
Troubleshooting
complex systems

Today’s best engineering practice and AI RCA challenges

bjeunhomme@gmail.com July 7, 2022

mailto:bjeunhomme@gmail.com

Complex systems?
Simple system

● Single host, single cluster

● 2 components

● 2-3 important log files

● 1 single query path

● Everything usually works

Modern cloud system

● Multiple clusters, multiple hosts per cluster

● Several components per cluster

● Countless log files

● Numerous, everchanging query paths

● Brokenness is the norm, not the exception

apache

mysql

Google monarch overview
Source: https://research.google/pubs/pub50652/

https://research.google/pubs/pub50652/

The troubleshooting challenge

Traditional approach: reading logs

● Let’s take a not so complex example system

● 3 clusters, 4 components per cluster running on 5 hosts per component

● That’s 3 x 4 x 5 = 60 key log files already

● If each host writes only 100 log lines per second, it’s 6000 lines per second

The troubleshooting challenge

Traditional approach: reading logs

● Let’s take a not so complex example system

● 3 clusters, 4 components per cluster running on 5 hosts per component

● That’s 3 x 4 x 5 = 60 key log files already

● If each host writes only 100 log lines per second, it’s 6000 lines per second

Two options to handle this information flood:

1. Automate log processing (ad-hoc or AI based)

2. Summarize

What the industry leaders do differently

● Automating logs processing doesn’t work:
○ When brokenness is the norm, reporting all anomalies is just noise

○ Ad-hoc log processing automation is laborious and brittle

○ Processing logs with AI effectively is still research today

They understand this

● Automating logs processing doesn’t work:
○ When brokenness is the norm, reporting all anomalies is just noise

○ Ad-hoc log processing automation is laborious and brittle

○ Processing logs with AI effectively is still research today

● Summarizing is simple and effective for troubleshooting

They understand this

Not at that

They look
at this

Practical example: a real outage

How to implement it

Infrastructure must have to succeed

A powerful TSDB and graphing engine is unavoidable

● They all did it: Google -> monarch, Facebook -> Gorilla/Beringei, Uber -> M3…

● Example: Gorilla requirements in 2013 (source: Facebook Gorilla paper)
○ 2 billion unique time series identified by a string key

○ 700 million data points (time stamp and value) added per minute

○ More than 40,000 queries per second at peak

○ Support time series with 15 second granularity (4 points per minute per time series)

○ [...]

○ Support at least 2x growth per year

https://research.google/pubs/pub50652/
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://engineering.fb.com/2017/02/03/core-data/beringei-a-high-performance-time-series-storage-engine/
https://eng.uber.com/m3/
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf

But, do we need so much engineering effort?

It depends.

● For small needs: free solutions such as prometheus/grafana, influxdb etc.

Caveats: scalability and O&M

● Medium scale: several off the shelf solutions in the industry, but be selective!
○ $ per timeseries varies a lot between vendors (>10x differences)

○ Powerful aggregations, in particular percentiles over different timeseries are a must

○ Query language simplicity and power are crucial, and few vendors get it right

● High scale:
○ In house will be expensive (dozens of engineers) but still much cheaper than buying

○ Some components can be reused: M3 and Beringei are opensource

○ Not a good place to cut corners: do it right, or buy it from someone who did

Criteria for a good solution

Must have:

● Low $ per timeseries

● Aggregations and joins: can it do this?
○ Plot the 95th percentile of query latency over all my HTTP frontends, per cluster

○ One curve per cluster, without typing the list of clusters (discover it automatically)

○ Plot Σ(queries by status code) per second / Σ(queries) per second without typing a list of codes

● How complex do the queries look, to do the above? It must be 2-3 lines

● Resolution of 1 point every 15 seconds, or even 1 per second for network gear

● Support at least 20 labels per timeseries

● Notify about, and ideally autoblock, timeseries with excessive cardinality

● If high scale, ingest billions or trillions of timeseries simultaneously

Instrumentation effort

● Applications need to be instrumented

● Adding a metric isn’t more effort than adding a log line. Java example:
static final Counter requests =

