
Giorgio Buttazzo

giorgio.buttazzo@santannapisa.it

Sant’Anna School of Advanced Studies

Increasing complexity

2

Unicore

Multicore

Multicore

+ FPGA

Multicore

+ GPU

Multicore +
GPU, FPGA

Multicore +
GPU, TPU,

+ FPGA

1970 1980 1990 2000 2010 2020

PID

MPC

RL

Several DNNs

+ RL + MPC

Several

DNNs

Features & Requirements

3

Typical features

▪ Perceive complex scenes

▪ Real-time performance

▪ Mixed criticality and req.

▪ Large code size

▪ Safety-critical

▪ Distributed

Requirements

AI & deep learning components

RTOS, efficient resource manag.

Hypervisors, component isolation

Security, Intrusion detection

Fault/anomaly detection

RT Cloud, RT middleware (DDS)

several challenges

Predictability

SecuritySafety

4

Major challenges

Middleware support

Real-Time software support

AI algorithms

Heterogeneous hardware

5

Major challenges

In this talk, I will focus on two main aspects, illustrating problems

and potential solutions:

Mixed criticality

Hypervisor

Predictability

Analysis

Optimization

Main problems

Acceleration

Optimization

Safety

Security

AI issuesReal-Time Issues

7

Types of computations

– High-Performance (HPC):

– Real-Time (RTC):

– Non Critical (NCC):

Examples

Objective

SW support

HW support

HPC RTC NCC

Rich OS

(Linux, QNX, VxWorks)

guarantee WCRT

& bounded delays

correct

functionality

run faster, reduce

avg. response time

parallel arch, GPUs,

specialized HW

single core or

multi core CPUs

single core or

multi core CPUs

Computationally intensive, a lot of memory

Reactive, periodic, timing guarantees

neither HP nor RT (functionally correct)

RTOS

(FreeRTOS, Erika)

Rich OS

(Linux, QNX, VxWorks)

visual tracking,

ABS, robot control

comfort functions,

user interface

train DNNs, simulate

virtual worlds

8

Types of computations

HPC RTC

NCC

AI for

CPS

Complex

system

Mixed computational requirements

Mixed criticality

Complex systems normally require all types of software components:

9

Mixed criticality

Consider for example a self-driving car.

Steering, throttle modulation,

braking, and engine control are

highly critical and must be

managed by a certified RTOS.

RTOS

Perception, tracking, localization

need to be managed by a rich OS

to exploit device drivers, libraries,

and AI development frameworks.

Rich OS

Not certifiable SW

Large attack surface

High-performance
component

High-criticality
component

Linux RTOS

AI-powered

software

Safety-critical

software

10

Problems of mix-critical appls

Interference: low-critical tasks can delay highly-critical ones due to

interference among share resources (memory, bus)

attack
Non-critical
component

Linux

Non-critical

software

GPU
core

1
core

2
core

4
core

3

Hardware platform

Security: an attack to a component can propagate to others

11

Security is a serious issue

In 2015, a Jeep Cherokee was remotely attacked by exploiting a

vulnerability of the infotainment system. The hackers gained control

of the car, including steering, braking, turning on the wipers, blasting

the radio, and stopping the engine.

Hypervisor

Hardware
platform

high performance high-criticality

Linux RTOS

AI-powered

software

Safety-critical

software

12

Achieving mix-criticality

A safe solution is to isolate the different software components by a

Type 1 bare-metal hypervisor with security and real-time features:

Accelerator Ttrusted EE

IDS

attack
non-critical

Linux

Non-critical

software

Hypervisor features

13
https://accelerat.eu/clare/

3. I/O virtualization to efficiently share resources among domains

4. Deterministic inter-domain communication: zero-copy & wait-free

shared-memory paradigms, cyclic async buffers, bounded latency …

5. Security mechanisms against denial-of-service and side-channel attacks,

run-time security monitoring, address space layout randomization,

control flow Integrity, ISO 21434 qualification, …

6. Safety: totally static, MISRA compliance, ISO 26262 qualification, VM-

level health-monitoring, …

1. Strong temporal & spatial isolation among execution domains by

secure cache partitioning, CPU/memory reservations & virtualization

2. Hard real-time scheduling of execution domains

Optimizing RT software

14

With the growing complexity of computing platforms, optimizing

software became quite challenging!

