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I have worked on general-purpose compilers
Notably pointer analysis
adopted into GCC 

(actually the work of my PhD student David 
Pearce)

But the benefits were incremental

Meanwhile I engaged with applications specialists
Who know they have major performance 
optimisation opportunities

So I got interested in automating domain-specific 
optimisations

File:Victorinox Swiss Army Knife - Climber (15554551505).jpg - Wikimedia Commons

Who am I and what do I do?Who am I and what do I do?
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So we can deliver domain-specific 
optimisations

So we collect and automate all the 
performance techniques that are known for 
a family of problems

If we get it right…. we get
Productivity – by generating low-level 
code from a high-level specification
Performance – by automating 
optimisations
Performance portability – with multiple 
back-ends

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg

https://commons.wikimedia.org/wiki/File:Makita_DJV181.jpg

Power tools for performance programming

This talk is about domain-specific languages
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Have your cake and eat it too

I aim to show you that 
you can simultaneously 

raise the level at 
which programmers 
can reason about 
code, 

provide the compiler 
with a model of the 
computation that 
enables it to generate 
faster code than you 
could reasonably write 
by hand



5

Automating domain-specific performance 
optimisations

Exploiting higher-level language to get 
better performance than low level code

PyOP2/OP2

Unstructured-mesh 
stencils

GiMMiK: small matrix 
multiply

Firedrake

Finite-element

SLAMBench:

3D vision, dense SLAM

PRAgMaTIc: Unstructured 
mesh adaptation

TINTL: Fourier 
interpolation 

Formula-1, UAVs, 
buildings

Aeroengine turbo-
machinery

Domestic robotics, 
augmented reality

Tidal turbine 
placement

Solar energy, drug 
design

Weather and 
climate

ProjectsContexts Applications

Tensor contractions

Vectorisation, parametric 
polyhedral tiling

Lazy, data-driven 
compute-communicate

Multicore graph worklists

Sparsity in Fourier 
transforms

Tiling for unstructured-
mesh stencils

Technologies

Runtime code generation

Devito: finite difference
Glaciers

Hypermapper:

design optimisation

Medical imaging
RobotWeb: distributed 
localisation

SuperEight: octree SLAMGeneralised loop-invariant 
code motion

Functional Variational 
Inference

Search-based optimisation

Unsteady CFD -
higher-order flux-
reconstruction

Finite-volume CFD

Real-time 3D scene 
understanding

Adaptive-mesh CFD

Ab-initio computational 
chemistry (ONETEP)

Finite-element

Finite-difference

Gaussian belief 
propagation

Contour trees, Reeb
graphs

Uncertainty in DNNs

Near-camera 
processing

Processor/accelerator 
microarchitecture, co-
design

MLIR Quantum computing

The work of my research group



10
Compilation is like skiing

Syntax

Types

Class hierarchy

Call-graph

Points-to

Dependence

Polyhedra

Shape

Commutativity

Register allocation

Instruction scheduling

Storage layout

Mapping

Partitioning

Parallelisation

Tiling

Loop nest ordering
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Compilation is like skiing
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Compilation is like skiing

Carrying your 
skis up the 
mountain is not 
the best bit

https://pxhere.com/en/photo/949553 (CC0 public domain)
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Compilation is like skiing
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Plan

Compiling is like skiing
Analysis is an uphill struggle

“Turing Tax”
The price you pay for running on a general-purpose 
computer rather than a specialised one

What do we call…
The price you pay for using a general-purpose 
programming language rather than a DSL?

This talk:
DSLs really can deliver – my examples: Firedrake, 
Devito
DSL compiler architecture: how do DSLs win?
Making the DSL ecosystem work

( For more on the Turing Tax see The von Neumann Bottleneck and the Turing Tax - YouTube )
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Compilation is like skiing

Syntax

Types

Class hierarchy

Call-graph

Points-to

Dependence

Polyhedra

Shape

Commutativity

Register allocation

Instruction scheduling

Storage layout

Mapping

Partitioning

Parallelisation

Tiling

Loop nest ordering

All of this is 
Turing Tax!

“Turing tax”: 
the price we 
pay for using 
a general-
purpose tool 
instead of a 
special-
purpose one
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What is Firedrake?

Example DSL:
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What is Firedrake?
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Firedrake is 
used in:

Thetis: 
unstructured 
grid coastal 
modelling 
framework

What is it used for?  By whom?