Counter.build().name("requests").help("Requests count.").register();

[...]

requests.inc();

● Shortcuts:
○ Create instrumented libs for communication (RPC, REST, kafka etc) and reuse them everywhere

○ Istio, dapr.io and friends: sidecars can help, but come at an efficiency cost

○ Deploy everywhere an agent for system metrics

● Best practices:
○ Think about relevant metrics at design time

○ It isn’t about quantity of metrics and graphs, it’s about quality - use a few, well thought out graphs

○ Standardize labels and build generic graphs once that everyone can use

Example generic graphs that can be built just
once

Example graph 1: uptime
It answers several key questions at once:

● Was the latest release a long time ago?

● Are all the workers crashlooping?

● Did a worker crash or restart recently?

Slow restart from 08:10 to 08:30
Likely due to a gradual rollout

Example graph 1: uptime
It answers several key questions at once:

● Was the latest release a long time ago?

● Are all the workers crashlooping?

● Did a worker crash or restart recently?

One (or a few) worker(s) restarted at 08:34

Example graph 1: uptime
It answers several key questions at once:

● Was the latest release a long time ago?

● Are all the workers crashlooping?

● Did a worker crash or restart recently?

All workers entered a crash loop at 08:55

Example graph 2a: success rate by server

Example graph 2b: success rate by cluster

The challenge is as organizational as it is technical

Convincing yourself, others, or the boss ☺

● Challenges to convince an organization to adopt those practices
○ Expensive infra in $ and/or in engineering effort

○ Low but continuous effort needed from the developers to instrument their applications

Convincing yourself, others, or the boss ☺

● Challenges to convince an organization to adopt those practices
○ Expensive infra in $ and/or in engineering effort

○ Low but continuous effort needed from the developers to instrument their applications

● But from a cost perspective
○ There’s a reason why all industry leaders did it

○ Without the proper infra, the O&M cost becomes unsustainable at scale

○ What you don’t invest in infra, you’ll spend in inefficient disaster recovery

○ AIOps RCA research budgets speak for themselves: orgs are willing to pay a lot for effective RCA

Convincing yourself, others, or the boss ☺

● Challenges to convince an organization to adopt those practices
○ Expensive infra in $ and/or in engineering effort

○ Low but continuous effort needed from the developers to instrument their applications

● But from a cost perspective
○ There’s a reason why all industry leaders did it

○ Without the proper infra, the O&M cost becomes unsustainable at scale

○ What you don’t invest in infra, you’ll spend in inefficient disaster recovery

○ AIOps RCA research budgets speak for themselves: orgs are willing to pay a lot for effective RCA

● How to get started?
○ Start small and prove it: use a small system that can fit on free infra and show the difference

○ Make MTTR part of the developers KPIs, they’ll have incentives to instrument

Leads for successful RCA in AIOps research

RCA challenges today

● Lack of labeled data
○ Ops are reluctant to label it

○ Telemetry changes all the time with new releases and production noise

○ No data for rare problems

● Red herrings in the midst of complex production events

● Lack of instrumentation

● Anomaly detection: at scale, anomaly is the norm, reporting it doesn’t help

How to label data and identify red herrings?

● Knowing when it works and when it’s broken is a solved problem
○ Synthetic monitoring is low effort

○ Measuring success rates and latencies at the ingress point is even less effort

● RCA research could use this high quality signal without any effort from ops
○ Know with high confidence when it’s broken and when it’s working

○ Learn what anomalies are benign

○ Correlate potential cause timeline with time of breakage to eliminate red herrings

○ Bonus points for comparing clusters where it works to clusters where it’s broken

● Train during QA chaos testing, when a lot of brokenness should happen

● Hint: >50% of outages are due to config changes and releases

-> make version and config hash first class citizens, not just another feature

Lack of instrumentation

● Could instrumentation quality be evaluated automatically during QA?

● What about instrumenting automatically?

Thank you!

Questions and comments: bjeunhomme@gmail.com

mailto:bjeunhomme@gmail.com