Such an optimization process requires a precise timing analysis

to predict the response times of various interacting SW tasks.

multicore

GPGPU

FPGA

Heterogeneous

single
core

How to group functions to tasks

How to schedule tasks

What to accelerate

How to assign priorities to tasks

How to allocate tasks to computing elements

How to synchronize the access to shared resources

Timing analysis

15

System to be controlled

I/O

devices
RTOS

System model

Application

model

Application

constraints

Platform model

Task

allocation

Periods, deadlines,

jitter, throughput Feasibility

check
Y/N

Timing

Analysis

WCRT, actual jitter,

actual throughput

Optimization

16

System to be controlled

I/O

devices
RTOS

Timing

Analysis

System model

Application

model

Application

constraints

Task

allocation

Platform model

Feasibility

check
Y/N

Periods, deadlines,

jitter, throughput

WCRT, actual jitter,

actual throughputOptimizer

(0,0)

(0,0)(1,3)

3

5 6

786

4

Model and Analysis

17

Thus, the application is modeled as a directed acyclic graph (DAG)

where each node has a WCET and each edge has a (min, max) delay

range:

Reference paper

F. Aromolo, A. Biondi, G. Nelissen, and G. Buttazzo, “Event-Driven Delay-Induced Tasks:

Model, Analysis, and Applications”, Proc. of the IEEE RTAS 2021.

In addition, each node can be manually allocated to a different core

or the best allocation is automatically found by optimization.

Core 1

Core 2

Application model

18

time

C1 C2
CPU C3

1

C4

2

v1 v2 v3 v4

C1 C2 C3 C4

(0, 2)

(0, 1) (0,0) (0,0)

HW

accelerator

Application model

From code to analysis

19

Program code Code structure DAG model Timing analysis

DAG and analysis can directly be derived from the application code

(e.g., OpenMP parallel code):

C

Tasks

Operating System

(e.g,. Linux, QNX)

Data Distribution Service

Higher-level framework and application

Sensor acq.

publisher

Set rate

subscriber
Sensor data

topic

Sampling rate

topic

Cyber-RT

Hypervisor

1 GHz 100
MHz FPGAGPU

Multicore Heterogeneous Platform

100
MHz

Topics

Often, applications needs to deal

with multiple levels of scheduling:

DDS-enabled RT systems

1 GHz

1 GHz 1 GHz

▪ Deep learning frameworks

(TensorFlow, Pythorch)

▪ Communication middleware

(ROS 2, DDS)

▪ Operating System

▪ Hypervisor

Such scheduling levels have

substantial effects on the timing

behavior of the final application.

20

RETIS Lab developed

➢ a compositional model for DDS-enabled RT systems

➢ a specific instance for FastDDS

➢ a fine-grained response-time analysis for FastDDS messages

Main benefit:
validate the timing

requirements of
complex DDS-based

systems

Reference paper

G. Sciangula, D. Casini, A. Biondi, C. Scordino, M. Di Natale, "Bounding the Data-Delivery

Latency of DDS Messages in Real-Time Applications", Proc. of the Euromicro Conference on

Real-time Systems (ECRTS 2023), Vienna, Austria, July 11-14, 2023.

End-to-end latency analysis

21

RETIS Lab developed

➢ Analysis-driven optimization for automatic design-space

exploration of FastDDS-based RT systems.

➢ Case study evaluation based on Autoware Reference System.

Main benefit:
helping designers

in configuring
DDS-enabled

real-time systems

Reference paper

G. Sciangula, D. Casini, A. Biondi, C. Scordino, "End-to-End Latency Optimization of Thread

Chains Under the DDS Publish/Subscribe Middleware", Proc. of the Design, Automation, and

Test in Europe Conference (DATE 2024), Valencia, Spain, March 25-27, 2024.

Analysis-based
optimization algorithm

OUTPUT
System configuration found

Optimized Solution

INPUT
System model

Analysis-Driven Optimization

22

Optimization of DDS RT systems

Problems of current AI

24

1. AI models are computationally intensive: HW acceleration

2. HP-HW not always available in embedded systems to run in RT:

model compression (quantization, pruning, distillation, optimization)

3. Even if available, GPUs are unpredictable:

FPGAs are more predictable and consume less energy

4. AI models are not trustworthy: prediction score  confidence:

methods to detect anomalous inputs and derive confidence.

