Imperial College

Towards cross-domain domain-
specific compiler architecture

Paul Kelly
Group Leader, Software Performance Optimisation
Department of Computing

Imperial College London

Joint work with David Ham (Imperial Maths), Lawrence Mitchell (University of Durham)
George Bisbas, Edward Stow, Fabio Luporini (Devito Codes Ltd), Florian Rathgeber (now with Google), Doru Bercea
(now with IBM Research), Michael Lange (now with ECMWEF), Andrew McRae (now at University of Oxford), Graham
Markall (now at NVIDIA), Tianjiao Sun (now at Cerebras), Thomas Gibson (NCSA lllinois), Kaushik Kulkarni (UIUC),
Andreas Klockner (UIUC), Tobias Grosser, Michel Steuwer (University of Edinburgh), Amrey Krause, Nick Brown (EPCC)
And many others....

1

Imperial College

Who am | and what do | do?

B | have worked on general-purpose compilers
B Notably pointer analysis

B adopted into GCC

B (actually the work of my PhD student David
Pearce)

B But the benefits were incremental

B Meanwhile | engaged with applications specialists

B Who know they have major performance
optimisation opportunities

B So | got interested in automating domain-specific
optimisations

Imperial College

Power tools for performance programming

This talk is about domain-specific languages

B So we can deliver domain-specific
optimisations

B So we collect and automate all the
performance techniques that are known for
a family of problems

B If we getitright.... we get

B Productivity — by generating low-level
code from a high-level specification

B Performance — by automating
optimisations

B Performance portability — with multiple
back-ends

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army Knife -_Climber_(15554551505).jp¢
3 https://commons.wikimedia.org/wiki/File:Makita_DJV181.jpg

Imperial College

Have your cake and eat it too

B | aim to show you that
you can simultaneously

F raise the level at
which programmers
can reason about
code,

B provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand

Imperial College

Vectorisation, parametric
polyhedral tiling

Tiling for unstructured-
mesh stencils

Lazy, data-driven
compute-communicate

Runtime code generation
Multicore graph worklists

Tensor contractions

Generalised loop-invariant
code motion

Sparsity in Fourier
transforms

Functional Variational
Inference

Search-based optimisation

Processor/accelerator
microarchitecture, co-
design

MLIR

Technologies

The work of my research group

Finite-volume CFD

Finite-element

Finite-difference

Real-time 3D scene
understanding

Adaptive-mesh CFD

Contour trees, Reeb
graphs

Unsteady CFD -
higher-order flux-
reconstruction

Ab-initio computational
chemistry (ONETEP)

Gaussian belief
propagation
Uncertainty in DNNs

Near-camera
processing

Quantum computing

Contexts

PyOP2/OP2

Unstructured-mesh
stencils

Firedrake
Finite-element

Devito: finite difference

SLAMBench:
3D vision, dense SLAM

SuperEight: octree SLAM
PRAgMaTIc: Unstructured
mesh adaptation

GiMMIK: small matrix
multiply

TINTL: Fourier
interpolation

Hypermapper:
design optimisation

RobotWeb: distributed
localisation

Projects

Automating domain-specific performance
optimisations

Exploiting higher-level language to get
better performance than low level code

Aeroengine turbo-
machinery

Weather and
climate

Glaciers

Domestic robotics,
augmented reality

Tidal turbine
placement

Formula-1, UAVs,

buildings

Solar energy, drug
design

Medical imaging

Applications

i

10

...j"*_
Lead g

PALAZZO ‘
MOUNTAIN RESORT r_ o~
i T

Snow Tubing
4 RAUAZZQ LUXURY CHALETS

&

y"’"kn Yo

@

b &
' < Points-to

e
Call-graph

 alfod B

Class hierarchy
Types
Syntax

Drop Loulpge ~

Compilation is |i

vv

Axl

. - x4
+ SNOWPARK " xa*

Shape
Loop nest ordering

3 Commutativity

Polyhedra

G@ X
Parallelisation 4%

Dependence |

Partitioning
Mapping
Storage layout

Instruction scheduling

Register allocation

ke skung

ZIRVE NOKTASI 2:375 m.

@ LIFTS / LIFTLER
@ Easiest / Yeni Baslayanlar igin
@ More Difficult / Orta Seviye
@ Most Diffucult / ileri Seviye
ili, BAR LIFT /T BAR LIFT

(NAZLI, NARIN, NAZAR, DORUK. S.PARK)

DOUBLEX2 CHAIRLIFT

/4 KiSILIK SANDALYEL] LIFT
@ * SNOW MACHINE / KAR YAPMA MAKINESI

@ LIGHTS

@ SNOW TUBING

 &kava PaLAZZO

SREFE T,

1

1

5 1< BABY LIFT 240m,
R
ﬁ W il swiss 1-"'"
" g

A
Ki.& MOUNTAIN[RESORT/ =

A el

snow Tubing N Fiiriy 2
RAUAZZOLUXURY CHALETS NS
» T @*

b G

v 2I8] ?f

~ Compilation is like skiing

bt Drop Lmipge '

Axl

- x4

. SNOWPARK- "

@ LIFTS / LIFTLER

@ Easiest / Yeni Baslayanlar igin
@ More Difficult / Orta Seviye
@ Most Diffucult / ileri Seviye

BAR LIFT / T BAR LIFT
(NAZLI, NARIN, NAZAR, DORUK. S.

ROUBLEx2 CHAIRLIFT
ISILIK SANDALYELI LIFT

CHINE / KAR YAPMA MAKINES]

DORUKKAYA p—
SKI & MOUNTAIN RESORT

A PALAZZO :
(& MOUNTAIN RESURT

Snow Tubing '"fuy
PALAZI.ZU LUXUR‘{ CHALETS

)
A (b\\

'm\»‘\ skis up the
e, N) mountain is not -

', A0 the best bit

N S Ca rryl ng you r |-|FT'SILIFTLF.R

est/ Yeni Baglayanlar igin

Compilation is like skiing

12

https://pxhere.com/en/photo/949553 (CCO public domain

SWISS

MOUNTAIN RESURT

3)

PAI.AZZO

3

a Snow Iubing
AUAZZO LUXURY CHALETS

Compllatlon is like skung

14

Imperial College

Plan
= = e W e
B Compiling is like skiing
B Analysis is an uphill struggle

B “Turing Tax”

B The price you pay for running on a general-purpose
computer rather than a specialised one

B \What do we call...

B The price you pay for using a general-purpose
programming language rather than a DSL?

B This talk:

B DSLs really can deliver — my examples: Firedrake,
Devito

B DSL compiler architecture: how do DSLs win?
B Making the DSL ecosystem work

20 (For more on the Turing Tax see)

W iRve NoKTASI 2375 m.

z‘ -
~%2.300m.

