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What Can Machine Learning Systems 
Learn From Data Analytics?



Deep Learning Is Eating The World

Revolutionised vision, speech recognition, natural language processing, …
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Deep Neural Networks (DNNs) 

make hard problems easy…



DALL E Mini Model for Artistic Image Generation

AI drawing from text input: “Hamster skateboarding in space”

Go to https://www.craiyon.com
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Training Deep Neural Networks (DNNs)

DNN models are trained by giving examples (instead of programming)

Obtain DNN model that minimises classification error

When DNN output is wrong, tweak its parameters

Model weights w
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random optimal

• convergence
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Use Stochastic Gradient Descent (SGD): 

1. Begin with random model weights

2. Consider batch of training data

3. Iteratively calculate gradients
& update model weights



Deep Learning on GPUs

GPUs are good at parallelising gradient computation
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Distributed DNN Training Systems 
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Exploiting data parallelism during training
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This is a data system!



Using Different GPU Numbers for Training

Convergence curve for 
BERT NLP model 
depends on GPU number
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But What About Data Abstractions in DBMS?
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Query/application 1 Query/application 2 Query/application 3

Logical Level

Physical Level

Worker 0 Worker 1

…



DNN Training Requires Many Parameters
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Hyper-parameters
• Batch size

• Learning rate

• …

System parameters
• Number of workers

• Communication topology

• …

Worker 1

Worker 2

Worker 3Worker 0

Users tune hyper-parameters and system parameters to optimise 
time-to-accuracy

Small batch or 
large batch size?

Ring or binary-tree?
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Statistical Efficiency Hardware Efficiency



Tuning Parameters During Training

10

“Change batch size at epoch 30, 60 and 90 when 
training with ImageNet.” [1]

“Linearly scale the learning rate with the #workers when 
training ResNet models.” [2]

“Set the topology to a ring by default.” [3]

[1] Dynamic Mini-batch SGD for Elastic Distributed Training: Learning in the Limbo of Resources, 2020

[2] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2018

[3] Horovod: fast and easy distributed deep learning in TensorFlow, 2018

Issue

Dataset-specific

Model-specific

Cluster-specific

Empirical parameter tuning
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System Parameters: Elastic Training
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Distributed DNN training is 

resource-intensive

Elastic training: use 

cheapest hardware resources 

(GPUs) when available

Example: Training Megatron-LM3

• Training of BERT-like model

• 512 NVIDIA V100 GPUs

• One epoch (68,507 iterations) takes 2.1 days

Cost on Azure: $92,613

3Shoeybi, Mohammad, et al. Megatron-LM: Training Multi-billion Parameter Language Models using GPU Model Parallelism, 2017

GPU workers added/removed during training

➙ Must cope with changing GPU devices

➙ Must adapt communication topologies

➙ Must ensure consistency of training process

worker 0

worker 1

worker 2

worker 4

DNN system



Current Abstractions in DNN Training Systems
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Training job 1 Training job 2 Training job 3

DNN Training API

Worker 0 Worker 1

…

(1) Hyper-parameters

(model-specific, impact 

accuracy)

(2) System parameters (e.g. 

parallelisation strategy, 

resources, optimisations)

Data layer

Resource layer

➔ Hyper- and System parameters couple Data and Resource layers



New Abstractions in DNN Training Systems
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Training job 1 Training job 2 Training job 3

Data/Model Level

Resource Level

Worker 0 Worker 1

…

(2) Resource independent training

(1) Hyper-parameter adaptation



1. Hyper-Parameter Adaptation
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Express Adaptation as Control Loop
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Control loop

Monitoring Adaptation

Workers

Control loop monitors workers and uses monitored metrics to change parameters
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Adaptation Policies
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Monitoring

• grad_noise_scale
• grad_variance
• …

Communication

• allreduce
• broadcast
• …

Adaptation

• resize
• set_tree
• …

Write adaptation policies using 

expressive API functions:

Policy Policy

Monitoring Adaptation

Communication

Workers

Peter Pietzuch - Imperial College London



KungFu: Adaptive distributed DNN Training
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Monitoring, communication and adaptation functionsSupporting 
adaptation policies

GNS Policy Elastic Policy

Key ideas:

Monitoring inside 
dataflow graph

Asynchronous collective communication layer

TensorFlow/PyTorch/Keras Workers

Distributing 
parameter updates

Monitoring training Adapting parameters

Dynamic worker membership tables

Supports

different types 

of adaptation

Processes 

large volume 

of monitoring 

data

Adapts

workers 

consistently
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Step NStep N

Example: Adaptation Policy for Batch Size
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Step N Step N+1

Policy

KungFu Optimizer

Hook

1. Adaptation logic in policy

opt = SGDOptimizer(…)
opt = kf.Optimizer(opt)

import kungfu as kf

class GNSPolicy(kf.BasePolicy) 
def after_step(self):
gns = kf.grad_noise_scale()
avg = kf.allreduce(gns, `avg`)
if avg > self.prev:

kf.resize(kf.size() + 1)

3. KungFu Hooks add policy

hook = kf.Hook(GNSPolicy(…))
model, data = …
model.train(data, opt, hook)

2. Wrap Optimizer to 

enable monitoring

Peter Pietzuch - Imperial College London



Efficient Monitoring During Training
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Problem: High monitoring cost reduces adaptation benefit