• Estuary of the River Severn: huge tidal energy opportunity

• Significant causes for concern over ecological impact

• Should we do it?  How?  Where? How much energy? How 
much impact?

https://doi.org/10.1016/j.apenergy.2009.11.024



• Estuary of the River Severn: huge tidal energy opportunity

• Significant causes for concern over ecological impact

• Should we do it?  How?  Where? How much energy? How 
much impact?

https://doi.org/10.1016/j.apenergy.2009.11.024



31

Firedrake is 
used in:

Gusto: 
atmospheric 
modelling 
framework 
being used 
to prototype 
the next 
generation 
of weather 
and climate 
simulations 
for the UK 
Met Office

Three-dimensional simulation of a thermal rising through 
a saturated atmosphere. From A Compatible Finite 
Element Discretisation for the Moist Compressible Euler 
Equations (Bendall et al, 
https://arxiv.org/pdf/1910.01857.pdf)

What is it used for?  By whom?
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Firedrake is 
used in:

Icepack: a 
framework 
for modeling
the flow of 
glaciers and 
ice sheets, 
developed at 
the Polar 
Science 
Center at the 
University of 
Washington 

Larsen ice shelf model, from the Icepack tutorial 
by Daniel Shapero
(https://icepack.github.io/icepack.demo.02-
larsen-ice-shelf.html)

What is it used for?  By whom?



The finite element method in outline
do element = 1,N

assemble(element):

end do

i

j
k

ii

i

jj

j

kk

k

Ax = b

Key data structures: Mesh, dense local assembly 
matrices, sparse global system matrix, and RHS vector

l
l
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i
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k
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Multilayered abstractions for FE

Local assembly: Local assembly: 

Computes local assembly matrix

Using:

The (weak form of the) PDE

The discretisation

Key operation is evaluation of expressions over basis 
function representation of the element 

Mesh traversal: Mesh traversal: 

PyOP2

Loops over the mesh

Key is orchestration of data movement 

Solver:Solver:

Interfaces to standard solvers through PetSc
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Example: Burgers equation

From the weak form of the PDE, we derive an equation to 
solve, that determines the state at each timestep in terms of 
the previous timestep

Transcribe into Python – u is ���	, u_ is �� :

Set up the equation and solve for the next timestep u:

At this point, Firedrake generates code to assemble a linear 
system, runs it and calls a linear solver (we use PetSC)
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Burgers equation

(UFL is also the DSL of the 
FEniCS project)

Firedrake implements the 
Unified Form Language 
(UFL)

Embedded in Python

What does its DSL actually look like?
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Burgers equation

UFL is also the DSL of the 
FEniCS project

Firedrake implements the 
Unified Form Language 
(UFL)

Embedded in Python

What does its DSL actually look like?

# set up initial conditions for u and u_



Generated code 
to assemble the 
resulting linear 
system matrix

Executed at each 
triangle in the 
mesh

Accesses 
degrees of 
freedom shared 
with neighbour 
triangles through 
indirection map



Firedrake: single-node AVX512 performance

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 –march=native)]

Theo peak

Intel LINPACK

GFLOPs 
achieved for 
residual 
assembly for 
various 
element types, 
with polynomial 
degree ranging 
from 1-6

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al

IJHPCA 2020 https://arxiv.org/abs/1903.08243

Does it generate good code?  



44

Firedrake: compiler architecture

PyOP2: stencil DSL for 
unstructured-mesh

Explicit access descriptors
characterise access footprint of 
kernels

UFL specifies the (weak form of 
the) partial differential equation 
and how it is to be discretised

Compiler generates PyOP2 
kernels and access descriptors

PyOP2

Non-FE loops 
over the mesh

UFL “Two-
stage” Form 

Compiler

Unified Form 
Language

Multicore
Manycore

/GPU

Future/

other
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In 
production

In 
development

Some prototyping

Loo.py loop transformations

GEM: tensor 
contractions

GEM: abstract representation 
supports efficient flop-reduction 
optimisations

Loo.py: vectorization etc

Distributed MPI-parallel PyOP2 
implementation 

Loo.py representation

Sequence of intermediate 
representations

100% Python, runtime code 
generation, code-caching
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Gerard Gorman Fabio Luporini

And many many more!

