
1

Towards cross-domain domain-

specific compiler architecture

Paul Kelly

Group Leader, Software Performance Optimisation

Department of Computing

Imperial College London
Joint work with David Ham (Imperial Maths), Lawrence Mitchell (University of Durham)

George Bisbas, Edward Stow, Fabio Luporini (Devito Codes Ltd), Florian Rathgeber (now with Google), Doru Bercea

(now with IBM Research), Michael Lange (now with ECMWF), Andrew McRae (now at University of Oxford), Graham

Markall (now at NVIDIA), Tianjiao Sun (now at Cerebras), Thomas Gibson (NCSA Illinois), Kaushik Kulkarni (UIUC),

Andreas Klockner (UIUC), Tobias Grosser, Michel Steuwer (University of Edinburgh), Amrey Krause, Nick Brown (EPCC)

And many others....

2

I have worked on general-purpose compilers
Notably pointer analysis
adopted into GCC

(actually the work of my PhD student David
Pearce)

But the benefits were incremental

Meanwhile I engaged with applications specialists
Who know they have major performance
optimisation opportunities

So I got interested in automating domain-specific
optimisations

File:Victorinox Swiss Army Knife - Climber (15554551505).jpg - Wikimedia Commons

Who am I and what do I do?Who am I and what do I do?

3

So we can deliver domain-specific
optimisations

So we collect and automate all the
performance techniques that are known for
a family of problems

If we get it right…. we get
Productivity – by generating low-level
code from a high-level specification
Performance – by automating
optimisations
Performance portability – with multiple
back-ends

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg

https://commons.wikimedia.org/wiki/File:Makita_DJV181.jpg

Power tools for performance programming

This talk is about domain-specific languages

4

Have your cake and eat it too

I aim to show you that
you can simultaneously

raise the level at
which programmers
can reason about
code,

provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand

5

Automating domain-specific performance
optimisations

Exploiting higher-level language to get
better performance than low level code

PyOP2/OP2

Unstructured-mesh
stencils

GiMMiK: small matrix
multiply

Firedrake

Finite-element

SLAMBench:

3D vision, dense SLAM

PRAgMaTIc: Unstructured
mesh adaptation

TINTL: Fourier
interpolation

Formula-1, UAVs,
buildings

Aeroengine turbo-
machinery

Domestic robotics,
augmented reality

Tidal turbine
placement

Solar energy, drug
design

Weather and
climate

ProjectsContexts Applications

Tensor contractions

Vectorisation, parametric
polyhedral tiling

Lazy, data-driven
compute-communicate

Multicore graph worklists

Sparsity in Fourier
transforms

Tiling for unstructured-
mesh stencils

Technologies

Runtime code generation

Devito: finite difference
Glaciers

Hypermapper:

design optimisation

Medical imaging
RobotWeb: distributed
localisation

SuperEight: octree SLAMGeneralised loop-invariant
code motion

Functional Variational
Inference

Search-based optimisation

Unsteady CFD -
higher-order flux-
reconstruction

Finite-volume CFD

Real-time 3D scene
understanding

Adaptive-mesh CFD

Ab-initio computational
chemistry (ONETEP)

Finite-element

Finite-difference

Gaussian belief
propagation

Contour trees, Reeb
graphs

Uncertainty in DNNs

Near-camera
processing

Processor/accelerator
microarchitecture, co-
design

MLIR Quantum computing

The work of my research group

10
Compilation is like skiing

Syntax

Types

Class hierarchy

Call-graph

Points-to

Dependence

Polyhedra

Shape

Commutativity

Register allocation

Instruction scheduling

Storage layout

Mapping

Partitioning

Parallelisation

Tiling

Loop nest ordering

11
Compilation is like skiing

12
Compilation is like skiing

Carrying your
skis up the
mountain is not
the best bit

https://pxhere.com/en/photo/949553 (CC0 public domain)

14
Compilation is like skiing

20

Plan

Compiling is like skiing
Analysis is an uphill struggle

“Turing Tax”
The price you pay for running on a general-purpose
computer rather than a specialised one

What do we call…
The price you pay for using a general-purpose
programming language rather than a DSL?