5. AI models are prone to adversarial attacks, also in the real world:

detection and defense mechanisms

DNN acceleration

26

To be used in real time, the inference of modern DNN models

requires hardware acceleration. This is usually done by

Programmable logic (FPGA)

General purpose GPUs (GPGPUs)

Both solutions have pro & cons

both requires DNN optimization

GPU acceleration

27

GPGPUs are the most used to

accelerated DNNs, because

of two main advantages:

Response time can be reduced

by two orders of magnitude;

Development is supported by standard frameworks.

On the other hand, there are serious disadvantages:

Concurrent tasks are executed in non-preemptive fashion;

Significant power consumption, weight, and encumbrance.

This prevents their usage in

small embedded systems:

GPU + TensorRT

28

1

2

3

GPU

priority

Since the execution of GPU requests is non‐preemptive,

high‐priority requests cannot preempt lower‐priority ones:

deadline missAcceleration request

Note that GPU requests may not be served by FCFS due to internal

memory constraints.

GPU + TensorRT

29

To solve this problem, an external Resource Manager must be

implemented to properly schedule the acceleration requests coming

from the application tasks:

GPU

1 2

3

Resource Manager

Acceleration

requests

30

FPGA acceleration

On the other end, FPGAs have the

following advantages:

They exhibit a highly predictable

behavior in terms of execution times.

They consume much less power

with respect to GPUs.

Commercial boards have lower weight, encumbrance, & cost.

Hence, they are ideal for battery-operated systems, as space robots,

satellites, and UAVs. But…

No FPU is available, unless explicitly programmed by the user

(but consuming a fraction of the available fabric).

Difficult programming (efficient coding requires a deep

knowledge of low-level architecture details).

31

We considered both approaches

providing solutions for both of them.

Deploy the

full DNN on

the FPGA

Accelerate DNN

operations by a

coprocessor (DPU)

Faster,

less flexible,

DDN may not fit

Slower,

More flexible

FPGA acceleration

34

The FRED framework

Dynamic partial reconfiguration (DPR) allows reprogramming a

portion of the FPGA while the rest is still running:

A1

A2

A3

A1

A2 A3

A4 A1

FPGA

A4

A4 A1

A1

35

A1

A2

A4

A5

A6

A3

Virtual FPGA

Physical FPGA

Timesharing is possible if HW accelerators do not run continuously,

but execute periodically with Ti > Ci (which is normally the case).

The virtual FPGA are is much

larger than the physical one.

FPGA virtualization

RETIS Lab developed a programming framework (FRED) that exploits

dynamic partial reconfiguration (DPR) to virtualize the FPGA area:

Task model

A1

SW task

HW task

Bitstream for

the FPGA

Area required

on the FPGA

request for HW acceleration
<request>

shared
memory

<put data>

Input data

<get data>

results

Processor System (PS)

Core4

Core2

Core3

Core1

DRAM

Slot 1 Slot 2

Slot 3

36Programmable Logic (PL)

FRED applications consist of SW-tasks (running on the PS) and HW-tasks

(running on the PL):

Task model

After issuing a request for acceleration, a SW task is suspended

until the results are produced.

SW task

A1HW task R

suspension

Reconfiguration time
37

A1

SW task

HW task

Bitstream for

the FPGA

Area required

on the FPGA

request for HW acceleration
<request>

shared
memory

<put data>

Input data

<get data>

results

1

2

3

4

Example of schedule

FPGA

A2
A1

slot3
slot2
slot1

A3

A4

39

A5

waiting for HW task completion

waiting for busy recon. port

waiting for busy slot

SW-task execution

HW-task execution

reconfig. time

FRED can make a system feasible,

when it is not under a fully static

approach or a full SW implementation

The FRED framework

FRED includes a set of tools:

Virtual FGPA Bus Synthethizer:
a tool that optimizes the
Interconnect hierarchy to
match timing constraints

Bus Manager:

achieves predictable arbitration,
protection from timing attacks, and

bandwidth isolation

Linux runtime:
it manages HW acceleration

requests with predictable
response times

FRED Analyzer:
a tool to verify timing

constraints, accounting
different sources of delays

Floorplanner:
a tool that optimizes the

allocation of HW accelerators on
the FPGA fabric

URL: fred.santannapisa.it

40

FRED Paper

A. Biondi et al., "A Framework for Supporting Real-Time Applications on Dynamic

Reconfigurable FPGAs", Proc. of the IEEE Real-Time Systems Symposium, 2016.