All of this
Tur/ng Tax/

BABY LIFT

_’ “Turing tax”:
L%((a)p nr st ordering A4 Bes \ the pI’ICG we

- Commutativit® R L 35| iy o
gLl e (- e pay for using
4 k. ing : Polyhedra g S '

‘, PALAZZOLUXURYC ID Parallelisation 4§ ‘_ ‘ a general'
s “ &® Dependence >/

Partitioning - purpose tool
Eppias o VATY nstead of a
Storage Iayout" . Spec,al.

Instruction scheduling purpose one

Register allocatio.

Points-to
Call-graph
Class hierarchy

Types

Syntax

ol & ¥ - DGO Ny

ompllatlon IS like skiing

22

Qf{@ﬂ@gli

EXa rr' le D SL L] @ Tensor Decompositi... The Conversation: I... Paul Kelly (paulhjkel. @ MS mymake @ The power of listeni... Tubes El Computing | The Br. » [Other bookmarks
[]

‘Firedrake

Documentation Download Team Citing Publications Events Funding Contact GitHub Jenkins
Firedrake is an automated system for the solution of partial differential equations using the Latest commits to the Firedrake master
finite element method (FEM). Firedrake uses sophisticated code generation to provide branch on Github
mathematicians, scientists, and engineers with a very high productivity way to create
sophisticated high performance simulations. Merge pull request #1520 from
firedrakeproject/wence/feature/assemble-
diagonal

Lawrence Mitchell authored at 22/10/2019,

FeOtU reS. 09:14:34

tests: Check that getting diagonal of matrix

» Expressive specification of any PDE using the Unified Form Language from the FEnIiCS works ,
5 Lawrence Mitchell authored at 21/10/2019,
Project. 13:04:04
. Sgphlst|cated, prr'::grammable solvers through seamless coupling with PETSc. matfree: Add getDiagonal method to
« Triangular, quadrilateral, and tetrahedral unstructured meshes. implicit matrices
» Layered meshes of triangular wedges or hexahedra. Lawrence Mitchell authored at 18/10/2019,
« Vast range of finite element spaces. 10:19:48
« Sophisticated automatic optimisation, including sum factorisation for high order assemble: Add option to assemble

diagonal of 2-form into Dat

elements, and vectorisation. Lawrence Mitchell authored at 18/10/2019,
» Geometric multigrid. 10:08:37

e Customisable operator preconditioners. Merge pull request #1509 from

» Support for static condensation, hybridisation, and HDG methods. firedrakeproject/wence/patch-c-wrapper

B What s Firedrake?

25

< c

@ firedrakeproject.org

The Conversation: I...

. Apps |®5 Shareable Whitebo... == Startpage Search E. Papers We Love @ Tensor Decompositi...

Team Citir

Documentation = Download
Firedrake is an automated system for the solution of partial differential equa
finite element method (FEM). Firedrake uses sophisticated code generation
mathematicians, scientists, and engineers with a very high productivity way
sophisticated high performance simulations.

Features:

* Expressive specification of any PDE using the Unified Form Languag
Project.

» Sophisticated, programmable solvers through seamless coupling with

« Triangular, quadrilateral, and tetrahedral unstructured meshes.

« Layered meshes of triangular wedges or hexahedra.

» Vast range of finite element spaces.

» Sophisticated automatic optimisation, including sum factorisation for |
elements, and vectorisation.

* Geometric multigrid.

» Customisable operator preconditioners.

« Support for static condensation, hybridisation, and HDG methods.

Active team members

b

Tianjiao (TJ) Sun

Rob Kirby

Former team members

Fabio Luporini

-

o

Miklos Homolya

Koki Sagiyama

Alastair Gregory

Florian Rathgeber

Doru Bercea

F\

Lawrence Mitchell

»’/\A,‘: i

Andrew McRae

Michael Lange

Graham Markall

Thomas Gibson

Colin Cotter

Simon Funke

- B What s Firedrake?

bookmarks

< C @ thetisprojectorg

L
Imperlal Couege :: Apps ®a Shareable Whitebo... == Startpage Search E... Papers We Love @ Tensor Decompositi...

B Firedrake is

THETIS
used In:

L]
B Thetis:
. . .
The Thetis project
u n Stru Ctu re d Thetis is an unstructured grid coastal ocean model built using the Firedrake finite element
ri d COaSta I framework. Currently Thetis consists of 2D depth averaged and full 3D baroclinic models.
g Some example animations are shown below. More animations can be found in the Youtube

modelling
framework

_—
(9W77). Idealized river plume simulation

28

B Whatis it used for? By whom?

* ® @B © % | §

The Conversation: |... » [Other bookmarks

Current development status

Latest status:

Thetis source code is hosted on
Github and is being continually tested
using Jenkins.

| = Estuary of the River Severn: huge tidal energy opportunity
Significant causes for concern over ecological impact

Should we do it? How? Where? How much energy? How
much impact?

W

LAanna THETIS
U (m/s)

1.
-

09 =

06 =

03 i
0

Estuary of the River Severn: huge tidal energy opportunity
« Significant causes for concern over ecological impact

* Should we do it? How? Where? How much energy? How
much impact?

Imperial College

C @ firedrakeproject.org/gusto/documentation.html p ® = ¢, P2 :

®s Shareable Whitebo... == Startpage Search E... Papers We Love ensor Decompositi... e Conversation: |.. » | | Other bookmarks

B Firedrake is
used in:
B Gusto:

atmospheric m r ,

modelling Getg| *" 0c/Katy=5km *% Py /msaty=5kn'”

framework T s

being used

to prototype | APz E .

the next: eret] .

generation B

of weather

and climate 0 z / km 0 % z / km 10

simulations Three-dimensional simulation of a thermal rising through

for the UK a saturated atmosphere. From A Compatible Finite

Met Office Element Discretisation for the Moist Compressible Euler
Equations (Bendall et al,
https.//arxiv.org/pdf/1910.01857.pdf)

B Whatis it used for? By whom?

31

& = C @ icepackgithub.io w ©® @B © ¢ D :

Imperial College

.z Apps ®a Shareable Whitebo.. == Startpage Search E... Papers We Love @ Tensor Decompositi... The Conversation: ... » | I Other bookmarks

A icepack . :
Docs » icepack View page source

0.03 I

icepack

B Firedrake is

u S ed i n . Overview Welcome to the documentation for icepack, a python library for modeling the flow of

. ey
Background ice sheets and glaciers! The main design goals for icepack are:

B Icepack:a [
framework
for modeling [etu—:
the flow of R——
glaciers and [—G
ice sheets, |[EEEEE
developed at .
the Polar S
Science
Center at the
University of

Washington

700

B
o
meters/year

Larsen ice shelf model, from the Icepack tutorial
by Daniel Shapero

(

B Whatis it used for? By whom?

32

The finite element method in outline

do element = 1,N
assemble(element):

K /vL(u"‘)dX: / vgdX.
@) J ()

[~] '
— . end do//// ///

Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector

e o Multilayered abstractions for FE
I e e e eee———

B Local assembly:
B Computes local assembly matrix
B Using:
B The (weak form of the) PDE
B The discretisation

B Key operation is evaluation of expressions over basis
function representation of the element

—® Mesh traversal:

B PyOP2

B Loops over the mesh

B Key is orchestration of data movement

B Solver:
B Interfaces to standard solvers through PetSc

34

obeion _lege Example: Burgers equation
L = = A

Y B
J

g7 o+ (W V)u) o+ vVe T Vo dz = 0.