This talk:
DSLs really can deliver – my examples: Firedrake,
Devito
DSL compiler architecture: how do DSLs win?
Making the DSL ecosystem work

(For more on the Turing Tax see The von Neumann Bottleneck and the Turing Tax - YouTube)

22
Compilation is like skiing

Syntax

Types

Class hierarchy

Call-graph

Points-to

Dependence

Polyhedra

Shape

Commutativity

Register allocation

Instruction scheduling

Storage layout

Mapping

Partitioning

Parallelisation

Tiling

Loop nest ordering

All of this is
Turing Tax!

“Turing tax”:
the price we
pay for using
a general-
purpose tool
instead of a
special-
purpose one

25
What is Firedrake?

Example DSL:

26
What is Firedrake?

28

Firedrake is
used in:

Thetis:
unstructured
grid coastal
modelling
framework

What is it used for? By whom?

• Estuary of the River Severn: huge tidal energy opportunity

• Significant causes for concern over ecological impact

• Should we do it? How? Where? How much energy? How
much impact?

https://doi.org/10.1016/j.apenergy.2009.11.024

• Estuary of the River Severn: huge tidal energy opportunity

• Significant causes for concern over ecological impact

• Should we do it? How? Where? How much energy? How
much impact?

https://doi.org/10.1016/j.apenergy.2009.11.024

31

Firedrake is
used in:

Gusto:
atmospheric
modelling
framework
being used
to prototype
the next
generation
of weather
and climate
simulations
for the UK
Met Office

Three-dimensional simulation of a thermal rising through
a saturated atmosphere. From A Compatible Finite
Element Discretisation for the Moist Compressible Euler
Equations (Bendall et al,
https://arxiv.org/pdf/1910.01857.pdf)

What is it used for? By whom?

32

Firedrake is
used in:

Icepack: a
framework
for modeling
the flow of
glaciers and
ice sheets,
developed at
the Polar
Science
Center at the
University of
Washington

Larsen ice shelf model, from the Icepack tutorial
by Daniel Shapero
(https://icepack.github.io/icepack.demo.02-
larsen-ice-shelf.html)

What is it used for? By whom?

The finite element method in outline
do element = 1,N

assemble(element):

end do

i

j
k

ii

i

jj

j

kk

k

Ax = b

Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector

l
l

l l

i j k l
i
j
k
l

34

Multilayered abstractions for FE

Local assembly: Local assembly:

Computes local assembly matrix

Using:

The (weak form of the) PDE

The discretisation

Key operation is evaluation of expressions over basis
function representation of the element

Mesh traversal: Mesh traversal:

PyOP2

Loops over the mesh

Key is orchestration of data movement

Solver:Solver:

Interfaces to standard solvers through PetSc

38

Example: Burgers equation

From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
the previous timestep

Transcribe into Python – u is ���	, u_ is �� :

Set up the equation and solve for the next timestep u:

At this point, Firedrake generates code to assemble a linear
system, runs it and calls a linear solver (we use PetSC)

39

Burgers equation

(UFL is also the DSL of the
FEniCS project)

Firedrake implements the
Unified Form Language
(UFL)

Embedded in Python

What does its DSL actually look like?

40

Burgers equation

UFL is also the DSL of the
FEniCS project

Firedrake implements the
Unified Form Language
(UFL)

Embedded in Python

What does its DSL actually look like?

set up initial conditions for u and u_

Generated code
to assemble the
resulting linear
system matrix

Executed at each
triangle in the
mesh

Accesses
degrees of
freedom shared
with neighbour
triangles through
indirection map

Firedrake: single-node AVX512 performance

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 –march=native)]

Theo peak

Intel LINPACK

GFLOPs
achieved for
residual
assembly for
various
element types,
with polynomial
degree ranging
from 1-6

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al

IJHPCA 2020 https://arxiv.org/abs/1903.08243

Does it generate good code?

44

Firedrake: compiler architecture

PyOP2: stencil DSL for
unstructured-mesh

Explicit access descriptors
characterise access footprint of
kernels

UFL specifies the (weak form of
the) partial differential equation
and how it is to be discretised

Compiler generates PyOP2
kernels and access descriptors

PyOP2

Non-FE loops
over the mesh

UFL “Two-
stage” Form

Compiler

Unified Form
Language

Multicore
Manycore

/GPU

Future/

other

R
a

th
g

e
b

e
r,

 H
a

m
,

M
it
c
h

e
ll

e
t
a

l,
 A

C
M

 T
O

M
S

 2
0

1
6

,
T

ia
n

jia
o

 S
u

n
 e

t
a

l
h

tt
p

s
:/
/a

rx
iv

.o
rg

/p
d

f/
1

9
0

3
.0

8
2

4
3

.p
d

f

In
production

In
development

Some prototyping

Loo.py loop transformations

GEM: tensor
contractions

GEM: abstract representation
supports efficient flop-reduction
optimisations

Loo.py: vectorization etc

Distributed MPI-parallel PyOP2
implementation

Loo.py representation

Sequence of intermediate
representations

100% Python, runtime code
generation, code-caching

47

Gerard Gorman Fabio Luporini

And many many more!

