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Agenda

We'll go through topics
around making, and then
reasoning over a complex
Knowledge Graph

Assembling and using a graph

-> Make

-> Use

Can we do things differently?

Take away messages
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Why integrate healthcare data?

Three factors
— Increasing amount of data available

— Increasing data processing capabilities
— Improved outcomes using the “big picture”

One “omic” to study each “ome”
— Genome: data about genes
— Exposome: data about exposition

— Proteome: data about proteins

— Etc... Image from Multi-Omics: a Revolutionary Approach to Data Analysis
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http://melgen.org/multi-omics-approach/

KG-driven Knowledge Discovery

* Knowledge Graphs are an established way to connect data
coming from different silos into so-called “360 views”

* Knowledge Discovery is the process of extracting useful
information from this data.

* In our work, we aim at building Al systems to work with
humans on knowledge discovery tasks. This ranges from
exploring the data together to validating ideas using the
data.

Dellermann, D., Ebel, P., Soellner, M., & Leimeister, J. M. (2021). Hybrid Intelligence. https://doi.org/10.1007/s12599-019-00595-2

> H. James Wilson, & Paul R. Daugherty. (2022, March). Robots Need Us More Than We Need Them. Https://Hbr.Org/2022/03/Robots-Need-Us-
More-than-We-Need-Them.
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Positioning of Hybrid Intelligence [Dellermann 2021]
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The story of the client and the Knowledge Graph geeks

”I need an Al system to help me work on a knowledge discovery task”

“We can make a graph and do graph machine learning on it”

“Cool! Here is all the data | have, feel free to enrich it with more stuff”

(sometime later...)

“Here you go; predictions! What do you think?”
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Assembling and
using a graph

Getting from raw data to insights




Two-step pipeline

» State of the art is to: build a graph, ship it to someone using it, and then ship the outcome of the Al part.
Then back-track and repeat as needed
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Guéret, C. (2022). Knowledge Graphs in support of Human-Machine intelligence. First International Conference on Hybrid Intelligence (HHAI). https://www.hhai-conference.org/wp-
content/uploads/2022/06/hhai-2022 paper 67.pdf Copyright © 2022 Accenture. All rights reserved.
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Make

Assemble a nice, big, Knowledge Graph
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Graphs as take away items

* There are a lot of different integrated medical KGs out there
— PubChem
— DISQOVER
— DisGeNET - a database of gene-disease associations
— Clinical Knowledge Graph (CKG)

— Hetionet - An integrative network of biomedical knowledge

— Open Pharmacological Space (openphacts.org)

* Collaboration networks such as Elixir are also interesting to study as a source of data and tools

* However, all those graphs are created with this one-size-fits all approach and share the other shortcomings
of any “in house” graph constructed with SoTA approaches
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https://pubchemdocs.ncbi.nlm.nih.gov/rdf
https://www.ontoforce.com/disqover
https://www.disgenet.org/rdf
https://ckg.readthedocs.io/en/latest/INTRO.html
https://het.io/
http://www.openphacts.org/index.php
https://jayce-o.blogspot.com/2013/07/30-examples-of-take-away-food-packaging.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

One example graph: CKG
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Santos, A., Colago, A. R., Nielsen, A. B., Niu, L., Geyer, P. E., Coscia, F., Albrechtsen, N. J. W., Mundt, F., Jensen, L. J., & Mann, M. (2020). Clinical Knowledge Graph
> Integrates Proteomics Data into Clinical Decision-Making. BioRxiv, 2020.05.09.084897. https://doi.org/10.1101/2020.05.09.084897

Copyright © 2022 Accenture. All rights reserved.


https://doi.org/10.1101/2020.05.09.084897

Some challenges of make/use approach

* Data refresh: it becomes challenging to release a new integrated KG to match a refresh of a single data
source. Changes must be “big enough” to warrant a new release;

* Data provenance: the graph construction processes being decoupled from the graph consumption processes
there is an information gap between the two;

* Data uniformity: performing data integration is, by nature, about fitting a source world conceptualisation
into a target one. The assumption is that the integrated graph is a one-size-fits-all one.
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Data integration

* We need to select a target ontology / model and an approach to deal with the many identifier schemes used
across all the fields
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Level 5 Providing the ability to reason about the healthcare process
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FHIR is an established data model to

sameAs reasoning can be applied to help
integrate data with identifiers
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https://www.hl7.org/fhir/

Use

Now query the graph and do some
machine learning with it
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Example of questions

The integrated KG provides exploration capabilities spanning over the whole spectrum of multi-omics data

Users can formulate this kind of queries over the graph
— “What is the gene encoding protein X?”

— “What are the drugs containing a compound acting on target Y?”

We can add IF/THEN rules to infer some statements: “IF compound X acts on gene Y which encodes protein
Z, THEN compound X acts on protein Z”

The challenge for answering all the above queries is to align the dataset semantics in a target ontology and
reconcile identifiers

> Copyright © 2022 Accenture. All rights reserved. 14



Interactive exploration and query
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15 Best Graph Visualization Tools for Your Neo4j Graph Database
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https://triply.cc/docs/yasgui-api
https://sparnatural.eu/
https://www.slideshare.net/pgroth/ops-developerwebinarjuly312013
https://neo4j.com/developer-blog/15-tools-for-visualizing-your-neo4j-graph-database/

Graph embeddings

* The Al needs to learn the graph in order to reason over it. We do that by mapping the content of the graph

into a vector space

Knowledge Graph

N

AmpliGraph

Graph ML powered by Ampligraph
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Then, three possible type of investigations

