
Peter Pietzuch
Imperial College London

http://lsds.doc.ic.ac.uk
<prp@imperial.ac.uk>

Huawei Global Software Technology Summit – July 2022

Large-Scale Data & Systems Group

Joint work with Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-Octavian Brabete

What Can Machine Learning Systems
Learn From Data Analytics?

Deep Learning Is Eating The World

Revolutionised vision, speech recognition, natural language processing, …

`

` `

audio

words

text

topics

hello audience

images

labels

`

`

`

2Peter Pietzuch - Imperial College London

Deep Neural Networks (DNNs)

make hard problems easy…

DALL E Mini Model for Artistic Image Generation

AI drawing from text input: “Hamster skateboarding in space”

Go to https://www.craiyon.com
Peter Pietzuch - Imperial College London 3

Training Deep Neural Networks (DNNs)

DNN models are trained by giving examples (instead of programming)

Obtain DNN model that minimises classification error

When DNN output is wrong, tweak its parameters

Model weights w

E
rr

o
r

lowest error

random optimal

• convergence

4Peter Pietzuch - Imperial College London

Use Stochastic Gradient Descent (SGD):

1. Begin with random model weights

2. Consider batch of training data

3. Iteratively calculate gradients
& update model weights

Deep Learning on GPUs

GPUs are good at parallelising gradient computation

5Peter Pietzuch - Imperial College London

Distributed DNN Training Systems

6

Δ
Gradients

Dataset

Dataflow

Collective

communication

(all-reduce)

Data

batch

Worker 1

Worker 2

Worker 3

Worker 4

Exploiting data parallelism during training

Peter Pietzuch - Imperial College London

This is a data system!

Using Different GPU Numbers for Training

Convergence curve for
BERT NLP model
depends on GPU number

Peter Pietzuch - Imperial College London 7

But What About Data Abstractions in DBMS?

Peter Pietzuch - Imperial College London 8

Query/application 1 Query/application 2 Query/application 3

Logical Level

Physical Level

Worker 0 Worker 1

…

DNN Training Requires Many Parameters

9

Hyper-parameters
• Batch size

• Learning rate

• …

System parameters
• Number of workers

• Communication topology

• …

Worker 1

Worker 2

Worker 3Worker 0

Users tune hyper-parameters and system parameters to optimise
time-to-accuracy

Small batch or
large batch size?

Ring or binary-tree?

Peter Pietzuch - Imperial College London

Statistical Efficiency Hardware Efficiency

Tuning Parameters During Training

10

“Change batch size at epoch 30, 60 and 90 when
training with ImageNet.” [1]

“Linearly scale the learning rate with the #workers when
training ResNet models.” [2]

“Set the topology to a ring by default.” [3]

[1] Dynamic Mini-batch SGD for Elastic Distributed Training: Learning in the Limbo of Resources, 2020

[2] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2018

[3] Horovod: fast and easy distributed deep learning in TensorFlow, 2018

Issue

Dataset-specific

Model-specific

Cluster-specific

Empirical parameter tuning

Peter Pietzuch - Imperial College London

System Parameters: Elastic Training

11

Distributed DNN training is

resource-intensive

Elastic training: use

cheapest hardware resources

(GPUs) when available

Example: Training Megatron-LM3

• Training of BERT-like model

• 512 NVIDIA V100 GPUs

• One epoch (68,507 iterations) takes 2.1 days

Cost on Azure: $92,613

3Shoeybi, Mohammad, et al. Megatron-LM: Training Multi-billion Parameter Language Models using GPU Model Parallelism, 2017

GPU workers added/removed during training

➙ Must cope with changing GPU devices

➙ Must adapt communication topologies

➙ Must ensure consistency of training process

worker 0

worker 1

worker 2

worker 4

DNN system

Current Abstractions in DNN Training Systems

Peter Pietzuch - Imperial College London 12

Training job 1 Training job 2 Training job 3

DNN Training API

Worker 0 Worker 1

…

(1) Hyper-parameters

(model-specific, impact

accuracy)

(2) System parameters (e.g.

parallelisation strategy,

resources, optimisations)