Another example DSL:

48

Devito: applications

Devito automates the finite difference method for solving
PDEs

Widely used for fluid dynamics, wave propagation

Devito is mostly used to solve inversion problems

Use automatic differentiation of the solver

To solve for the conditions that explain the observations

“Full Waveform Inversion” (FWI)

Seismic inversion

Understand geological structures from reflected sound
waves

Ultrasound imaging of the brain

Diagnose brain injuries from ultrasound transmission

49

Devito: example

Define the wavefield from model setup.

u = TimeFunc(time_order=2, space_order=2)

Write down the acoustic wave PDE:

pde = model.m*u.dt2 - u.laplace + model.damp*u.dt

Solve by time-marching:

stencil = Eq(u.forward, solve(pde, u.forward))

Define source injection and receiver:

src_term = src.inject(field=u.forward, pr=src*dt**2/model.m)

rec_term = rec.interpolate(expr=u.forward)

Generate code for the timestepping operator:

op = Operator([stencil] + src_term + rec_term,

subs=model.spacing_map)

Run code (MPI+GPU), to yield receiver values:

op(time=time_range.num-1, dt=model.critical_dt)

Slightly simplified from:

https://slimgroup.github.io/Devito-
Examples/tutorials/01_modelling/

Acoustic wave equation, with damping:

We inject initial sound wave at source point,
and monitor the signal at a receiver.

We derive and generate the stencil operator
code, then run it a specified number of
timesteps

Code at this basic level of abstraction
is in production, at scale, running at
multiple petaflops 24/7

50

Space order:

4 (circles),

8 (crosses), and

12 (triangles)

16 (nablas)

Intel® Xeon® Platinum
8180 (Skylake, 28 cores),
ICC v18.0, Devito v3.1

TTI (Tilted Transverse
Isotropy), second order in
time. 415 timesteps
(1000ms), single precision.

Devito: FLOP-reduction optimisations

Fabio Luporini et al. Architecture and Performance of Devito, a
System for Automated Stencil Computation. ACM Trans. Math.
Softw. 46, 1, Article 6 (April 2020),
https://doi.org/10.1145/3374916

For latest performance data see
https://www.devitoproject.org/thematrix/

51

Space order:

4 (triangles),

8 (circles), and

12 (squares).

Red markers show the
performance of
spatially blocked
vectorized kernels

Yellow markers show
temporal blocking using
autotuned tile
parameters.

Single-socket 8-core Intel
Broadwell E5-2673 v4
CPUs with AVX2, L1
(32KB), L2 (256KB) private
to each core, 50MB shared
L3 (Ubuntu 18.04.4, Devito
v4.2.3)

Isotropic acoustic model,
second-order in time,
single-precision

Devito: tiling-in-time

George Bisbas, et al. Temporal blocking of finite-
difference stencil operators with sparse “off-the-
grid” sources. IPDPS 21 iarXiv:2010.10248

Red

Yellow

Why I do what I do, and what I’ve learned

Engaging with applications to exploit domain-specific
optimisations can be incredibly fruitful

Compiling general purpose languages is worthy but usually incremental

Compiler architecture is all about designing intermediate
representations – that make hard things look easy

Tools to deliver domain-specific optimisations often have domain-specific
representations

Premature lowering is the constant enemy (appropriate lowering is great)

Along the way, we learn something about building better
general-purpose compilers and programming
abstractions

Drill vertically, expand horizontally

The real value of Firedrake
and Devito is in supporting
the applications users in
exploring their design space

We enable them to navigate
rapidly through alternative
solutions to their problem

In the future, we will have
automated pathways from
maths to code for many
classes of problem, and
many alternative solution
techniques

How can we change the world?How can we change the world?