B From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
\ the previous timestep /

B Transcribe into Python —uis u™*!, u_is u™:

F = (inner((u - u_)/timestep, v)
+ inner(dot(u,nabla grad(u)), v) + nu*inner(grad(u), grad(v)))*dx
B Set up the equation and solve for the next timestep u:
solve(F == 0, u)

B At this point, Firedrake generates code to assemble a linear

. system, runs it and calls a linear solver (we use PetSC)

from firedrake import *

S Burgers equation

We choose degree 2 continuous Lagrange polynomials. We also need a

V = VectorFunctionSpace(mesh, "CG", 2)

V_out = VectorFunctionSpace(mesh, "CG", 1) . Fired rake implements the
We also need solution functions for the current and the next timestep:: Unf d F L

= Function(V, name="Velocity") I Ie Orm anguage
= Function(V, name="VelocityNext") (UFL)

v = TestFunction(V)
We supply an initial condition:: . Embedded In Python

x = SpatialCoordinate(mesh)
ic = project(as_vector([sin(pi*x[0]), 0]1), V)

u_
u

Start with current value of u set to the initial condition, and use the
initial condition as our starting guess for the next value of u::

u_.assign(ic) f M e ((un+1 . V)unJrI) v+ rVu! . Vo dz = 0.
Q

u.assign(ic) af

B :math:’\nu' is set to a (fairly arbitrary) small constant value::

B From the weak form of the PDE, we derive an equation to
solve, that determines the state at each timestep in terms of
timestep = 1.0/n the previous timestep

nu = 0.0001

Define the residual of the equation::
q B Transcribe into Python —uis u”™*! u_is u™:

F = (inner((u - u_)/timestep, v)

F = (inner((u - u_)/timestep, v)
+ inner(dot(u,nabla grad(u)), v) + nu*inner(grad(u), grad(v)))*dx
+ inner(dot(u,nabla_grad(u)), v) + nu*inner(grad(u), grad(v)))*dx

outfile = File("burgers.pvd")

outfile.write(project(u, V_out, name="Velocity"))

Finally, we loop over the timesteps solving the equation each time:: . (U FL IS also the DSL Of the
Lo 0.0 FENICS project)

end = 0.5
while (t <= end):
solve(F == 0, u)

i ioastap B What does its DSL actually look like?

outfile.write(project(u, V_out, name="Velocity"))

39

from firedrake import *

n = 50

mesh = UnitSquareMesh(n, n)

We choose degree 2 continuous Lagrange polynomials g
piecewise linear space for output purposes::

V = VectorFunctionSpace(mesh, "CG", 2)
V_out = VectorFunctionSpace(mesh, "CG", 1)

We also need solution functions for the current and

u_ = Function(V, name="Velocity")
u = Function(V, name="VelocityNext")

v = TestFunction(V)
We supply an initial condition::

x = SpatialCoordinate(mesh)
ic = project(as_vector([sin(pi*x[0]), 0]), V)

Start with current value of u set to
initial condition as our starting gue|

u_.assign(ic)
u.assign(ic)

% :math: \nu’ is set to a (fairly arbit]

nu = 0,000
timestep =
Define t

F = (inner
+ inn

outfile =
outfile.wr
Finally,
t =0.0

end = 0.5
while (t <

solve(F == 0, u)
u_.assign(u)

t += timestep
outfile.write(project(u, V_out, name="Velocity"))

‘mesh = UnitSquareMesh(n, n)

IV = VectorFunctionSpace(mesh, "CG", 2)
_out = VectorFunctionSpace(mesh, "CG", 1)

_ = Function(V, name="Velocity")
= Function(V, name="VelocityNext")

u
u

‘ # set up initial conditions for u and u_

Define the residual of the equation::

F = (inner((u - u_)/timestep, v)
+ inner(dot(u,nabla_grad(u)), v) + nu*inner(grad(u), grad(v)))*dx

t =0.0

end = 0.5

while (t <= end):
solve(F == 0, u)
u_.assign(u)
t += timestep

outfile.write(project(u, V out, name="Velocity"))
|

B What does its DSL actually look like?

#include <math.h>
#include <petsc.h>

void wrap_form@@_cell_integral_otherwise(int const start, int const end, Mat const mat@, double

double form_t0...t16;

double const form_t17[7) = { ... };
double const form_t18[7 * 6] { ...}
double const form_t19[7 * 6] = { ... };
double form_t2;

double const form_t20[7 * 6] = { ... };

double form_t21...t37;
double form_t38[6];
double form_t39[6];
double form_t4;
double form_t40
double form_t5.
double tO[6 * 2
double t1[3 * 2];

double t2[6 * 2 * 6 * 2];

for (int n = start; n <= -1 + end; ++n)

for (int i4 = @; i4 <= 5; ++i4)
for (int i5 ; 15 <= 1; ++15)
for (int i6 = @; i6 ++16)
for (int i7 = @; i7 <= 1; i7)
12[24"14+12*15+2*18+17l =0.9;
for (int i2 = @; 12 <= 2; ++i2)
for (int i3 0; i3 <= 1; ++i3)
tl[2 * i2 + i3] = datl[2 * mapl[3 * n + 12] + i3];
for (int i0 = @; i0 <= 5; ++i0)
for (int il = 0; il <= 1; ++i1)
10[2 * i0 + 11] dat®[2 * mapO[6 * n + 18] + i1];

form_to -1.0 * t1[1];
form_tl form_t® + t1[3);
form_t2 = -1.0 * tl[e];
form_t3 form_t2 + tl[2];
form_t4 = form_t® + t1[5];

form_t5 = form_t2 + t1[4];

form_t6 = form_t3 * form_t4 + -1.0 * form_t5 * form_tl;
form_t7 = 1.0 / form_t6;

form_t8 = form_t7 * -1.0 * form_tl;

form_t9 = form_t4 * form_t7;

form t1e = TOI’II\ 13 * fOI‘ﬂl 17

form_tll = form t7 * -1.0 * form_t5;

form_tl2 = 0.0001 * (form_t8 * form_tg + form_t10 * form_tll);
form_tl3 = 0.0001 * (form_t8 * form_t8 + form_t10 * form_tl1e);
form_tl4 = 0.0001 * (form_t9 * form_t9 + form_tll * form_tll);
form t15 = 0.0001 * (form t9 * form t8 + form t11 * form t16);
form_t16 = fabs(form_t6);

for (int form_ip = @; form_ip <= 6; ++form_ip)

{
form_t26 = 0.0; form_t25 = 0.0; form_t24 = 0.0; form_t23 = 0.0; form_t22 = 0.0; form_t21 =

for (int formg 0; form i <= 5; ++form_i)

