
Design Tradeoffs
in

Memory Reclamation

Pedro Ramalhete - May 2023

Table of Contents

• What is an SMR and when do we need one
• Classification and Design Choices
• A couple of SMR algorithms
• What is left to explore

Memory Reclamation is a hot topic

The latest Dijkstra Paper Prize on Distributed Computing went to:

Maged Michael – Hazard Pointers

Maurice Herlihy
Victor Luchangco Pass The Buck
Mark Moir

https://en.wikipedia.org/wiki/Dijkstra_Prize

https://en.wikipedia.org/wiki/Dijkstra_Prize

In a multi-threaded application, different threads may hold pointers
to the same object.

How do we know it is safe to delete/destroy/re-use an object?

What if another thread is still accessing the object?

In the example, destroying object A is ok but object B is not.

Thread 1 will have a dangling pointer to B and crash.

The concurrency mechanism that allows for the safe destruction of
objects is named a Safe Memory Reclamation algorithm (SMR)

The Problem

T1T0

A
C

B

Hey folks, is anyone
using object A or

object B?
Wait up, I’m still

using B

Q: What if we take a mutual exclusion lock when we access an object?

A: In many scenarios we may want multiple threads accessing the same
objects but they are reading them. The mutex becomes a bottleneck.

Q: Ok, then use reader-writer locks and take a read-lock!

A: Most reader-writer locks don’t scale for contended reads. The ones
that scale, use more memory.

Q: Fine, I’ll use one of the scalable reader-writer locks.

A: Sure, but what about optimistic access? And Lock-Free data
structures?

Adding locks to optimistic data structures or lock-free data structures
kind of defeats the purpose…

Can’t we use locks instead?

T0

B

T1 T2 T3

zz
z zz

z zz
z

RW

Lock-Free
data

structure
??

If the lock is inside the object, then the destruction of the object
implies the destruction of the lock.

If the lock is destroyed but there is still a pointer to the object+lock in
another thread, this is a problem.

If we put the lock in a separate object, the problem still exists because
we will have to destroy the object where the lock is located.

Software Transactional Memory typically uses a pre-allocated array of
locks for all objects in the application, which solves this problem.

Even when using locks, you may need memory reclamation

T0

B

T1

B

struct Foo {
pthread_mutex_t lock;
int data1;
long data2;
...

};

Executing read optimistic accesses:
• Reading object/records/nodes optimistically
• Optimistic (blocking) data structures
• Concurrency Controls with optimistic reads (OCC and related)
• Sequence locks
• Lock-free data structures
• …

Executing pessimistic access but the lock’s lifetime is bounded
to the shared object, or has an unknown lifetime

• The lock that protects the object/record/node is located inside the object
• The lock is outside the object but has a dynamic lifetime
• …

When do we need a Safe Memory Reclamation scheme?

In practice, most multi-threaded applications with dynamic memory allocation need a memory reclamation scheme.

Classification
and Design
choices

Hazard
Pointers

Families of Reclamation Schemes

Memory reclamation schemes can be roughly divided into four groups:

• Quiescent-based:
Reader: From this moment onwards I’m working, don’t delete anything
Reclaimer: I’ll delete only objects that were retired before you started

• Pointer-based:
Reader: Before accessing an object, I’ll announce each individually
Reclaimer: I can delete any object you’re not announcing

• Group-based:
Reader: I’m protecting a group of objects
Reclaimer: I can delete objects that don’t belong to announced group(s)

• Optimistic:
Reader: I can read whatever I want and will do post-validation
Reclaimer: I can delete any object immediately

Some schemes combines features from multiple groups and therefore can not be placed in a single group.

Examples: Epoch-Based-Reclamation,
Userspace-RCU, QSBR

Examples: Hazard Pointers, Pass The
Buck, Pass The Pointer

Examples: Hazard Eras, Drop The
Anchor, Margin Pointers

Examples: OneFile Optimistic, Version-
Based Reclamation

Pe
ss

im
is

tic

Protects all objects

Protects a single object

Protects a group of objects

Reads without protection and validates after

API of a reclamation scheme

Memory reclamation schemes usually have two APIs, the protect() and the retire().

protect() takes an associated index or some cookie to represent where this object is to be announced and it
takes an address of an atomic variable from which the pointer is read. It returns a pointer that is protected.
retire() takes a pointer to an object that has been unlinked, i.e. is no longer reachable from the root pointers
of the data structure.
Quiescent schemes do not have a protect(). They have an arrive()/depart(). After arrive() is called, all
reachable objects are protected, therefore they can be safely read.

Optimistic schemes do not have a protect(). Instead, whenever a piece of data is read, they do post-validation
to check whether or not that data read is valid. If it’s not, we need to restart the operation.