60

Vision for the future

Partial differential

equations

Tensor contractions

Polyhedral loop model

Decoupled access-

executors

Loop nests

Streaming

static dataflow

RTL – Verilog, VHDL

Deep learning:

DNNs, GNNs

Tensor decompositions

in ML

Algebraic factorisations, transposes, storage layout

Indirections, graph traversals, gathers, scatters, inspector-executor

Loop ordering, tiling, for locality and parallelisation

C-slowing for reductions, scheduling for memory contention

Retiming, scheduling

Resource allocation,

clocking

Graph analytics

Design transformation

Custom instruction

datapath

LLHD

Architecture template and data representation selection,

partitioning, mapping, quantisation

CPUs/GPUs/

clusters

Gaussian belief

propagation

Multi-level

Monte-Carlo

Map maths to
computation
via numerical
method

Deep learning

accelerators

Near-camera

processors

61

Acknowledgements

Thank you to our many many collaborators!

Partly funded/supported by

SysGenX: Composable software generation for system-level simulation at Exascale (EP/W026066/1)

XDSL: Efficient Cross-Domain DSL Development for Exascale (EP/W007789/1)

NERC Doctoral Training Grant (NE/G523512/1)

EPSRC “MAPDES” project (EP/I00677X/1)

EPSRC “PSL” project (EP/I006761/1)

Rolls Royce and the TSB through the SILOET programme

EPSRC “PAMELA” Programme Grant (EP/K008730/1)

EPSRC “PRISM” Platform Grants (EP/I006761/1 and EP/R029423/1)

EPSRC “Custom Computing” Platform Grant (EP/I012036/1)

EPSRC “Application Customisation” Platform Grant (EP/P010040/1)

EPSRC “A new simulation and optimisation platform for marine technology” (EP/M011054/1)

Basque Centre for Applied Mathematics (BCAM)

Code:

http://www.firedrakeproject.org/

http://op2.github.io/PyOP2/

https://github.com/OP-DSL/OP2-Common

63

Extra slides for questions

Easy parallelism

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Oh no: not all the iterations are independent!
You want to re-use piece of code in different
contexts

Whether it’s parallel depends on context!

Can the
iterations of this
loop be executed
in parallel?

Unstructured meshes require pointers/indirection because adjacency
lists have to be represented explicitly

A controlled form of pointers (actually a general graph)

OP2 is a C++ and Fortran library for parallel loops over the mesh,
implemented by source-to-source transformation

PyOP2 is the same basic model, implemented in Python using
runtime code generation

Enables generation of highly-optimised vectorised, CUDA, OpenMP
and MPI code

The OP2 model originates from Oxford (Mike Giles et al)

How a mesh is represented in OP2

Mesh

u

Edges

Vertices

PyOP2: “sets” “dats” “maps”

Cells

v

v v

w

w

w

EdgeToVertex

CellToEdge

OP2 loops,

access

descriptors and

kernels

OP2 separates local (kernel) from global (mesh)

OP2 makes data dependence explicit

op_par_loop(set, kernel, access descriptors)

We specify
which set to
iterate over

We specify a
kernel to
execute – the
kernel
operates
entirely locally,
on the dats to
which it has
access

The access descriptors
specify which dats the
kernel has access to:

• Which dats of the target
set

• Which dats of sets
indexed from this set
through specified maps

Ar,u,du r,u.du

A
r,u,du r,u.du

A A A

PyOP2: “decoupled access-execute”

void res(float *A, float *u, float *du,

const float *beta) {

*du += (*beta) * (*A) * (*u);

}

void update(float *r, float *du, float *u, float

*u_sum, float *u_max) {

*u += *du + alpha * (*r);

*du = 0.0f;

*u_sum += (*u) * (*u);

*u_max = *u_max > *u ? *u_max : *u;

}

for iter in xrange(0, NITER):

u_sum = op2.Global(1, data=0.0, np.float32)

u_max = op2.Global(1, data=0.0, np.float32)

op2.par_loop(res, edges,

p_A(op2.READ),

p_u(op2.READ, edge2vertex[1]),

p_du(op2.INC, edge2vertex[0]),

beta(op2.READ))

op2.par_loop(update, nodes,

p_r(op2.READ),

p_du(op2.RW),

p_u(op2.INC),

u_sum(op2.INC),

u_max(op2.MAX))

Access

descriptors

specify how

to feed the

kernel from

the mesh

• Parallel loops, over sets (nodes, edges etc)

• Access descriptors specify how to pass data to and
from the C kernel

• The kernel operates only on local data

Code generation for indirect loops in PyOP2
For MPI we
precompute
partitions & haloes