{
form_t21 = form_t21 + form_t20[6 * form_ip + form_i] * tO[1 + 2 * form_il;
form_t22 = form_t22 + form_t19[6 * form_ip + form_i] * tO[1l + 2 * form_i];
form_t23 = form_t23 + form_t20[6 * form_ip + form_i] * t®[2 * form_i];
form_t24 = form_t24 + form_t19[6 * form_ip + form_i] * t@[2 * form_i];
form_t25 = form_t25 + form_t18[6 * form_ip + form_i] * tO[l + 2 * form_il;
form_t26 = form_t26 + form_t18[6 * form_ip + form_i] * t@[2 * form_i];

)
form_t27 = form_t17(form_ip] * form_t16;

form_t28 = form_t27 * form_t15;

form_t29 = form_t27 * form_tl4;

form_t30 = form_t27 * (form_t26 * form_t9 + form_t25 * form_tll);
form_t31 = form_t27 * form_t13;

form_t32 form_t27 form_t12;

form_t33

form_t34 form_t27 (form_t11 * fnrm 124 + form t10 * form _t23);
form_t35 = form_t27 * (form_t9 * form_t22 + form_t8 * form_t21);
form_t36 = form_t27 (56.0 + form_ 9 * form_ 24 + form_t8 * form_t23);
form_t37 = form_t27 (50.9 + form tll * fnrm 122 + form 110 * form _t21);
for (int form kB = 0; form_kO <= 5; ++fnrm7k9)
{
form_t38[form_ke]
form_t39[form_ke]

-
*
-
*
form_t27 * (form_t26 * form_t8 + form_t25 * form_t10);
-
*
-
*

form_t18[6 * form_ip + form_ke] * form_t37;
form_t18[(6 * form_ip + form_k8] * form_t36;

}
for (int form_jo = 0; form_j@ <= 5; ++form_jo)

form_t40 = form_t18[6 * form_ip + form_j@] * form_t35;
form_t4l = form_t18(6 * form_ip + form_j@] * form_t34;
form_t42 = form_t20[6 * form_ip + form_j0] *

form_t43 = form_t20[6 * form_ip +

for (int form_kO_0 = @; form_k0_0 <= 5; ++form_k0_0)

form_t44 = form_t43 * form_t19(6 * form_ip + form_k0_0];
form_t45 = form_t42 * form_t20(6 * form_ip + form k0 6];

const *__

__ datl, double const *__

Generated code
to assemble the
resulting linear
system matrix

Executed at each
triangle in the
mesh

Accesses
degrees of
freedom shared
with neighbour
triangles through
Indirection map

form t31 + form t18[6 * form_ip + form i8] * form t33 + form t19[6 * form ip + form_j0] * form t32;
form_jo] * form_t28 + form_t18[6 * form_ip + form_j@] * form_t36 + form_t19[6 * form_ip + form_jo] * form_t29;

t2(24 * form _j0 + 2 * form_k6_0] = t2(24 * form]B + 2 * form_k@_0] + form_t45 + form_t18(6 * form_ip + form_j@] * form_t39[form_ko_6] + form_t44;
t2[13 + 24 * form_jo + 2 * form ke_0] = t2[13 + 24 * form _j0 ¥ 27+ form ke G] + form_ 45 + form tlﬁ[ﬁ * form_ip + form ja] * form t38[form ke 0] + form_t44;

t2[1 + 24 * form_jo + 2 * form) 0] = t2[1 + 24 * form_joO + 2 * form k0 0] + form tlB[ﬁ * form_ip + form_k0 0] * form_t4l;
t2[12 + 24 * form_jo + 2 * form k6_08] = t2[12 + 24 * form_j@ + 2 * fnrm k0_0] + form_t18[6 * form_ip + form ko_0] * form MD

}
}

}
MatSetValuesBlockedlLocal (mat@, 6, &(map@[6 * n]), 6, &(map@[6 * n]), &(t2[0]), ADD_VALUES);

restrict__ dat®, int const *__restrict__ map®, int const *__restrict__

mapl)

Firedrake: single-node AVX512 performance
B Does it generate good code?

Skylake cross-element vectorization
2000

— [hEO peak
1000 + == /ntel LINPACK
500 -
] GFLOPs
@ achieved for
o 200° residual
O
= 1001 ass_emb/y for
O] various
50 A element types,
with polynomial
20 A degree ranging
from 1-6
10 —e— ——eee —er—r —eerrt
10° 10! 102 103
Arithmetic intensity
® mass-tri B helmholtz - tri * laplacian - tri A elasticity - tri V¥ hyperelasticity - tri
® mass - quad B helmholtz - quad * laplacian - quad A elasticity - quad ¥ hyperelasticity - quad
mass - tet helmholtz - tet laplacian - tet elasticity - tet " hyperelasticity - tet
® mass - hex B helmholtz - hex * laplacian - hex A elasticity - hex V¥ hyperelasticity - hex

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 —march=native)]

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al
IJHPCA 2020

Imperial College

Non-FE loops Unified Form
over the mesh Language

UFL “Two-
stage” Form
Compiler

GEM: tensor
contractions

Loo.py representation

Distributed MPI-parallel PyOP2
implementation

Multicore

In In Some prototyping

44 production development

Firedrake: compiler architecture_

UFL specifies the (weak form of
the) partial differential equation
and how it is to be discretised

Compiler generates PyOP2
kernels and access descriptors

GEM: abstract representation
supports efficient flop-reduction
optimisations

PyOP2: stencil DSL for
unstructured-mesh

Explicit access descriptors
characterise access footprint of
kernels

Loo.py: vectorization etc

Manycore Future/
other

Sequence of intermediate

representations

100% Python, runtime code
generation, code-caching

Rathgeber, Ham, Mitchell et al, ACM TOMS 2016, Tianjiao Sun et al hiips.//arxiv.org/pd/1903.0

Another example DSL

Devito: Symbolic Finite Difference Computation

Devito is a domain-specific Language (DSL) and code generation framework for the design of highly optimised finite
difference kernels for use in inversion methods. Devito utilises SymPy to allow the definition of operators from high-
level symbolic equations and generates optimised and automatically tuned code specific to a given target

architecture. -

Symbolic computation is a powerful tool that allows users to:

» Build complex solvers from only a few lines of high-level code
+ Use automated performance optimisation for generated code
« Adjust stencil discretisation at runtime as required

* (Re-)development of solver code in hours rather than months

Gerard Gorman Fabio Luporini
And many many more!

als0 8 561 of shorthand expressions for et

Stenci

Imperial College

Devito: applications
I e ey

B Devito automates the finite difference method for solving
PDEs

B Widely used for fluid dynamics, wave propagation

B Devito is mostly used to solve inversion problems
B Use automatic differentiation of the solver
B To solve for the conditions that explain the observations
B “Full Waveform Inversion” (FWI)

B Seismic inversion

B Understand geological structures from reflected sound
waves

F Ultrasound imaging of the brain
B Diagnose brain injuries from ultrasound transmission

48

Imperial College

Devito: example
I e ey

Define the wavefield from model setup.
u = TimeFunc(time_order=2, space_order=2)