Data layer

Resource layer

➔ Hyper- and System parameters couple Data and Resource layers

New Abstractions in DNN Training Systems

Peter Pietzuch - Imperial College London 13

Training job 1 Training job 2 Training job 3

Data/Model Level

Resource Level

Worker 0 Worker 1

…

(2) Resource independent training

(1) Hyper-parameter adaptation

1. Hyper-Parameter Adaptation

14Peter Pietzuch - Imperial College London

Express Adaptation as Control Loop

15

Control loop

Monitoring Adaptation

Workers

Control loop monitors workers and uses monitored metrics to change parameters

Peter Pietzuch - Imperial College London

Adaptation Policies

16

Monitoring

• grad_noise_scale
• grad_variance
• …

Communication

• allreduce
• broadcast
• …

Adaptation

• resize
• set_tree
• …

Write adaptation policies using

expressive API functions:

Policy Policy

Monitoring Adaptation

Communication

Workers

Peter Pietzuch - Imperial College London

KungFu: Adaptive distributed DNN Training

17

Monitoring, communication and adaptation functionsSupporting
adaptation policies

GNS Policy Elastic Policy

Key ideas:

Monitoring inside
dataflow graph

Asynchronous collective communication layer

TensorFlow/PyTorch/Keras Workers

Distributing
parameter updates

Monitoring training Adapting parameters

Dynamic worker membership tables

Supports

different types

of adaptation

Processes

large volume

of monitoring

data

Adapts

workers

consistently

Peter Pietzuch - Imperial College London

Step NStep N

Example: Adaptation Policy for Batch Size

18

Step N Step N+1

Policy

KungFu Optimizer

Hook

1. Adaptation logic in policy

opt = SGDOptimizer(…)
opt = kf.Optimizer(opt)

import kungfu as kf

class GNSPolicy(kf.BasePolicy)
def after_step(self):
gns = kf.grad_noise_scale()
avg = kf.allreduce(gns, `avg`)
if avg > self.prev:

kf.resize(kf.size() + 1)

3. KungFu Hooks add policy

hook = kf.Hook(GNSPolicy(…))
model, data = …
model.train(data, opt, hook)

2. Wrap Optimizer to

enable monitoring

Peter Pietzuch - Imperial College London

Efficient Monitoring During Training

19

Problem: High monitoring cost reduces adaptation benefit

Idea: Include monitoring operators inside dataflow

gradient1

gns1

gradient3

gradient2

allreduce1

gns3 allreduce3

gns2 allreduce2

Dataflow

graph

Gradient-Noise-Scale

Operator

Allreduce

Operator

Gradient Dataflow

Operator

Monitoring takes advantage of optimisations in dataflow engines

and collective communication support
Peter Pietzuch - Imperial College London

Changing System Parameters

20

gns allreduce avg

Value may be stale

Other system parameters:
• Worker rank

• Communication topology

• …

10

Problem: Parameter adaptation affects state consistency

Value of # workers

Dataflow for averaging GNS

Changing system parameters therefore typically requires system restart

Peter Pietzuch - Imperial College London

Distributed Mechanism for Changing Parameters

21

2. Update worker membership using

collective communication

gns allreduce avg

size_op

Dynamic worker membership

KungFu communication layer

1. System parameters as
computational operators

Idea: Decouple system parameters from dataflow state

MembershipMembership

Parameter update

Always obtains up-to-date view of system parameters
Peter Pietzuch - Imperial College London

How Effectively Does KungFu Adapt?

22

GNS policy, CIFAR-10 ResNet, 4 GPUs

0 1000 2000 3000 4000 5000 6000
Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

V
a
lid

a
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

SBS Accuracy

Small batch size

Small batch size reaches high accuracy, but converges slowly

Peter Pietzuch - Imperial College London

How Effectively Does KungFu Adapt?

23

0 1000 2000 3000 4000 5000 6000
Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

V
a
lid

a
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

SBS Accuracy

LBS Accuracy

Large batch size

GNS policy, CIFAR-10 ResNet, 4 GPUs

Large batch size finishes quickly, but accuracy suffers

Peter Pietzuch - Imperial College London

How Effectively Does KungFu Adapt?

24

0 1000 2000 3000 4000 5000 6000
Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

V
a
lid

a
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

SBS Accuracy

LBS Accuracy

KungFu Batch Size

0

512

1024

1536

2048

2560

3072

3584

4096

B
a

tc
h

 S
iz

eBatch size over time

GNS policy, CIFAR-10 ResNet, 4 GPUs

GNS predicts how effective batch size should increase during training

Peter Pietzuch - Imperial College London

How Effectively Does KungFu Adapt?