Derived from
PyOP2 access
descriptors,
implemented
using PetSC
DMPlex

At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo
region

F
lo

ri
a
n
 R

a
th

g
e
b
e
r

P
h
D

 t
h
e
s
is

,
P

ro
d
u
c
ti
v
e
 a

n
d
 E

ff
ic

ie
n
t

C
o
m

p
u
ta

ti
o
n
a
l
S

c
ie

n
c
e
 T

h
ro

u
g
h
 D

o
m

a
in

-s
p
e
c
if
ic

 A
b
s
tr

a
c
ti
o
n
s

Code generation for indirect loops in PyOP2
For MPI we
precompute
partitions & haloes

Derived from
PyOP2 access
descriptors,
implemented
using PetSC
DMPlex

At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo
region

F
lo

ri
a
n
 R

a
th

g
e
b
e
r

P
h
D

 t
h
e
s
is

,
P

ro
d
u
c
ti
v
e
 a

n
d
 E

ff
ic

ie
n
t

C
o
m

p
u
ta

ti
o
n
a
l
S

c
ie

n
c
e
 T

h
ro

u
g
h
 D

o
m

a
in

-s
p
e
c
if
ic

 A
b
s
tr

a
c
ti
o
n
s

processor 0

processor 1

Code generation for indirect loops in PyOP2
For MPI we
precompute
partitions & haloes

Derived from
PyOP2 access
descriptors,
implemented
using PetSC
DMPlex

At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo
region

F
lo

ri
a
n
 R

a
th

g
e
b
e
r

P
h
D

 t
h
e
s
is

,
P

ro
d
u
c
ti
v
e
 a

n
d
 E

ff
ic

ie
n
t

C
o
m

p
u
ta

ti
o
n
a
l
S

c
ie

n
c
e
 T

h
ro

u
g
h
 D

o
m

a
in

-s
p
e
c
if
ic

 A
b
s
tr

a
c
ti
o
n
s

Core: entities owned which can be processed without accessing halo data.

Owned: entities owned which access halo data when processed

Exec halo: off-processor entities which are redundantly executed over because they
touch owned entities

Non-exec halo: off-processor entities which are not processed, but read when
computing the exec halo

First example:

Tiling for cache locality

(This optimisation has been implemented –
and automated – but does not currently
form part of the standard distribution)

Can we automate interesting
optimisations that would be hard to do
by hand?

Sparse split tiling on an unstructured mesh, for locality

How can we load a block of mesh and do the iterations of loop
1, then the iterations of loop 2, before moving to the next
block?

If we could, we could dramatically improve the memory access
behaviour!

Loop 2

Loop 1
Visits edges

Increments nodes

Visits nodes

Depends on edges

S
tr

o
u

t,
 L

u
p

o
ri

n
i
e

t
a

l,
 I

P
D

P
S

’1
4

t

iBlock of U Block of U Block of U

t

i

Block of U Block of U

t

iBlock of U Block of U Block of U

Skewed

Overlap

Split

Loop 2

Loop 1

Sparse split tiling

Partition the iteration space of loop 1

Colour the partitions, execute the colours in order

Project the tiles, using the knowledge that colour n can use
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0

And shrinks where it meets colours #2 and #3

0

2

1

3
2

0

0

2

1

3
2

0

Visits edges

Increments nodes

Visits nodes

Depends on edges

S
tr

o
u

t,
 L

u
p

o
ri

n
i
e

t
a

l,
 I

P
D

P
S

’1
4

Partition the iteration space of loop 1

Colour the partitions

Project the tiles, using the knowledge that colour n can use
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0