41

Xilinx DPU

A more flexible way to accelerate AI models is by a proper softcore

coprocessor, as the Xilinx deep learning processing unit (DPU):

DPU1

Xilinx Runtime (XRT)

DPU2 DPU3 DPU4

FPGA

CPU1 CPU2

CPU3 CPU4

PS PL

Hardware

Drivers

Vitis AI AI Quantized & AI Compiler

TensorFlow / PyTorchAI Framework

AI application

42

DNN optimization

To meet real-time constraints, other optimization steps are usually

needed on trained DNNs:

− Weight quantization (convert floats to n-bit integers)

− Pruning (remove redundant nodes/weights)

− Layer fusion (e.g., merging conv-bias-relu)

This allows several benefits, such as reducing

- computation times

- memory footprint

- energy consumption

while keeping almost the same accuracy.

43

DNN splitting

In complex CPS using multiple DNNs, a network can be split into

several blocks to enable preemption and improve response times of

higher-priority DNNs:

Choosing the best split points is an optimization process.

Block 1 Block 2 Block 3 Block 4

44

Projects on AI acceleration

RETIS Lab has two projects on AI accelerations funded by the

Italian Ministry of Research

1. OPERAND: reconfigurable platform for AI inference on the edge

Objective: develop a predictable AI accelerator for safety-critical

systems with built-in support for redundancy and voting.

2. RETICULATE: Real-time & secure acceleration framework for AI

Objective: develop a secure and deterministic AI acceleration

framework for FPGA using Vitis AI framework and the DPUs.

45

Optimized real-time tracking

Real-time object tracking, requires tracking multiple objects even in

the presence of occlusions:

p3
p1 p2

p3

p3

p1

p2

Optimization algorithm

to best match predictions

with detections (using both

IoU and appearance)

To do that, neural trackers exploit three main methods:

Object detection
CNN (e.g., YOLO)

Kalman filter to predict

motion during occlusions

46

Optimized real-time tracking

We optimized the entire tracking pipeline by:

▪ accelerating CNNs on multiple DPUs on FPGA

▪ accelerating image pre- and post-processing on FPGA

▪ parallelizing the matching algorithm on multiple cores

Kalman

predictions

Object

Detector

Appearance

network
Appearance

Matching

IoU-based

matching

Tracklet manag.
▪ Kalman update

▪ Appearance update

▪ Tracklet creation

▪ Tracklet deletion

Matched objects

Unmatched objects

Low score detections

Reference paper

E. Cittadini, M. Marinoni, A. Biondi, G. Cicero, G. Buttazzo, "Supporting AI-Powered

Real-Time Cyber-Physical Systems on Heterogeneous Platforms via Hypervisor

Technology", Real-Time Systems, 59(4):609-635, 2023.

Xilinx

Ultrascale++

ZCU104

Kria

47

Optimized real-time tracking

The system was implemented to track persons by a quadrotor, using

two execution domains isolated by the CLARE hypervisor:

CLARE Hypervisor

Xilinx
Kria

Linux FreeRTOS

AI-powered

software

Safety-critical

software

accelerator Ttrusted EE

Tracking is carried out at

30 fps with optimization

3 fps without optimization

48

50

Neural Network

Training set

Can we trust a DNN on inputs that are quite

different from those shown in the training set?

Can we trust a NN?

Speed

limit 50

51

Training set

?

Can we trust a DNN on inputs that are quite

different from those shown in the training set?

Can we trust a NN?

Neural Network

Out-of-distribution inputs

52

Can a DNN recognize such images?

53

Accidents due to AI

23 march 2018
23 March 2018: A Tesla X missed to recognize lanes and crashed

into a concrete lane divider at 70 miles per hour.