Idea: Include monitoring operators inside dataflow

gradient1

gns1

gradient3

gradient2

allreduce1

gns3 allreduce3

gns2 allreduce2

Dataflow

graph

Gradient-Noise-Scale 

Operator

Allreduce 

Operator

Gradient Dataflow 

Operator

Monitoring takes advantage of optimisations in dataflow engines 

and collective communication support
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Changing System Parameters
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gns allreduce avg

Value may be stale

Other system parameters:
• Worker rank

• Communication topology

• …

10

Problem: Parameter adaptation affects state consistency

Value of # workers

Dataflow for averaging GNS

Changing system parameters therefore typically requires system restart
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Distributed Mechanism for Changing Parameters
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2. Update worker membership using 

collective communication

gns allreduce avg

size_op

Dynamic worker membership

KungFu communication layer

1. System parameters as 
computational operators 

Idea: Decouple system parameters from dataflow state

MembershipMembership

Parameter update

Always obtains up-to-date view of system parameters
Peter Pietzuch - Imperial College London



How Effectively Does KungFu Adapt?
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GNS policy, CIFAR-10 ResNet, 4 GPUs
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Small batch size

Small batch size reaches high accuracy, but converges slowly
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How Effectively Does KungFu Adapt?
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Large batch size

GNS policy, CIFAR-10 ResNet, 4 GPUs

Large batch size finishes quickly, but accuracy suffers
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How Effectively Does KungFu Adapt?
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GNS policy, CIFAR-10 ResNet, 4 GPUs

GNS predicts how effective batch size should increase during training
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How Effectively Does KungFu Adapt?
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Dynamic batch size

GNS policy, CIFAR-10 ResNet, 4 GPUs

Adaptation Policy has low overhead due to embedded monitoring
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(2) Resource Independent Training
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How is Training Affected by Resource Changes?

DNN model convergence changes
with number of GPU devices

Experiment

• After changing GPUs, dataset 
order is affected

• New dataset order impacts 
convergence

➔ Changing resources may 

impact any training state

Consistent dataset order
Unchanged dataset order



Types of State Affected by Resources

Changing number of GPUs requires, e.g.:

• redistribution of dataset & model states

• update of device-specific batch size

Transformations depend on type of parallelism used

28

Data

parallelism

Pipeline 

parallelism

Model

parallelism



Idea: Externalise Training State

Update training state when 
resources change to ensure 
consistent training

Requires access to training 
state outside of DNN system



Tenplex: Resource-Independent DNN Training

New abstraction for 
accessing training state:
Virtual file system (VFS)

• Intercepts state
accesses by DNN system 
through VFS API

• Transforms state to maintain 
resource independence

Supports data, model, 
pipeline, hybrid parallelism

Compatible with MindSpore, 
PyTorch, Megatron-LM, 
DeepSpeed

30
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State Access Through VFS Abstraction

http://<work-host>:<port>/dataset/<progress>/<worker-id>/…/<tensor>?range=

stored distributedly, mounted as Fuse:

/<mnt>/ds/<start-progress>/<worker-id>/meta.txt # e.g. batch size
/<mnt>/ds/<start-progress>/<worker-id>/filelist.txt # list of files, one per line
/<mnt>/ds/<start-progress>/<worker-id>/<data.part-1>
/<mnt>/ckpt/<worker-id>/<progress>/<mp-rank>?/<pp-rank>?/<model.part-1>
/<mnt>/ckpt/<worker-id>/<progress>/<mp-rank>?/<pp-rank>?/<optimizer.part-2>

def main(...):
progress, worker_id, mp_rank, ... = init()
btsz = int(open(f’/{mnt}/ds/{progress}/{worker_id}/batch-size.txt’).read())
files = open(f’/{mnt}/ds/{progress}/{worker_id}/filelist.txt’).read().split(‘\n’)
ds = create_ds(files, batch_size=btsz)
m = build_model(…)
m.load(f’/{mnt}/{worker_id}/{progress}/{mp_rank}/data.pt’)
m.train(ds)

Unified state addressing 

with file path/URL:

All state assigned URL

Simplified access API:

Training job/controller 
can access/migrate
state via:

- plain File API
- or HTTP Request



Resource Independent Elastic Training with Tenplex

Tenplex ensures consistent
training when elastically
scaling GPU workers
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Each blue bar represents 

a change in used GPUs



Consistent Convergence with Tenplex

Tenplex achieves 
consistent convergence
with different hybrid 
parallelism:

Data parallelism (DP)

Model parallelism (MP)

Pipeline parallelism (PP)
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Summary: 
New Abstractions for DNN Training Systems
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KungFu @ Github

https://github.com/lsds/KungFu

Current DNN systems lack abstractions for adaptation & resource independence

(1) KungFu makes DNN training adaptive

(2) Tenplex decouples training state from GPU resources

Decouple adaptation from training job

Take advantage of efficient dataflow execution

Provide powerful distributed primitives

Adaptation Policies

Asynchronous collective communication

Dynamic worker membership tables

Peter Pietzuch
prp@imperial.ac.uk

Thank You — Any Questions?

Externalise state from DNN training system

Exposes virtual file system (VFS) abstraction

Transforms state to be resource independent