_ . Acoustic wave equation, with damping:
Write down the acoustic wave PDE:
. . (d2u($,t) 9 du(z,t) .
pde = model.m*u.dt2 - u.laplace + model.damp*u.dt m—sr— — Vu(z,t) + n—p— = qin Q
¢ u(.,0)=0
Solve by time-marching: du(z,t) =0
stencil = Eq(u.forward, solve(pde, u.forward)) : at =0
_ - _ We inject initial sound wave at source point,
Define source injection and receiver: and monitor the signal at a receiver.
src_term = src.inject(field=u.forward, pr=src*dt**2/mo
rec_term = reclinterp0|ate(expr=u.forward) We derive and generate the stencil operator
code, then run it a specified number of
Generate code for the timestepping operator: inESEnE

op = Operator([stencil] + src_term + rec_term, Slightly simplified from:
subs=model.spacing_map)

Run code (MPI+GPU), to yield receiver values:
op(time=time_range.num-1, dt=model.critical_d) Code at this basic level of abstraction
is in production, at scale, running at

49 multiple petaflops 24/7

mbera CllegeDevito: FLOP-reduction optimisations

8192
@~ <basic> =@ <advanced> =@~ <aggressive> 89%2% 9%
4096 - 169 —
13% /
_. 2048 - 3V
)
wn i
S 1024 - |
| f
'-'- o0 25%% 5275 825s
O X W% o, S 285s
= >ol2 ep\“‘ 0% X 1001s 15275
) (P 439 - 606s A
8 256 i } 203s 287s X :
& | ® o |
- = 13:502s
o 1287 e X A Y |
64 1
32 A o v 12 B ln o w13 48 8
? ? Il I C"D CHD C“D ? Il LI i
16 & | 0 I\HJI o -hl c:oI 1es) SI <o Ig
1 2 4 8 16 32 64 128

Operational intensity (FLOPs/Byte)

Intel® Xeon® Platinum
8180 (Skylake, 28 cores),
ICC v18.0, Devito v3.1

TTI (Tilted Transverse
Isotropy), second order in
time. 415 timesteps
(1000ms), single precision.

Space order:

4 (circles),

8 (crosses), and
12 (triangles)
16 (nablas)

Fabio Luporini et al. Architecture and Performance of Devito, a
System for Automated Stencil Computation. ACM Trans. Math.
Softw. 46, 1, Article 6 (April 2020),

50

For latest performance data see

Imperial College Devito: tiling-in-time

SP Vector FMA Peak: 599.72 GFLOPS

Single-socket 8-core Intel
Broadwell E5-2673 v4
CPUs with AVX2, L1
(32KB), L2 (256KB) private
ea asr s BEOS - to each core, 50MB shared
L3 (Ubuntu 18.04.4, Devito
v4.2.3)

550.281 —

Sd07149

400

250

eak 14044 crors - Isotropic acoustic model,
second-order in time,
single-precision

Space order:

©° 4 (triangles), A /\
8 (circles), and @ O
12 (squares). []

markers show the
4 110 2831 performance of
spatially blocked
vectorized kernels

: : . Yellow |markers show
George Bisbas, et al. Temporal blocking of finite- temporal blocking using

difference stencil operators with sparse “off-the- autotuned tile
grid” sources. IPDPS 21 parameters.

FLOP/Byte(Arithmetic Intensity)
|

51

Imperial College Why I dO What I dO, and What I!ve Iearned
= = = |

B Engaging with applications to exploit domain-specific
optimisations can be incredibly fruitful
B Compiling general purpose languages is worthy but usually incremental

B Compiler architecture is all about designing intermediate
representations — that make hard things look easy

B Tools to deliver domain-specific optimisations often have domain-specific
representations

B Premature lowering is the constant enemy (appropriate lowering is great)

B Along the way, we learn something about building better
general-purpose compilers and programming
abstractions
B Drill vertically, expand horizontally

How can we change the world?

B The real value of Firedrake a -
and Devito is in supporting firecfra&e

the applications users in =

Firedrake is an automated system for the solution of partial differential equations using the Latest commits to the Firedrake master
finite element method (FEM). Firedrake uses sophisticated code generation to provide branch on Github

] -]
mat i scientists, and with a very high productivity way to create
sophisticated high performance simulations. Merge pull request #1520 from

diagonal

Lawrence Mitchell authored at 22/10/2019,
Features: 09:14:34
tests: Check that getting diagonal of matrix

« Expressive specification of any PDE using the Unified Form Language from the FEnics ~ Works i
Lawrence Mitchell authored at 21/10/2019,

P We enable them to navigate
rapidly through alternative
solutions to their problem

. I n th e futu re , We WI I I h ave Devito Documentation Team Citing Publications Opportuni
a u to m ate d pat hways fro m Devito: Symbolic Finite Difference Computation
maths to code for many e e

utilises SymPy to allow the definition of operators from high-level symbolic equations and

c I as S es of ro b I e m a n d generates optimised and automatically tuned code specific to a given target architecture.
p J

Symbolic computation is a powerful tool that allows users to:
L] u « Build complex solvers from only a few lines of high-level code
m a n a e rn a Ive S o u I o n + Use automated performance optimisation for generated code
« Adjust stencil discretisation at runtime as required
techniques

+ (Re-)development of solver code in hours rather than months

Imperial College

London Vision for the future

Partial differential | Deep learning: Tensor decompositions Graoh analvtics Gaussian belief Multi-level
equations DNNs, GNNs in ML P y propagation Monte-Carlo

-

Tensor contractions Algebraic factorisations, transposes, storage layout

Map maths to
computation

via numerical
method

Decoupled access-
executors

Indirections, graph traversals, gathers, scatters, inspector-executor

Polyhedral loop model Loop ordering, tiling, for locality and parallelisation

Loop nests C-slowing for reductions, scheduling for memory contention

Design transformation Architecture template and data representation selection,
partitioning, mapping, quantisation

CPUs/GPUs/ Deep learning Near-camera Streaming Custom instruction Retiming, scheduling
clusters accelerators processors static dataflow datapath

Resource allocation,
clocking

RTL — Verilog, VHDL

60

Imperial College

Acknowledgements

= = e W e
Thank you to our many many collaborators!

Partly funded/supported by
B SysGenX: Composable software generation for system-level simulation at Exascale (EP/W026066/1)
XDSL.: Efficient Cross-Domain DSL Development for Exascale (EP/W007789/1)
NERC Doctoral Training Grant (NE/G523512/1)
EPSRC “MAPDES” project (EP/100677X/1)
EPSRC “PSL” project (EP/I006761/1)
Rolls Royce and the TSB through the SILOET programme
EPSRC “PAMELA” Programme Grant (EP/K008730/1)
EPSRC “PRISM” Platform Grants (EP/1006761/1 and EP/R029423/1)
EPSRC “Custom Computing” Platform Grant (EP/1012036/1)
EPSRC “Application Customisation” Platform Grant (EP/P010040/1)
EPSRC “A new simulation and optimisation platform for marine technology” (EP/M011054/1)
Basque Centre for Applied Mathematics (BCAM)

Code:
B http://www.firedrakeproject.org/
B hittp://op2.github.io/PyOP2/
B hittps://github.com/OP-DSL/OP2-Common

61

Imperial College

Extra slides for questions
I e ey

63

Easy parallelism

Example:
for (i=0; i<N; ++i) { ® Canthe |
points[i]->x +=1 iterations of this

loop be executed
} in parallel?

