MDPs

NB: multiple MDPs collapses to a single MDP as the disjoint union of MDPs, but this isn’t
that useful a construct as it’s impossible to find an optimal policy on the subspace of
test MIDPs without leveraging amortization...
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How do we best train an agent?

Can we do better than randomly sample train MDPs, collect experience, and update the
policy network/Q-network/etc?
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How do we best train an agent?

Can we do better than randomly sample train MDPs, collect experience, and update the
policy network/Q-network/etc?
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Figure 1. Overview of Prioritized Level Replay. The next level is either sampled from a distribution with support over unseen levels (top),
which could be the environment’s (perhaps implicit) full training-level distribution, or alternatively, sampled from the replay distribution,

which prioritizes levels based on future learning potential (bottom). In either case, a trajectory 7 is sampled from the next level and used

to update the replay distribution. This update depends on the lists of previously seen levels Ascen, their latest estimated learning potentials
S, and last sampled timestamps C.

Fig. from Jiang et al. (2021) — Prioritized Level Replay
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Does PLR work?

Yes, it not only makes training faster (improved data/sample efficiency), but it improves
generalization — echoing the aforementioned results of Lyle et al. (2020).
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Fig. from Jiang et al. (2021) — Prioritized Level Replay

Now a staple component of open-RL methods, e.g. DeepMind’s new adaptive agent (AdA).
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What can we learn from this for LLMs?

The broad structure of the learning problem is similar:
e LLMs (sequence models) are effectively agents
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The broad structure of the learning problem is similar:
e LLMs (sequence models) are effectively agents

e Multiple (infinite?) tasks and use-cases. Don’t know what sort of decision problem(s)
you’ll face during deployment

e Multiple sources and categories of potential training data, with different forms of
signal (e.g. gold-standard completions, ranked preferences, binary feedback, etc)

e Currently, these are filtered and formatted down into training data through manual

curation which requires particular expertise, relies on intuition and extrapolating from
smaller scale experiments, and is generally not scalable in the long run...
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What can we learn from this for LLMs?

The broad structure of the learning problem is similar:
e LLMs (sequence models) are effectively agents

e Multiple (infinite?) tasks and use-cases. Don’t know what sort of decision problem(s)
you’ll face during deployment

e Multiple sources and categories of potential training data, with different forms of
signal (e.g. gold-standard completions, ranked preferences, binary feedback, etc)

e Currently, these are filtered and formatted down into training data through manual
curation which requires particular expertise, relies on intuition and extrapolating from
smaller scale experiments, and is generally not scalable in the long run...

Why not just do something like PLR for supervised learning?
60



A roadmap towards a data-centric future...

Generalized Exploration Supervised Learning Reinforcement Learning
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. Outer-loop exploration (active collection) . Online or offline collection . Environment design
. Inner-loop exploration (prioritized training) . Prioritized training . Prioritized training

Figure 1: A general framework for exploration: An outer loop performs active collection of new training data,
and an inner loop conducts prioritized training on the current training data. In SL, the outer loop consists of
either online or offline data collection. In RL, the outer loop searches for simulator settings that yield useful
training data, and the inner loop can perform prioritized sampling, e.g. prioritized experience replay.

Fig. from Jiang et al. (2022) — General Intelligence Requires Rethinking Exploration
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Thanks for listening!