Node* protect(int idx, atomic<Node*>& atom) retire(Node* ptr)

HP index Atomic variable
Returns protected

pointer Object to delete

Using a reclamation scheme
Quiescent-based

rcu_arrive();

obj1->x++;

obj2->x++;

obj3->y++;

...

obj99->x++;

rcu_depart();

Pointer-based / Group-based

obj1 = protect(0,node->next);

obj1->x++;

obj2 = protect(1,obj1->next);

obj2->x++;

obj2 = protect(2,obj2->next);

obj3->y++;

Optimistic

label start:

tmp1 = obj1->x;

if (!post_validate(obj1)) goto start;

tmp2 = obj2->x;

if (!post_validate(obj2)) goto start;

tmp3 = obj3->y;

if (!post_validate(obj3)) goto start;

• No need for unlink before free

• No protection for writes is possible

• Restarts can occur

• Can’t return memory to the OS

• Objects/pointers need some validation

• All objects protected for read

• All objects protected for write

• Must unlink before retire

• Objects are protected for the future

• Not resilient to failures

• Individual/group-of objects protected for read

• Individual/group-of objects protected for write

• Must unlink before retire

Performance vs Memory (bound)
Protects one object

at a time

Higher Performance

Protects no objectsProtects all objects

Lower Memory Bound

Protects many objects
at a time

Each call to protect() or to arrive() will typically cost one store-load fence.

HP, PTB, PTP HE, DTA, MP EBR, URCU, QSBR OF, VBR

Resilience do Failures

What makes a good reclamation scheme?

Five typical categories:

• Performance: Should have high throughput and low tail latency;

• Bounded retired objects: Must have a bound on the number of retired objects. The lower the better;
• Usability: Should be easy to deploy, with a small number of annotations/modifications to the code;

• Applicability: Should be deployable on as many data structures as possible;
• Consistency: Should not drastically change the latency profile of the workload;

Depending on the use-case there are specific questions that may need to be considered:
Can we use this scheme with the system’s allocator?
How much extra memory is taken per object due to scheme metadata?
Can I use it with any kind of objects?
Does it do restarts?
What are the performance-memory trade-offs?
What is the average memory usage?
Is it a manual scheme, partial automatic, or fully automatic?
etc…

Certain schemes may need to read data from memory blocks which have been de-allocated. For example,
Automatic Optimist Access, Free Access, and Version Based Reclamation require a customized allocator.

This typically means a large region has to be pre-allocated (or mmaped) from the Operating System.

Any Allocator vs Custom Allocator

14

Process 1 Process 2

in-use pages

segmentation
fault

Central clock
Quiescence

15

arrive():

1. Read the timestamp in the clock

2. Announce the timestamp

depart():

1. Clear the announced timestamp

retire(ptr):

1. Read the current timestamp in the clock and increment it with fetch_add()

2. Scan the announced timestamps and save the oldest announced timestamp

3. If the oldest > current, free(ptr)

4. Else, wait until it becomes true, or save the object in a thread-local retired list

Memory usage is unbounded or retire() is blocking.

arrive() and depart() can be wait-free.

Central Clock Quiescence

16

none

T1

5 none 7

T3

announced timestamps

retire(&A)

T2

7clock 8

T0

All Quiescent SMRs are blocking
All quiescent reclamation schemes have a blocking retire()
or have unbounded memory usage.

An unbounded memory reclamation scheme is silly because if
we had a server with an unbounded amount of memory, then
we would not need a memory reclamation scheme.
In practice, a quiescent reclamation scheme can defer
reclamation up to a large bound, and then block.

with unbounded DRAM

Why is lock-free progress
important?

Designing and implementing correct lock-free data
structures is hard. Adding a blocking SMR reduces the
value of that effort.

Even with blocking data structures we may want a lock-
free SMR to have a more responsive application: if a
thread gets stuck, other threads will not be blocked due
to memory reclamation.

Applications on persistent memory need failure-
resilience, and lock-freedom provides failure-resilience.

Hazard
Pointers

19

protect(atomic_var):

1. Read an atomic variable containing a pointer

2. Announce the pointer

3. If the atomic variable no longer has the same pointer, go to 1

4. If it is the same, return the ptr, it’s now protected

retire(ptr):

1. Scan the announced pointers for a match

2. If there is a match, add the pointer to a retired list

3. If no match, free(ptr)

4. Scan the announced ptrs to check for matches in the retired list

Memory usage is bounded to O(NR
2) quadratic with the number of reader threads.

Both protect() and retire() are lock-free.

Hazard Pointers

20

nullptr

T1

&A &B &A

T3

hazardous pointers

retire(&A)

T0

retire(&C)

T2

free(&C)

Pass The
Pointer

21

Protecting an object is done in the same way as Hazard
Pointers and Pass The Buck.