Another example DSL:
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Devito: applications

Devito automates the finite difference method for solving 
PDEs

Widely used for fluid dynamics, wave propagation

Devito is mostly used to solve inversion problems

Use automatic differentiation of the solver

To solve for the conditions that explain the observations

“Full Waveform Inversion” (FWI)

Seismic inversion 

Understand geological structures from reflected sound 
waves 

Ultrasound imaging of the brain

Diagnose brain injuries from ultrasound transmission
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Devito: example

# Define the wavefield from model setup.  

u = TimeFunc(time_order=2, space_order=2)  

# Write down the acoustic wave PDE:  

pde = model.m*u.dt2 - u.laplace + model.damp*u.dt

# Solve by time-marching:  

stencil = Eq(u.forward, solve(pde, u.forward))  

# Define source injection and receiver: 

src_term = src.inject(field=u.forward, pr=src*dt**2/model.m)  

rec_term = rec.interpolate(expr=u.forward)  

# Generate code for the timestepping operator:

op = Operator([stencil] + src_term + rec_term, 

subs=model.spacing_map)  

# Run code (MPI+GPU), to yield receiver values:

op(time=time_range.num-1, dt=model.critical_dt)

Slightly simplified from: 

https://slimgroup.github.io/Devito-
Examples/tutorials/01_modelling/

Acoustic wave equation, with damping:

We inject initial sound wave at source point, 
and monitor the signal at a receiver.

We derive and generate the stencil operator 
code, then run it a specified number of 
timesteps

Code at this basic level of abstraction 
is in production, at scale, running at 
multiple petaflops 24/7
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Space order:

4 (circles), 

8 (crosses), and 

12 (triangles)

16 (nablas) 

Intel® Xeon® Platinum 
8180 (Skylake, 28 cores), 
ICC v18.0, Devito v3.1

TTI (Tilted Transverse 
Isotropy), second order in 
time.  415 timesteps 
(1000ms), single precision.

Devito: FLOP-reduction optimisations

Fabio Luporini et al. Architecture and Performance of Devito, a 
System for Automated Stencil Computation. ACM Trans. Math. 
Softw. 46, 1, Article 6 (April 2020), 
https://doi.org/10.1145/3374916

For latest performance data see 
https://www.devitoproject.org/thematrix/
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Space order:

4 (triangles), 

8 (circles), and 

12 (squares). 

Red markers show the 
performance of 
spatially blocked 
vectorized kernels

Yellow markers show 
temporal blocking using 
autotuned tile 
parameters.

Single-socket 8-core Intel 
Broadwell E5-2673 v4 
CPUs with AVX2, L1 
(32KB), L2 (256KB) private 
to each core, 50MB shared 
L3 (Ubuntu 18.04.4, Devito
v4.2.3)

Isotropic acoustic model, 
second-order in time, 
single-precision

Devito: tiling-in-time

George Bisbas, et al. Temporal blocking of finite-
difference stencil operators with sparse “off-the-
grid” sources. IPDPS 21 iarXiv:2010.10248

Red

Yellow



Why I do what I do, and what I’ve learned

Engaging with applications to exploit domain-specific 
optimisations can be incredibly fruitful

Compiling general purpose languages is worthy but usually incremental

Compiler architecture is all about designing intermediate 
representations – that make hard things look easy

Tools to deliver domain-specific optimisations often have domain-specific 
representations 

Premature lowering is the constant enemy (appropriate lowering is great)

Along the way, we learn something about building better 
general-purpose compilers and programming 
abstractions

Drill vertically, expand horizontally



The real value of Firedrake 
and Devito is in supporting 
the applications users in 
exploring their design space

We enable them to navigate 
rapidly through alternative 
solutions to their problem

In the future, we will have 
automated pathways from 
maths to code for many 
classes of problem, and 
many alternative solution 
techniques

How can we change the world?How can we change the world?
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Vision for the future

Partial differential 

equations

Tensor contractions

Polyhedral loop model

Decoupled access-

executors

Loop nests

Streaming 

static dataflow

RTL – Verilog, VHDL

Deep learning: 

DNNs, GNNs

Tensor decompositions 

in ML

Algebraic factorisations, transposes, storage layout

Indirections, graph traversals, gathers, scatters, inspector-executor

Loop ordering, tiling, for locality and parallelisation

C-slowing for reductions, scheduling for memory contention

Retiming, scheduling

Resource allocation, 

clocking

Graph analytics

Design transformation

Custom instruction 

datapath

LLHD

Architecture template and data representation selection, 

partitioning, mapping, quantisation

CPUs/GPUs/

clusters

Gaussian belief 

propagation

Multi-level 

Monte-Carlo

Map maths to 
computation 
via numerical 
method

Deep learning 

accelerators

Near-camera 

processors
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Extra slides for questions



Easy parallelism

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

x
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Oh no: not all the iterations are independent! 
You want to re-use piece of code in different 
contexts

Whether it’s parallel depends on context!