54

Accidents due to AI

June 1, 2020: A model 3 Tesla missed to recognize an overturned

truck on a highway in Taiwan and crashed into it at 68 mph.

56

Neural networks are prone to adversarial attacks, i.e.,

malicious inputs containing imperceptible perturbations that can

make a neural network to make wrong predictions.

Genuine input 0 0.5 1

Neural

Network

0 0.5 1

Neural

Network
=+

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

imperceptible

perturbation

Adversarial input

Cyber-attacks to DNNs

Real-world attacks

Classic adversarial inputs must have access to the AI system (DNN

input, memory, or camera) to modify the image.

PARKING (92%) BRAD PITT (93%) RIFLE (91%)

Real-world Adversarial attacks are directly applied to objects in the

physical world, without accessing the AI system.

person

NO DETECTION

57

58

Coverage analysis

x

Trusted

dataset

online

off-line

Prediction

score

Signature of layer L for

class c derived off-line

from the trusted data set.

L

Network
signature

RETIS Lab proposed an efficient method to analyze the internal

activations of a neural network to detect both anomalous and

adversarial inputs through a confidence score:

Paper

G. Rossolini, A. Biondi, G. Buttazzo, "Increasing the Confidence of Deep Neural Networks

by Coverage Analysis", IEEE Trans. on Software Engineering, 49(2):802-815, 2023.

59

Coverage analysis

x

Trusted

dataset

online

off-line

Prediction

score

Signature of layer L for

class c derived off-line

from the trusted data set.

Activation map of

layer L derived online

from a new input x:

Comparison

metrics
Confidence

score

L

L

Network
signature

For a new input x, the current activation state is compared with the

stored signature corresponding to the predicted class. The higher

the matching, the higher the confidence:

Predicted class

60

Input transformations

Blurring

CNN

cat

dog

bird

fish

0 0.5 1

CNN

cat

dog

bird

fish

0 0.5 1

Adversarial

image

Another approach exploits the fact that standard AEs loose their

effect when they are subject to certain input transformations

(e.g., blurring, translation, rotations):

61

Input transformations

Blurring

For genuine images, the same transformations do not cause a strong

degradation in the prediction:

CNN

cat

dog

bird

fish

0 0.5 1

CNN

cat

dog

bird

fish

0 0.5 1

Genuine

image

62

Input transformations

Blurring

CNN

CNN

KL divergence > 

AE

not AE

p

q  p

Genuine

image

Y

N

RETIS Lab proposed a detection method that compares the two

distributions using a KL-divergence: a sample is considered to be AE

if the two predictions are “distant” from each other:

Paper

F. Nesti, A. Biondi, and G. Buttazzo, "Detecting Adversarial Examples by Input

Transformations, Defense Perturbations, and Voting", IEEE Trans. on Neural Networks and

Learning Systems, 34(3):1329-1341, March 2023.

63

Input transformations

Blurring

CNN

CNN

KL divergence > 

AE

not AE

p

q  p

Paper

F. Nesti, A. Biondi, and G. Buttazzo, "Detecting Adversarial Examples by Input

Transformations, Defense Perturbations, and Voting", IEEE Trans. on Neural Networks and

Learning Systems, 34(3):1329-1341, March 2023.

Y

N

Adversarial

image

RETIS Lab proposed a detection method that compares the two

distributions using a KL-divergence: a sample is considered to be AE

if the two predictions are “distant” from each other:

64

Real-world adv. attacks

An extensive experimental study has been performed to evaluate the

robustness of segmentation networks against real-world attacks,

based on patches and physical posters:

on billboards behind trucks

65

Real-world adv. attacks

Experiments on the CARLA simulator highlighted that some semantic

segmentations networks are more sensitive to adversarial attacks:

Paper

F. Nesti, G. Rossolini, S. Nair, A. Biondi, and G. Buttazzo, "Evaluating the Robustness of

Semantic Segmentation for Autonomous Driving against Real-World Adversarial Patch

Attacks", Proc. of WACV 2022.