Lib L

X X
y
z

y
z

X X
yilvy
z z

B Oh no: not all the iterations are independent!

B You want to re-use piece of code in different
contexts

B Whether it's parallel depends on context!

Unstructured meshes require pointers/indirection because adjacency
lists have to be represented explicitly

A controlled form of pointers (actually a general graph)

OP2 is a C++ and Fortran library for parallel loops over the mesh,
implemented by source-to-source transformation

PyOP2 is the same basic model, implemented in Python using
runtime code generation

Enables generation of highly-optimised vectorised, CUDA, OpenMP
and MPI code

The OP2 model originates from Oxford (Mike Giles et al)

How a mesh is represented in OP2
Mesh

— =

L AR

e e) JER

; ; Cells \: ;
T—C g—

—

VRV

™ &
Vertices

oW ew

& L2

PyOP2: “sets” ‘dats”

CellToEdge

EdgeToVertex
@

Hmapsﬂ

OP2 loops,
access
descriptors and
kernels

op_par_loop(set, kernel, access descriptors)

We specify We specify a

which set to kernel to

iterate over execute — the
kernel
operates

entirely locally,
on the dats to
which it has
access

The access descriptors
specify which dats the
kernel has access to:

 Which dats of the target
set

 Which dats of sets
indexed from this set
through specified maps

B OP2 separates local (kernel) from global (mesh)
B OP2 makes data dependence explicit

PyOP2 “decoupled access-execute”

Parallel loops, over sets (nodes, edges etc)
» Access descriptors specify how to pass data to and

from the C kernel
 The kernel operates only on local data

Access

descriptors
specify how
to feed the
kernel from
the mesh

r,u,du

6p2 par_loop(res, edges,
= Pp_A(op2.READ),

-

riter in xrange(0, NITER):

u_sum = op2.Global(1, data=0.0, np.float32)
u_max = op2.Global(1, data=0.0, np float32)

~—

p_u(op2.READ, edge2vertex[1]),

void res(float *A, float *u, float *du,
const float *beta) {
*du += (*beta) * (*A) * (*u);

p_r(op2.READ), _\)

p_du(op2.RW),
p_u(op2.INC),
u_sum(op2.INC),
u_max(op2.MAX))

p_du(op2.INC, edge2vertex[0]), /
L beta(op2.READ)))
[I "
op2.par_loop(update, nodes, void update(float *r, float *du, float *u, float

*u_sum, float *u_max) {
*u +=*du + alpha * (*r);
*du = 0.0f;
*u_sum += (*u) * (*u);
*Uu_max =*u_max>*u?*u_max:

.Cé)dMeplgeneration for indirect loops in PyOP2

precompute
partitions & haloes

" Delon Z/'./’./’// /'.//’;‘/.
descriptors, ‘/ ‘/ ‘/ / '/ o
Zaass

implemented
using PetSC

i
DMPlex ‘/
¥

NN

SER

B At partition ‘/
boundaries, the
entities (vertices,
edges, cells)form‘/ _ /
layered halo o—0—0—0 o

region

Code generation for indirect loops in PyOP2

B For MPl we
precompute

partitions & haloes Processor 0

B Derived from
PyOP2 access
descriptors,
implemented
using PetSC
DMPlex

B At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo
region

! !
T

.\
S
NN

I
‘\

@'\

74

¢

S

NN
NN
NN

i

o—0—0O©O
processor 1

.ngMeplgeneratlon for indirect loops In PyOP2

precompute
partitions & haloes processor 0

%!

core
core

B Derived from
PyOP2 access
descriptors,
implemented
using PetSC
DMPlex

B At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo

region S T processor

B Core: entities owned which can be processed without accessing halo data.

!

B Owned: entities owned which access halo data when processed

B Exec halo: off-processor entities which are redundantly executed over because they
touch owned entities

B Non-exec halo: off-processor entities which are not processed, but read when
computing the exec halo

B Can we automate interesting
optimisations that would be hard to do
by hand?

B First example:
B Tiling for cache locality

B (This optimisation has been implemented —
and automated — but does not currently
form part of the standard distribution)

Sparse split tiling on an unstructured mesh, for locality

Loop 1

Visits edges
Increments nodes

Loop 2

Visits nodes
Depends on edges

/&4

B How can we load a block of mesh and do the iterations of loop
1, then the iterations of loop 2, before moving to the next
block?

B If we could, we could dramatically improve the memory access
behaviour!

EN

l, IPD

Strout, Luporini et a

Block of U

D
Y
o
<
O
e
g

Block of U

(U
Block of U

)
Y
o
<
O
e
g

Sparse split tiling

Loop 1
P Visits edges
Increments nodes
Loop 2 Visits nodes

B Partition the iteration space of loop 1
B Colour the partitions, execute the colours in order
B Project the tiles, using the knowledge that colour n can use

data produced by colour n-1
Thus, the tile coloured #1 grows where it meets colour #0

B And shrinks where it meets colours #2 and #3

Depends on edges

/{\4

Strout, Luporini et al, IPD

Sparse split tiling

Loop 1
P Visits edges
Increments nodes
Loop 2 Visits nodes

Depends on edges

&

Partition the iteration space of loop 7, N
N Inspector-executor:
Colour the partitions

Project the tiles, using the knowledg gerive tasks ana
data produced by colour n-1 | task graph from

Thus, the tile coloured #1 grows wh 102 ”.793”’ 2
| _ runtime)
And shrinks where it meets CO|OUI‘S\P-\L S —

Strout, Luporini et al, IPD

¥1.Sdddl ‘e 38 luuodn ‘Jnoss

Tiles grow

B As we project the tiles forward, tile shape d

B Perimeter-volume ratio gets worse

Loop 1 - Tiles grow
()

B As we project the tiles forward, tile shape degrades

B Perimeter-volume ratio gets worse

B We could partition Loop 1's data for the cache

B But Loop 2 and Loop 3 have different footprints

B So we rely on good (ideally space-filling-curve) numbering

Strout, Luporini et al, IPDPS’14

(6T0Z SWOL WDV “Buijspol [edibojowsiss 03 uopedlddy

(95220£€/SHT11°01/bl0"10p//:sdny I -+ deyseura
6102 SIWOL WDV "Buljapoly [ed1bojowsias 03 uonedi|ddy T SRS s
UaM suoneindwo) yss palnionaisun Jo bulji pajewoiny ds3sauTy IxaU O3UC INOW #
‘AlI9) ‘welnuewey ‘uewlos ‘sqooer ‘abue ‘luodn)