Retiring an object is a different procedure.

PTP uses an array of hazardous pointers where each
entry is assigned to a thread and an array of handovers
shared by all threads.

For each hazardous pointer entry there is an associated
handovers entry.

Pass The Pointer

22

nullptr &A &B &Ahazardous pointers

nullptr nullptr nullptr nullptrhandovers &A

nullptr

T1 T2 T3

retire(&A)

T0

retire(ptr):

1. Scan the announced pointers for a match

2. If a match is found, go in handovers and exchange(ptr)

3. If the return from exchange() is non-null, continue down the announced
pointers and repeat the exchange() if a match is found

4. The object kept at the end of the scan can be safely de-allocated

Memory usage is bounded to O(NR) linear with the number of reader threads.

Hazard Eras

How do Hazard Eras work?

Instead of publishing a pointer, readers publish an era
(timestamp), which acts as a proxy to the pointer. This era is
taken from eraClock

As long as the eraClock doesn’t change, there is no need to
do a store for the next node that is traversed

Objects (nodes) have two associated eras : newEra and
delEra

Newly created objects have their newEra set to the current
value of eraClock before they’re inserted in the data
structure

After retiring an object, its delEra is set to the current value
of eraClock

Hazard Eras
Example with a linked list (lookup)

-1 -1 -1 -1he array

head node A node B node C node D node E tail

W -1

-1 -1 -1 -1

Thead 1 Thead 2 Thead 3 Thead 4 Thead …

-1

Readers
1. Read pointer
2. Read eraClock
3. If era is different from the previously published era, publish

the new era (plus store-load fence) and go to 1.

326eraClock

326

326

R1

newEra = 320 newEra = 123 newEra = 1 newEra = 325 newEra = 230

Hazard Eras
Example with a linked list (insertion)

-1 -1 -1

head node A node B

node C

node D node E tail

325

-1 -1 -1

Thead 1 Thead 2 Thead 3 Thead 4 Thead …

325

326eraClock

newEra = 320 newEra = 123 newEra = 325 newEra = 230

newEra = 326

R1

he array 326-1

-1326
R2

Hazard Eras
Removal of an ancient node

-1 -1 -1 -1

head node A node B

node C

node D

node E

tail

325

-1 -1 -1 -1

Thead 1 Thead 2 Thead 3 Thead 4 Thead …

325

eraClock

newEra = 320 newEra = 123 newEra = 325

newEra = 230 newEra = 326

R1

he array

delEra = 326

Thread-local
retired list

326327

W

Hazard Eras
Removal of a recent node

-1 -1 -1 -1

head node A node B

node C

node D tail

-1 -1 -1 -1

Thead 1 Thead 2 Thead 3 Thead 4 Thead …

Reclaimers
1. Unlink the node
2. Save the current era as delEra and increment the era
3. If there are no entries in the HE array with a value in the range

between [newEra ; delEra] then it is safe to delete

325

325

newEra = 320 newEra = 123 newEra = 325

newEra = 326

delEra = 327

327328eraClock

he array

Thread-local
retired list

R1

node E
newEra = 230

delEra = 326 W

free()

• The memory bound is not as low as for Hazard Pointers or Pass The Buck or Pass The Pointer.

• An object tracked by HE needs a newEra to store the era when it was created and a delEra
to store the era of when it was deleted.

• For data structures where multiple nodes are traversed and the frequency of removals is low,
it can provide up to 5x the throughput.

• It’s a drop-in replacement to Hazard Pointers. If you’re already using HP, recompile your code
and measure which one is faster.

Hazard Eras
Cons and Pros

When it comes to chasing bugs in SMRs, Address Sanitizer is your biggest friend.

Whether implementing a new SMR or using an existing SMR, ASan will be a big help.

It won’t tell you why there is a bug, but it will tell you when there is a bug (assuming you have good stress
tests). And the stack trace will help you.

Enable it on your compiler with:

gcc –fsanitize=address

clang –fsanitize=address

https://clang.llvm.org/docs/AddressSanitizer.html

Address Sanitizer

If you’re using an Optimistic reclamation scheme, then that means you are
using your own memory allocator and therefore, ASan can not help you.

ASan

https://clang.llvm.org/docs/AddressSanitizer.html

The Future

The best we can get

Map of the design space
of SMRs

Applicability

Throughput

Consistent

Memory Bound Usability

Unexplored
region

PTP

FreeAccess

OrcGC

NBR

HE

HP
PTB

IBR
There will never be an SMR that is the best at all
things, however, it seems likely that there is an SMR
that is pretty decent at all things (yet to be
discovered).

Also, the design space is still very unexplored in the
Usability region.

Questions?