Can the 
iterations of this 
loop be executed 
in parallel?



Unstructured meshes require pointers/indirection because adjacency 
lists have to be represented explicitly

A controlled form of pointers (actually a general graph)

OP2 is a C++ and Fortran library for parallel loops over the mesh, 
implemented by source-to-source transformation

PyOP2 is the same basic model, implemented in Python using 
runtime code generation

Enables generation of highly-optimised vectorised, CUDA, OpenMP 
and MPI code

The OP2 model originates from Oxford (Mike Giles et al)



How a mesh is represented in OP2

Mesh

u

Edges

Vertices

PyOP2:           “sets”               “dats” “maps”

Cells

v

v v

w

w

w

EdgeToVertex

CellToEdge



OP2 loops,

access 

descriptors and

kernels

OP2 separates local (kernel) from global (mesh)

OP2 makes data dependence explicit

op_par_loop(set, kernel, access descriptors)

We specify 
which set to 
iterate over

We specify a 
kernel to 
execute – the 
kernel 
operates 
entirely locally, 
on the dats to 
which it has 
access

The access descriptors 
specify which dats the 
kernel has access to:

• Which dats of the target 
set

• Which dats of sets 
indexed from this set 
through specified maps



Ar,u,du r,u.du

A
r,u,du r,u.du

A A A

PyOP2: “decoupled access-execute”

void res(float *A, float *u, float *du, 

const float *beta) {

*du += (*beta) * (*A) * (*u);

}

void update(float *r, float *du, float *u, float 

*u_sum, float *u_max) {

*u += *du + alpha * (*r);

*du = 0.0f;

*u_sum += (*u) * (*u);

*u_max = *u_max > *u ? *u_max : *u;

}

for iter in xrange(0, NITER):

u_sum = op2.Global(1, data=0.0, np.float32)

u_max = op2.Global(1, data=0.0, np.float32)

op2.par_loop(res, edges,

p_A(op2.READ),

p_u(op2.READ, edge2vertex[1]),

p_du(op2.INC, edge2vertex[0]),

beta(op2.READ))

op2.par_loop(update, nodes,

p_r(op2.READ),

p_du(op2.RW),

p_u(op2.INC),

u_sum(op2.INC),

u_max(op2.MAX))

Access 

descriptors 

specify how 

to feed the 

kernel from 

the mesh

• Parallel loops, over sets (nodes, edges etc)

• Access descriptors specify how to pass data to and 
from the C kernel

• The kernel operates only on local data



Code generation for indirect loops in PyOP2
For MPI we 
precompute 
partitions & haloes

Derived from 
PyOP2 access 
descriptors, 
implemented 
using PetSC
DMPlex

At partition 
boundaries, the 
entities (vertices, 
edges, cells) form 
layered halo 
region
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Code generation for indirect loops in PyOP2
For MPI we 
precompute 
partitions & haloes

Derived from 
PyOP2 access 
descriptors, 
implemented 
using PetSC
DMPlex

At partition 
boundaries, the 
entities (vertices, 
edges, cells) form 
layered halo 
region
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processor 0

processor 1



Code generation for indirect loops in PyOP2
For MPI we 
precompute 
partitions & haloes

Derived from 
PyOP2 access 
descriptors, 
implemented 
using PetSC
DMPlex

At partition 
boundaries, the 
entities (vertices, 
edges, cells) form 
layered halo 
region
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Core: entities owned which can be processed without accessing halo data.

Owned: entities owned which access halo data when processed

Exec halo: off-processor entities which are redundantly executed over because they 
touch owned entities

Non-exec halo: off-processor entities which are not processed, but read when 
computing the exec halo



First example:

Tiling for cache locality

(This optimisation has been implemented –
and automated – but does not currently 
form part of the standard distribution)

Can we automate interesting 
optimisations that would be hard to do 
by hand?