(@ == 3Indino-jras ¥ dojsswTry pue STT403}°JT3S ‘TIS°4TaS ‘TN JT[8S)9ITJM’LTaS
SPTST4 MSU 3Yl INO 9ITJM #

(Ts*412s)ud1sse‘gs-4Ios
(fn-419s)udisse gn-4T9s

(*""")anjos’)|es - -
(Jonosyes R
("*")oA|0S J|oS
G E YN (oIS TE=TS
p/8l} 10SUB) SS8.)S 10} 9A/0S #
‘(*"")an|OSs J|oS
‘(""")an|0Ss’J|oS
‘(*"")an|0Ss J|oS
‘(""")an|0S J|oS
p|8l] 10]J08A AJID0|BA 10O) BA|OS # e
(0715 011)UIRYDGO0] U)

s u Ie O d oo ((do3sawty “3) % .(p% = de3sowry) ‘4% = 3.)04uT
u 1@ == 1ndino‘JTas % dalsawTl pue @ == UEJ'JTYOM WWOD'IdW'zdo 4T

:sdejsawtiu > do3jsawtl pue ZT-3T + | => 3} OTTym

(a/qen
e ‘dejseuwiny jad ‘
sdooj ued do ggz)

(TUS*4T9S ‘3epse ssew SSaJlsS'1TaS ‘TYS SYJ IT9S)OATOS LTS

‘PToT4 JOSU3] SS9JlS 9yl JO4 SATOCS #

(TN" 4T9S ‘3epse ssew AJTI0TSA LTSS ‘TN SYJ'JT3S)IATOS 4T3S
(zyn-418s ‘3epse” ssew AJTDOTBA LTSS “ZUN SYJ-J[SS)SATOS LTSS
(dways*4Tas ‘3epse Ssew $SaJls‘4T79s ‘dwals Syd*JTas)IATOS' LToS
(tyn-41es ‘3epse ssew AJTIOTAA' LTS ‘TYN SYJ*JT2S)SATOS L3S

*PT9T4 JOIDOA AITIOTOA BYl} JO4 DATOS #

UOTSSaJdXa ©2JNOS* L3S = 92JNOS" T3S
1 = 3} UOTSsSaJdxa 22Jnos‘4Tas
:(,93epdn wual addnos,)uordad pawrl YiTM
:(®@dunos-4res)4T
,3, 9WI} 8yl a3epdn ‘juspusdep-awI] ST 92JNOS Yl ISED UT #
:(8o1 ButrT3 418s5=20]
fanJ]=Jem 2JousTt
‘BuTJoT0d SUTTTIY JT@s=3uTJOTOD
‘yYys3zajodud SuTTTI JT9sS=yd>3atadd asn
‘sdew qTd SuTTT}'tT9s=sdew g8 asn
‘3TOTTdXd BUTTTY 4198s=3TOTTdxd

‘oTey SUTITI} JT25S=0TEY BUIXd

tion
o]
Il
|_I
X
0
Il
N
0
Il
w
o
0
Il
N

Example: Seigen
Elastic wave solver -

1.4 ¢

nicati

=
N
S
v

. =
2d triangular mesh E
1 Uy G U U | g M O
: o
Velocity .stress g . o il
formulation 29 1.28x at g=3 on
4th-order explicit ~ gEos DA
o= Optimum fusion
lea pfrog CR-I scheme breaks
: : oo 25 loops into 6
timestepping 3T chains. MPI
scheme Qo . halo is extended
: : a £ from S=1 to S=2
Discontinuous- nEo0t . .] . .
Galerkin, order (119K) (240K) @77%) (953K) (191m) (3.80M)
q=1-4 Weak scaling: #cores (#elements)

32 nodes, 2x14- g yp to 1.28x speedup

core E5-2680v4, _ |
SG| MPT 2.14 B Inspection about as much time as 2

timesteps
B Using RCM numbering — space-filling
curve should lead to better results

1000 timesteps
(ca.1.15s/timestep)

(ACM TOMS 2019)

B Can we automate interesting
optimisations that would be hard to do
by hand?

B Second example:
B Generalised loop-invariant code motion

B (This optimisation has been implemented,
automated, and re-implemented — and
forms part of the standard distribution)

Reca

orm_t2;

double

double form_t38
double form_t39
double form_t4;
double form_t40
double form_t5.
double tO[6 * 2
double t1[3 * 2
double t2[6 * 2

for (int n = st

for (int i4
for (int
for (int
for (in

for (int i2 =
for (int i3
tl[2 * i2
for (int i0 =

t0[2 * i0
form_to = -1.
form_tl
form_t2
form_t3
form_t4
form_t5
form_t6
form_t7
form_t8
form_t9

}
}

for (int il =

1.0 /

Il:

.137;
[6];
[6];

1;
*6 % 2];

double const form_t20[7 * 6] = { ... };
double form_t21..

art; n <= -1 + end; ++n)

0; i4 <= 5;
0; i5 <= 1

i6b = 0; i6
t i7 = 9;

++1d)
++15)
++16)

i7 <= 1; i7)
t2[24"i4+12*15+2*16+17]-99

0; 12 <= 2; ++i2)

+ 13] =

0; i3 <= 1;

++13)

datl[2 * mapl[3 * n + i2] + i3];

0; 10 <= 5; ++10)

+i1] =

0 * tl[1];

t2[13 + 24 * form_jo + 2 * form ko
t2[12 + 24 * form_jo + 2 * form k6_8] =

0; il <= 1; ++il)
dat@[2 * map@[6 * n + i0] + i1];

form_t2 + tl[2];

form_t® + t1[5];

form_t2 + tl[4];

form_t3 * form_t4 + -1.0 * form_t5 * form_t1;
form_t6;

form_t7 * -1.0 * form_tl;

form_t4 * form_t7;

form_tl@ = form_t3 * form_t7;

