Troubleshooting
complex systems

Today’s best engineering practice and Al RCA challenges

bjeunhomme@gmail.com July 7, 2022

mailto:bjeunhomme@gmail.com

Complex systems?

Simple system

apache
@/ t

mysq|l

Single host, single cluster
2 components

2-3 important log files

1 single query path
Everything usually works

Modern cloud system

GLOBAL

Configuration
Server

Root Root
Index Servers Mixers Evaluator

Znne Zone \ N
Index Servers Evalualor

N
Configuration Leaf
Mirror Routers o

Ingestion
Ruulers

Zone-1

Logging & Recovery Range
Components

Asslgner
—>Query - —>Write —oAssign = - #Index —econfig O—OFile /O

Google monarch overview
Source: https://research.google/pubs/pub50652/

Multiple clusters, multiple hosts per cluster
Several components per cluster

Countless log files

Numerous, everchanging query paths
Brokenness is the norm, not the exception

https://research.google/pubs/pub50652/

The troubleshooting challenge

Traditional approach: reading logs

® Let’s take a not so complex example system

® 3 clusters, 4 components per cluster running on 5 hosts per component

® That's3 x4 x5=60 key log files already

® If each host writes only 100 log lines per second, it’'s 6000 lines per second

The troubleshooting challenge

Traditional approach: reading logs

® Let’s take a not so complex example system

® 3 clusters, 4 components per cluster running on 5 hosts per component

® That's3 x4 x5=60 key log files already

® If each host writes only 100 log lines per second, it’'s 6000 lines per second

Two options to handle this information flood:

1. Automate log processing (ad-hoc or Al based)
2. Summarize

What the industry leaders do differently

They understand this

® Automating logs processing doesn’t work:
o When brokenness is the norm, reporting all anomalies is just noise
o Ad-hoc log processing automation is laborious and brittle
o Processing logs with Al effectively is still research today

They understand this

® Automating logs processing doesn’t work:
o When brokenness is the norm, reporting all anomalies is just noise
o Ad-hoc log processing automation is laborious and brittle
o Processing logs with Al effectively is still research today

® Summarizing is simple and effective for troubleshooting

They look
at this

Not at that —>

Practical example: a real outage

Success Rate by API URL

= = SL i = = S = R e

Infrastructure must have to succeed

A powerful TSDB and graphing engine is unavoidable

® They all did it: Google -> monarch, Facebook -> Gorilla/Beringei, Uber -> M3...

® Example: Gorilla requirements in 2013 (source: Facebook Gorilla paper)
o 2 billion unique time series identified by a string key

700 million data points (time stamp and value) added per minute

More than 40,000 queries per second at peak

Support time series with 15 second granularity (4 points per minute per time series)

[..]

Support at least 2x growth per year

©c O O O O

https://research.google/pubs/pub50652/
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://engineering.fb.com/2017/02/03/core-data/beringei-a-high-performance-time-series-storage-engine/
https://eng.uber.com/m3/
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf

But, do we need so much engineering effort?

It depends.
® For small needs: free solutions such as prometheus/grafana, influxdb etc.
Caveats: scalability and O&M

® Medium scale: several off the shelf solutions in the industry, but be selective!
o $ pertimeseries varies a lot between vendors (>10x differences)
o Powerful aggregations, in particular percentiles over different timeseries are a must
o Query language simplicity and power are crucial, and few vendors get it right

® High scale:

o In house will be expensive (dozens of engineers) but still much cheaper than buying
o Some components can be reused: M3 and Beringei are opensource
o Not a good place to cut corners: do it right, or buy it from someone who did

Criteria for a good solution

Must have:

Low $ per timeseries

Aggregations and joins: can it do this?
o Plot the 95th percentile of query latency over all my HTTP frontends, per cluster
o One curve per cluster, without typing the list of clusters (discover it automatically)
o Plot Z(queries by status code) per second / Z(queries) per second without typing a list of codes

How complex do the queries look, to do the above? It must be 2-3 lines
Resolution of 1 point every 15 seconds, or even 1 per second for network gear
Support at least 20 labels per timeseries

Notify about, and ideally autoblock, timeseries with excessive cardinality

If high scale, ingest billions or trillions of timeseries simultaneously

Instrumentation effort

® Applications need to be instrumented

® Adding a metric isn’t more effort than adding a log line. Java example:

static final Counter requests

Counter.build () .name ("requests") .help ("Requests count.") .register();
[...]

requests.inc () ;

® Shortcuts:

o Create instrumented libs for communication (RPC, REST, kafka etc) and reuse them everywhere
o lIstio, dapr.io and friends: sidecars can help, but come at an efficiency cost
@]

Deploy everywhere an agent for system metrics
® Best practices:

o Think about relevant metrics at design time
o Itisn’t about quantity of metrics and graphs, it’s about quality - use a few, well thought out graphs
o Standardize labels and build generic graphs once that everyone can use

Example generic graphs that can he built just
once

Example graph 1: uptime

HTTP frontend uptime
== min == 25th percentile median == 75th percentile == max It answers Several key queStionS at once:
100000
® Was the latest release a long time ago?

ing?
5000 ® Are all the workers crashlooping?
® Did a worker crash or restart recently?