Sparse split tiling on an unstructured mesh, for locality

How can we load a block of mesh and do the iterations of loop 
1, then the iterations of loop 2, before moving to the next 
block?

If we could, we could dramatically improve the memory access 
behaviour!

Loop 2

Loop 1
Visits edges

Increments nodes 

Visits nodes

Depends on edges
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Loop 2

Loop 1

Sparse split tiling

Partition the iteration space of loop 1

Colour the partitions, execute the colours in order

Project the tiles, using the knowledge that colour n can use 
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0

And shrinks where it meets colours #2 and #3 
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Visits edges

Increments nodes 

Visits nodes

Depends on edges
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Partition the iteration space of loop 1

Colour the partitions

Project the tiles, using the knowledge that colour n can use 
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0

And shrinks where it meets colours #2 and #3 

Sparse split tiling
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Inspector-executor: 
derive tasks and 
task graph from 
the mesh, at 
runtime

Loop 2

Loop 1
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Visits edges

Increments nodes 

Visits nodes

Depends on edges



Tiles grow
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As we project the tiles forward, tile shape degrades

Perimeter-volume ratio gets worse



Tiles grow
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1

1

1

As we project the tiles forward, tile shape degrades

Perimeter-volume ratio gets worse

We could partition Loop 1’s data for the cache 

But Loop 2 and Loop 3 have different footprints

So we rely on good (ideally space-filling-curve) numbering 

Loop 1

Loop 2

Loop 3



Tiles can collide0
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Loop chains
withloop_chain(tile_size=,….):

# solve for velocity vector field

self.solve(….);

self.solve(….);

self.solve(….);

self.solve(….);

# solve for stress tensor field

self.solve(….);

self.solve(….);

self.solve(….);

self.solve(….);

(Luporini, Lange, Jacobs, Gorman, Ramanujam, Kelly. 
Automated Tiling of Unstructured Mesh Computations with 

Application to Seismological Modeling.ACM TOMS 2019 
https://doi.org/10.1145/3302256)

(25 op_par_loops
per timestep, all 
tilable)



Example: Seigen

Elastic wave solver

2d triangular mesh

Velocity-stress 
formulation

4th-order explicit 
leapfrog 
timestepping
scheme

Discontinuous-
Galerkin, order 
q=1-4

32 nodes, 2x14-
core E5-2680v4, 
SGI MPT 2.14

1000 timesteps 
(ca.1.15s/timestep)

Up to 1.28x speedup

Inspection about as much time as 2 
timesteps

Using RCM numbering – space-filling 
curve should lead to better results

Weak scaling: #cores (#elements)
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) Best speedup: 
1.28x at q=3 on 
448 processes.

Optimum fusion 
scheme breaks 
25 loops into 6 
chains.  MPI 
halo is extended 
from S=1 to S=2
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Second example:

Generalised loop-invariant code motion

(This optimisation has been implemented, 
automated, and re-implemented – and 
forms part of the standard distribution)

Can we automate interesting 
optimisations that would be hard to do 
by hand?



Generated code 
to assemble the 
resulting linear 
system matrix

Executed at each 
triangle in the 
mesh

Accesses 
degrees of 
freedom shared 
with neighbour 
triangles through 
indirection map

Recall:



Local assembly code generated by Firedrake for a Helmholtz 
problem on a 2D triangular mesh using Lagrange p = 1 elements.

The local assembly operation computes a small dense submatrix

These are combined to form a global system of simultaneous 
equations capturing the discretised conservation laws expressed by 
the PDE
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A simpler example:
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Local assembly code generated by Firedrake for a Helmholtz 
problem on a 2D triangular mesh using Lagrange p = 1 elements.

The local assembly operation computes a small dense submatrix

These are combined to form a global system of simultaneous 
equations capturing the discretised conservation laws expressed by 
the PDE

A simpler example:



Local assembly code 
for the Helmholtz 
problem after 
application of 

padding, 

data alignment, 
Loop-invariant 
code motion 

In this example, sub-
expressions invariant 
to j are identical to 
those invariant to k, so 
they can be 
precomputed once in 
the r loop
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Generalised loop-invariant code motion:



We formulate an ILP problem to find the best factorisation strategy  



F. Luporini, D.A. Ham, P.H.J. Kelly. An algorithm for the optimization of finite element integration 
loops. ACM Transactions on Mathematical Software (TOMS), 2017).