And shrinks where it meets colours #2 and #3

Sparse split tiling

S
tr

o
u

t,
 L

u
p

o
ri

n
i
e

t
a

l,
 I

P
D

P
S

’1
4

Inspector-executor:
derive tasks and
task graph from
the mesh, at
runtime

Loop 2

Loop 1

0

2

1

3
2

0

0

2

1

3
2

0

Visits edges

Increments nodes

Visits nodes

Depends on edges

Tiles grow

S
tr

o
u

t,
 L

u
p

o
ri

n
i
e

t
a

l,
 I

P
D

P
S

’1
4

0

2

1

3
2

0

0

2

1

3
2

0

0

2

1

3
2

0

As we project the tiles forward, tile shape degrades

Perimeter-volume ratio gets worse

Tiles grow

S
tr

o
u

t,
 L

u
p

o
ri

n
i
e

t
a

l,
 I

P
D

P
S

’1
4

1

1

1

As we project the tiles forward, tile shape degrades

Perimeter-volume ratio gets worse

We could partition Loop 1’s data for the cache

But Loop 2 and Loop 3 have different footprints

So we rely on good (ideally space-filling-curve) numbering

Loop 1

Loop 2

Loop 3

Tiles can collide0

2

1

3
2

0

0

2

1

3
2

0

0

2

1

3
2

0

0

2

1

3
2

0

0

2

1

3
2

0

(1) Blue, (2) Red, (3) Green

(L
u
p
o
ri
n
i,
 e

t
a
l,
 A

u
to

m
a
te

d
 T

ili
n
g
 o

f
U

n
st

ru
ct

u
re

d
 M

e
sh

 C
o
m

p
u
ta

ti
o
n
s

w
it
h

A
p
p
lic

a
ti
o
n
 t

o
 S

e
is

m
o
lo

g
ic

a
l
M

o
d
e
lin

g
.
A
C
M

 T
O

M
S
 2

0
1
9
)

Loop chains
withloop_chain(tile_size=,….):

solve for velocity vector field

self.solve(….);

self.solve(….);

self.solve(….);

self.solve(….);

solve for stress tensor field

self.solve(….);

self.solve(….);

self.solve(….);

self.solve(….);

(Luporini, Lange, Jacobs, Gorman, Ramanujam, Kelly.
Automated Tiling of Unstructured Mesh Computations with

Application to Seismological Modeling.ACM TOMS 2019
https://doi.org/10.1145/3302256)

(25 op_par_loops
per timestep, all
tilable)

Example: Seigen

Elastic wave solver

2d triangular mesh

Velocity-stress
formulation

4th-order explicit
leapfrog
timestepping
scheme

Discontinuous-
Galerkin, order
q=1-4

32 nodes, 2x14-
core E5-2680v4,
SGI MPT 2.14

1000 timesteps
(ca.1.15s/timestep)

Up to 1.28x speedup

Inspection about as much time as 2
timesteps

Using RCM numbering – space-filling
curve should lead to better results

Weak scaling: #cores (#elements)

S
p

e
e
d

u
p

 (
c
o

m
p

u
te

+
c
o

m
m

u
n

ic
a
ti

o
n

ti
m

e
 o

ri
g

in
a
l/

ti
li

n
g

) Best speedup:
1.28x at q=3 on
448 processes.

Optimum fusion
scheme breaks
25 loops into 6
chains. MPI
halo is extended
from S=1 to S=2

(A
C
M

 T
O

M
S
 2

0
1
9
)

Second example:

Generalised loop-invariant code motion

(This optimisation has been implemented,
automated, and re-implemented – and
forms part of the standard distribution)

Can we automate interesting
optimisations that would be hard to do
by hand?

Generated code
to assemble the
resulting linear
system matrix

Executed at each
triangle in the
mesh

Accesses
degrees of
freedom shared
with neighbour
triangles through
indirection map

Recall:

Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

The local assembly operation computes a small dense submatrix

These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

L
u
p

o
ri

n
i,
 V

a
rb

e
n

e
s
c
u

e
t

a
l,
 A

C
M

 T
A

C
O

/H
iP

E
A

C
2

0
1

5

A simpler example:

L
u
p

o
ri

n
i,
 V

a
rb

e
n

e
s
c
u

e
t

a
l,
 A

C
 T

A
C

O
/H

iP
E

A
C

2
0

1
5

Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

The local assembly operation computes a small dense submatrix

These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

A simpler example:

Local assembly code
for the Helmholtz
problem after
application of

padding,

data alignment,
Loop-invariant
code motion

In this example, sub-
expressions invariant
to j are identical to
those invariant to k, so
they can be
precomputed once in
the r loop

L
u
p

o
ri

n
i,
 V

a
rb

e
n

e
s
c
u

e
t

a
l,
 A

C
 T

A
C

O
/H

iP
E

A
C

2
0

1
5

Generalised loop-invariant code motion:

We formulate an ILP problem to find the best factorisation strategy

F. Luporini, D.A. Ham, P.H.J. Kelly. An algorithm for the optimization of finite element integration
loops. ACM Transactions on Mathematical Software (TOMS), 2017).