50000

seconds

25000

0 . ——
08:00:00 08:15:00 08:30:00 08:45:00

Slow restart from 08:10 to 08:30
Likely due to a gradual rollout

Example graph 1: uptime

HTTP frontend uptime)
== min == 25th percentle == median == 75th percentile == max It answers Several key queStlonS at once:

15000
® Was the latest release a long time ago?

® Are all the workers crashlooping?
® Did a worker crash or restart recently?

10000 ==

seconds

5000

0
08:00:00 08:15:00 08:30:00 08:45:00

One (or a few) worker(s) restarted at 08:34

Example graph 1: uptime

HTTP frontend uptime

== min == 25th percentile == median == 75th percentile == max

It answers several key questions at once:

15000

® Was the latest release a long time ago?
® Are all the workers crashlooping?
® Did a worker crash or restart recently?

seconds

5000

0
08:00:00 08:15:00 08:30:00 08:45:00

All workers entered a crash loop at 08:55

Example graph 2a: success rate by server

messaging client success rate

%

== auth server == images server == kafka == object storage

100

—
75
50
25 N

0
08:00:00 08:15:00 08:30:00 08:45:00

Example graph 2h: success rate by cluster

object storage client success rate
== zone1 == zone2 == zone3d == zone4

100

75

50

25

0
08:00:00 08:15:00 08:30:00 08:45:00

The challenge is as organizational as it is technical

Convincing yourself, others, or the hoss

® Challenges to convince an organization to adopt those practices
o Expensive infra in $ and/or in engineering effort
o Low but continuous effort needed from the developers to instrument their applications

Convincing yourself, others, or the hoss

® Challenges to convince an organization to adopt those practices

O

(@]

Expensive infra in $ and/or in engineering effort
Low but continuous effort needed from the developers to instrument their applications

® But from a cost perspective

(@]

@)
@)
(@]

There’s a reason why all industry leaders did it

Without the proper infra, the O&M cost becomes unsustainable at scale

What you don’t invest in infra, you’ll spend in inefficient disaster recovery

AlOps RCA research budgets speak for themselves: orgs are willing to pay a lot for effective RCA

Convincing yourself, others, or the hoss

® Challenges to convince an organization to adopt those practices

O

(@]

Expensive infra in $ and/or in engineering effort
Low but continuous effort needed from the developers to instrument their applications

® But from a cost perspective

(@]

o

(@]

(@]

There’s a reason why all industry leaders did it

Without the proper infra, the O&M cost becomes unsustainable at scale

What you don’t invest in infra, you’ll spend in inefficient disaster recovery

AlOps RCA research budgets speak for themselves: orgs are willing to pay a lot for effective RCA

® How to get started?

o

(@]

Start small and prove it: use a small system that can fit on free infra and show the difference
Make MTTR part of the developers KPIs, they’ll have incentives to instrument

Leads for successful RCA in AlOps research

RCA challenges today

® Lack of labeled data

o Ops are reluctant to label it
o Telemetry changes all the time with new releases and production noise
o No data for rare problems

® Red herrings in the midst of complex production events
® Lack of instrumentation
® Anomaly detection: at scale, anomaly is the norm, reporting it doesn’t help

How to label data and identify red herrings?

® Knowing when it works and when it’s broken is a solved problem
o Synthetic monitoring is low effort
o Measuring success rates and latencies at the ingress point is even less effort
® RCA research could use this high quality signal without any effort from ops
o Know with high confidence when it’'s broken and when it’'s working
o Learn what anomalies are benign
o Correlate potential cause timeline with time of breakage to eliminate red herrings
o Bonus points for comparing clusters where it works to clusters where it’'s broken

Train during QA chaos testing, when a lot of brokenness should happen
Hint: >50% of outages are due to config changes and releases
-> make version and config hash first class citizens, not just another feature

Lack of instrumentation

® Could instrumentation quality be evaluated automatically during QA?
® What about instrumenting automatically?

Thank you!

mailto:bjeunhomme@gmail.com