25

0 1000 2000 3000 4000 5000 6000
Time (seconds)

0

10

20

30

40

50

60

70

80

90

100

V
a
lid

a
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

SBS Accuracy

LBS Accuracy

KungFu Accuracy

KungFu Batch Size

0

512

1024

1536

2048

2560

3072

3584

4096

B
a

tc
h

 S
iz

e

Dynamic batch size

GNS policy, CIFAR-10 ResNet, 4 GPUs

Adaptation Policy has low overhead due to embedded monitoring

Peter Pietzuch - Imperial College London

(2) Resource Independent Training

26Peter Pietzuch - Imperial College London

How is Training Affected by Resource Changes?

DNN model convergence changes
with number of GPU devices

Experiment

• After changing GPUs, dataset
order is affected

• New dataset order impacts
convergence

➔ Changing resources may

impact any training state

Consistent dataset order
Unchanged dataset order

Types of State Affected by Resources

Changing number of GPUs requires, e.g.:

• redistribution of dataset & model states

• update of device-specific batch size

Transformations depend on type of parallelism used

28

Data

parallelism

Pipeline

parallelism

Model

parallelism

Idea: Externalise Training State

Update training state when
resources change to ensure
consistent training

Requires access to training
state outside of DNN system

Tenplex: Resource-Independent DNN Training

New abstraction for
accessing training state:
Virtual file system (VFS)

• Intercepts state
accesses by DNN system
through VFS API

• Transforms state to maintain
resource independence

Supports data, model,
pipeline, hybrid parallelism

Compatible with MindSpore,
PyTorch, Megatron-LM,
DeepSpeed

30

Tenplex

State Access Through VFS Abstraction

http://<work-host>:<port>/dataset/<progress>/<worker-id>/…/<tensor>?range=

stored distributedly, mounted as Fuse:

/<mnt>/ds/<start-progress>/<worker-id>/meta.txt # e.g. batch size
/<mnt>/ds/<start-progress>/<worker-id>/filelist.txt # list of files, one per line
/<mnt>/ds/<start-progress>/<worker-id>/<data.part-1>
/<mnt>/ckpt/<worker-id>/<progress>/<mp-rank>?/<pp-rank>?/<model.part-1>
/<mnt>/ckpt/<worker-id>/<progress>/<mp-rank>?/<pp-rank>?/<optimizer.part-2>

def main(...):
progress, worker_id, mp_rank, ... = init()
btsz = int(open(f’/{mnt}/ds/{progress}/{worker_id}/batch-size.txt’).read())
files = open(f’/{mnt}/ds/{progress}/{worker_id}/filelist.txt’).read().split(‘\n’)
ds = create_ds(files, batch_size=btsz)
m = build_model(…)
m.load(f’/{mnt}/{worker_id}/{progress}/{mp_rank}/data.pt’)
m.train(ds)

Unified state addressing

with file path/URL:

All state assigned URL

Simplified access API:

Training job/controller
can access/migrate
state via:

- plain File API
- or HTTP Request

Resource Independent Elastic Training with Tenplex

Tenplex ensures consistent
training when elastically
scaling GPU workers

32

Each blue bar represents

a change in used GPUs

Consistent Convergence with Tenplex

Tenplex achieves
consistent convergence
with different hybrid
parallelism:

Data parallelism (DP)

Model parallelism (MP)

Pipeline parallelism (PP)

33

Summary:
New Abstractions for DNN Training Systems

34

KungFu @ Github

https://github.com/lsds/KungFu

Current DNN systems lack abstractions for adaptation & resource independence

(1) KungFu makes DNN training adaptive

(2) Tenplex decouples training state from GPU resources

Decouple adaptation from training job

Take advantage of efficient dataflow execution

Provide powerful distributed primitives

Adaptation Policies

Asynchronous collective communication

Dynamic worker membership tables

Peter Pietzuch
prp@imperial.ac.uk

Thank You — Any Questions?

Externalise state from DNN training system

Exposes virtual file system (VFS) abstraction

Transforms state to be resource independent