Input

image

Segmented

image

No Attack
Regular

Poster

Adversarial Poster

66

Normal Poster

67

Adversarial Poster

68

Z-mask defense

A new defense method to identify and mask the adversarial region:

Paper

G. Rossolini, F. Nesti, F. Brau, A. Biondi, and G. Buttazzo. "Defending from physically-

realizable adversarial attacks through internal over-activation analysis", Proc. of the 37th

AAAI Conf. on Artificial Intelligence, Washington, DC, USA, February 7-14, 2023.

69

Z-mask in action

70

Paper

G. Rossolini, F. Nesti, F. Brau, A. Biondi, and G. Buttazzo. "Defending from physically-

realizable adversarial attacks through internal over-activation analysis", Proc. of the 37th

AAAI Conf. on Artificial Intelligence, Washington, DC, USA, February 7-14, 2023.

Z-mask defense

Z-mask applied on CARLA to neutralize an adversarial poster:

No attack Adversarial Poster Defense Mask

Input

image

Seg.

image

72

Intrusion detection by AI

RETIS Lab developed a universal IDS able to detect not only a few

types of malicious packets, but all anomalous packets.

Paper

N. Borgioli, L.T. Xuan Phan, F. Aromolo, A. Biondi, G. Buttazzo, "Real-Time Packet-based

Intrusion Detection on Edge Devices", Proc. of the Workshop on Real-time and Intelligent

Edge Computing (RAGE), San Antonio, TX, May 9th, 2023 (Best Paper).

Neural

Network

A special Multi-State Memory Autoencoder (MSM-AE) is used to

recognize and reconstruct packets from regular traffic, raising a

warning on anomalous ones.

73

Intrusion detection by AI

RETIS Lab developed a universal IDS able to detect not only a few

types of malicious packets, but all anomalous packets.

Paper

N. Borgioli, L.T. Xuan Phan, F. Aromolo, A. Biondi, G. Buttazzo, "Real-Time Packet-based

Intrusion Detection on Edge Devices", Proc. of the Workshop on Real-time and Intelligent

Edge Computing (RAGE), San Antonio, TX, May 9th, 2023 (Best Paper).

Neural

Network

A special Multi-State Memory Autoencoder (MSM-AE) is used to

recognize and reconstruct packets from regular traffic, raising a

warning on anomalous ones.

74

Intrusion detection by AI

Being attack agnostic, new type of attacks are also detected:

Paper

N. Borgioli, L.T. Xuan Phan, F. Aromolo, A. Biondi, G. Buttazzo, "Real-Time Packet-based

Intrusion Detection on Edge Devices", Proc. of the Workshop on Real-time and Intelligent

Edge Computing (RAGE), San Antonio, TX, May 9th, 2023 (Best Paper).

Neural

Network

False positive rate: FPR =
FP + TN

FP

True positive rate: TPR =
TP + FN

TP
= 99.83 %

= 0.18 %

Detection time

on GPU

NVIDIA Jetson

AGX Orin

on CPU

Cortex A78

12 cores

190 ms 50 ms

79

So what about AI in CPS?

We have seen that AI models have intrinsic weaknesses in terms of

▪ timing predictability, safety, security, and certifiability.

We cannot prevent AI algorithms from being attacked

or producing wrong results, but we can take a number

of countermeasures to prevent them from harming.

Does it mean that we cannot use AI in complex CPS?

Some solutions already exist, but more research is needed to

▪ Increase predictability when accelerating AI models

▪ Reduce response times by compression, distillation, & optimization

▪ Increase safety by detecting faults and anomalous inputs

▪ Increase security by proper defense mechanisms

80

Safe architecture

▪ Achieve fault-tolerance

by replication + voting

DNN1

DNN2

DNN3

V
O
T
E
R

▪ Detect anomalous inputs

and adversarial attacks

▪ Switch to a back-up controller

in anomalous conditions

Look ahead

simulation

Safety
monitor

Physical
systemBackup

controller

Unsafe input
detector

▪ Detect dangerous outputs

by safety monitoring

Act on the architecture to implement fault detection & exclusion:

81

Overall architecture

VOTER

Safety
Monitor

Integrated
confidence

Backup
controller

DNN1

DNN2

DNN3

Sensory

input

Other
AI functions

Safe
output

High-performance domain Safety-critical domain

Linux Erika Enterprise

CLARE Hypervisor

▪ Ensure security and isolation by a hypervisor.