LINK PREDICTION/
TRIPLE CLASSIFICATION

« Knowledge graph completion
« Content recommendation
* Question answering
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A. Guinness

> Costabello, L., Pai, S., McCarthy, N., & Janik, A. (2020). Knowledge Graph Embeddings Tutorial: From Theory to Practice. Zenodo.

https://doi.org/10.5281/zen0do.4268208
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Predicting links

The goal is to predict what is the
likelihood of a link not present in the
graph

The outcome depends on all the
content in the graph, at any distance
from the target nodes

We have a sub-graph explanation sub
system able to state which nodes were
most influential in the scoring
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The task here is to predict if the link in red could be a statement in the graph
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Training with Uncertainties/Importance of links

* As an extension to state of the art graph
machine learning we developed an approach
to weigh the links based on importance

> S Pai, L Costabello(2021). Learning Embeddings from Knowledge Graphs With Numeric Edge Attributes: 1JCAI 2021

JavaScript

irequiresSkjll

hasTask 0.13

O 085 :O
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Cleaning Engineer

Figure 1: A Knowledge graph with numeric attributes associated to
triples.
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Clustering

* |f we cluster entities based on their
vector representation, we see
emerging features

* In this example, the continents are not
in the graph but emerge from other
type of edges
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Clustering the nodes based on continents (image from Examples —
AmpliGraph 1.4.0 documentation )
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https://docs.ampligraph.org/en/1.4.0/examples.html#clustering-and-projectings-embeddings-into-2d-space

Using embedding space for generation

* In ChemoVerse we learn to represent and generate
structures of small molecules from an embedding

[
space (or latent space). Fmemamemes -
* We use a manifold traversal with heuristic search to
explore a latent space created from knowledge on this
chemical space.
* Different heuristics and scores such as oncocaen

(Oc1cceee1C)c2cccec2

the Tanimoto coefficient, synthetic accessibility, ®
binding activity, and QED drug-likeness can be

incorporated to increase the validity and proximity for

desired molecular properties of the generated

molecules.

* With this novel traversal method, we are able to find
more unseen compounds and more specific regions to
mine in the latent space.

Singh, H., McCarthy, N., Ain, Q. U., & Hayes, J. (2020). ChemoVerse: Manifold traversal of latent spaces for novel molecule discovery.
> https://doi.org/10.48550/arxiv.2009.13946 Copyright © 2022 Accenture. All rights reserved.
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Searching for complex combinations

* For future work, we are considering doing
guery answering using the embedding space.
Eventually using an approach like Query2Box
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H Ren, W Hu, J Leskovec, QUERY2BOX: Reasoning over Knowledge Graphs in vector space using box embeddings, ICLR 2020

>
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What can we do
better?

Exploring what could be in the graph




Is this ok for Hybrid Intelligence?

One-way and non iterative
insights only, the Al ignores
input from humans

Assumption that everything in
the knowledge graph is ok to
use and share

Collaboration

Adaptation

Explainability

No adaptation to a change of
context without changing the
input data

The reasoning process of
humans is not taken into
consideration

Grid derived from: Akata, Z., Balliet, D., de Rijke, M., Dignum, F., Dignum, V., Eiben, G., Fokkens, A., Grossi, D., Hindriks, K., Hoos, H., Hung, H., Jonker, C., Monz, C., Neerincx, M., Oliehoek, F., Prakken, H., Schlobach, S., van der Gaag,
L., van Harmelen, F., ... Welling, M. (2020). A Research Agenda for Hybrid Intelligence: Augmenting Human Intellect With Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence. Computer, 53(8), 18-28.

https://doi.org/10.1109/MC.2020.2996587
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Opportunities

3 keys things we can leverage to improve on our pipeline

Reasoning rules Rise of data fabrics
Lack of data compensated by KG constructed on demand
expert knowledge rather than pre-assembled

MAKE A
KG USING ETL

" MLNEEDS PLENTY OF DATA || HAVE 100 RECORDS |

5,

y » BUILD A
| DATA FABRIC
. a8 USING OBDI

THAT'S PLENTY, RIGHT P

Shared understanding

Graphs used as is by all stake-
holders, human and Al

? What about
LW feature engineering?
|}

Guéret, C. (2022). Slides supporting the presentation of “Knowledge Graphs in support of Human-Machine intelligence”. First International Conference on Hybrid Intelligence (HHAI).

HHAI June 2022 - KGs and Hybrid Intelligence (slideshare.net)

Copyright © 2022 Accenture. All rights reserved.
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https://www.slideshare.net/cgueret/hhai-june-2022-kgs-and-hybrid-intelligence

Our proposed approach Amp%raph

Graph ML powered by Ampligraph

* Add scoping and critical thinking elements. The goal is to incorporate information from the interaction with
the users down to the KG construction

Done
Datasets | data scoping I_Reezr: ;:?n& Insights for
fabric process g humans

(Graph ML)

__additional data additional data
(high trust) (low trust)

proposals and

argumentation

Insights
from acquisition
humans

machine learning guidance——

.9
A

feedback and questions

Human
collaborators

Guéret, C. (2022). Knowledge Graphs in support of Human-Machine intelligence. First International Conference on Hybrid Intelligence (HHAI). https://www.hhai-conference.org/wp-
content/uploads/2022/06/hhai-2022 paper_67.pdf Copyright © 2022 Accenture. All rights reserved. 26
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Take-away

Knowledge Graphs can be a key back-
end component when introducing Al
collaborators in a team

They enable:

* Having all stake-holders use the
same conceptual model

e Reason and discuss over this model

* Put up a bidirectional data-to-insight
pipeline

To chat more please reach out at:
christophe.gueret@accenture.com
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