form_tll = form_t7 * -1.06 * form_t5;
form_tl2 = 6.0881 * (form_t8 * form_t9 + form_tle * form_tll);
form_t13 0.0001 * (form_t8 * form_t8 + form_tl1l® * form_t1l0);
form_t14 0.0001 * (form_t9 * fnrm 19 + form _tll * form_tll);
form_t15 = 0.0001 * (form_t9 * form_t8 + form tll * form_t18);
form_t16 = fabs(form_t6);
for (int form_ip = @; form_ip <= 6; ++form_ip)
{
form_t26 = 0.0; form_t25 = 0.0; form_t24 = 0.0; form_t23 = 0.0; form_t22 = 0.0; form_t21 =
for (int form71 0; form i <= 5; ++form_i)
{
form_t21 = form_t21 + form_t20[6 * form_ip + form_i] * tO[1l + 2 * form_i];
form_t22 = form_t22 + form_t19[6 * form_ip + form_i] * tO[1l + 2 * form_i];
form_t23 = form_t23 + form_t20[6 * form_ip + form_i] * t0[2 * form_i];
form_t24 = form_t24 + form_t19[6 * form_ip + form i) * t®[2 * form_i);
form_t25 = form_t25 + form_t18[6 * form_ip + form_i] * tO[l + 2 * form_il;
form_t26 = form_t26 + form_t18[6 * form_ip + form_i] * t@[2 * form_i];
iorm_tu = form_t17[form_ip] * form_t16;
form_t28 = form_t27 * form_t15;
form_t29 = form_t27 * form_tl4;
form_t30 = form_t27 * (form_t26 * form_t9 + form_t25 * form_tll);
form_t31 = form_t27 * form_t13;
form_t32 = form_t27 * form_t12;
form_t33 form_t27 * (form_t26 * form_t8 + form_t25 * form_t10);
form_t34 form_t27 * (form_t1l * fnrm 124 + form t10 * form _t23);
form_t35 = form_t27 * (form_t9 * form_t22 + form_t8 * form_t21);
form_t36 = form_t27 * (50. 0+ form_ 9 * form_ 24 + form_t8 * form_t23);
form_t37 = form_t27 * (50.8 + form_tll * form_t22 + form_t10 * form_t21);
for (int form kB = 0; form_kO <= 5; ++form7k0)
form_t38[form k@] = form t18[6 * form ip + form k0] * form t37;
form_t39[form_k0] = form_t18(6 * form_ip + form_k8] * form_t36;
}
for (int form_jo = 0; form_j@ <= 5; ++form_jo)
form_t40 = form_t18[6 * form_ip + form_j@] * form_t35;
form_t4l = form_t18(6 * form_ip + form_j@] * form_t34;
form_t42 = form_t20[6 * form_ip + form_j0] *
form_t43 = form_t20[6 * form_ip +
for (int form_kO_0 = @; form_k0_0 <= 5; ++form_k0_0)

form_t44 = form_t43 * form_t19(6 * form_ip + form_k0_0];
form_t45 = form_t42 * form_t20(6 * form_ip + form k0 6];
t2(24 * form _j0 + 2 * form_k6_0] = t2(24 * form]B + 2 * form_k@_0] + form_t45 + form_t18(6 * form_ip + form_j@] * form_t39[form_k0_0] + form_td4;

) 0] = 12[13 + 24 * form _j0 ¥ 27+ form ke G] + form_ 45 + form tlﬁ[ﬁ * form_ip + form ja] * form tas[form ka 0] + form_t44;
t2[1 + 24 * form_jo + 2 * form) 0] = t2[1 + 24 * form_joO + 2 * form kb) 0] + form tlB[ﬁ * form_ip + form_k0 0] * form_t4l;
12[12 + 24 * form_jo + 2 * fnrm k0_0] + form_t18[6 * form_ip + form ko_0] * fnrm MD

}
MatSetValuesBlockedlLocal (mat@, 6, &(map@[6 * n]), 6, &(map@[6 * n]), &(t2[0]), ADD_VALUES);

t_

datl, double const *__

form t31 + form_t18[6 * form_ip + form j8] * form t33 + form t19[6 * form ip + form j0]
form_jo] * form_t28 + form_t18[6 * form_ip + form_j@] * form_t36 + form_t19[6 * form_ip + form_jo] * form_t29;

restrict__ dat@, int const *__restrict__ map@, int const *__

Generated code
to assemble the
resulting linear
system matrix

Executed at each
triangle in the
mesh

Accesses
degrees of
freedom shared
with neighbour
triangles through
Indirection map

* form_t32;

restrict

__ mapl)

A simpler example:

void helmholtz(double A[3][3], double **coords) {
/I K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X_D10[3][3]
static const double X_D01[3][3]

{1}
1§EN3;

for (inti=0;1<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)

A[GIIk] += (YLIkI*YIG1+
+((K1*X_D10[i][k]+K3*X_DO1[i][k])*(K1*X_D10[i][j1+K3*X_DO1[i][;1))+
+((KO*X_D10[11[k]+K2*X_D01[1][k])*(K0*X_D10[1][j1+ K2*X_DO01[il[;1)))*
*det*WIi));

}

B Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

B The local assembly operation computes a small dense submatrix

B These are combined to form a global system of simultaneous

equations capturing the discretised conservation laws expressed by
the PDE

Lupor/ni, Varbenescu et al, ACM TACO/HIPEAC 2015

A simpler example:

void helmholtz(double A[3][3], double **coords) {
/I K, det = Compute Jacobian (coords)

static const double W[3] = {...}
static const double X_D10[3][3]
static const double X_D01[3][3]

{1}
1§EN3;

for (inti=0;1<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)

AGIK] += (YOIKIFYIGI+
+((K1*X_D10[i1[k]+K3*X_DO1[il[k])*(K1*X_D10[i][j]+K3*X_DO1[il[j]))+
+((K0*X_D10[11[k]+K2*X_D01[1k])*(K0*X_D10[i][j1+K2*X_D01[il[j1)))
*det*WI[il);

}
B Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

B The local assembly operation computes a small dense submatrix

B These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

Luporini, Varbenescu et al, AC TACO/HIPEAC 2015

Generalised loop-invariant code motion:

void helmholtz(double A[3][4], double
#define ALIGN __attribute__((aligned(32)))
/I K, det = Compute Jacobian (coords)

}

static const double W[3] ALIGN ={...} application of
static const double X _D10[3][4] ALIGN
static const double X_D01[3][4] ALIGN

for (inti = 0;i<3;i++) {

}

**coords) { o Local assembly code
for the Helmholtz
problem after

{{...}} W padding,
{{..}3} m data alignment,
B Loop-invariant

double LI0[4] ALIGN; code motion
double LI_1[4] ALIGN; B In this example, sub-
for (int r = 0; r<4; r++) { expressions invariant

LI 0[r] = (K1*X_D10[][r)+(K3*X DO1[il[r])); o] are identical to
LI_1[r] = (KO*X_D10[1i][rD+(K2*X_DO01[1i][r])); those invariant to k, so

Luporini, Varbenescu et al, AC TACO/HIPEAC 2015

1 they can be
for (intj = 0; j<3; j++) precomputed once in
#pragma vector aligned the r loop

for (int k = 0; k<4; k++)
Aljllk] += (YLIIk]*Y[LIGI+LI_O[KI*LI_OG]+ LI_1[k*LI_1[j)*det*W[i]);

ARSENAL FOR REDUCING FLOPS

Loop-invariant code motion \ fl
Common sub-expressions elimination Ops

al
Enable
. N\
o Xpansion
c (atb)c =ac+ bc Erable / flOPS

Prevent \

Enable
v
Factorisation \ ﬂOpS

ab + ac = a(b+c)

We formulate an ILP problem to find the best factorisation strateqy

Speedup relative to fully inlined expression

nf=0

nf=1

FOCUS ON HYPERELASTICITY

Polynomial degree ¢

20-" 1 I b

15-

10-

o-m W HTH__

quad ufls cfO1 cfo2

oI HE - _

quad

ufl

q=2

S

chl

cf02

quad

q=3

ufls

chl

chZ

quad

ufl

S

chl

loops. ACM Transactions on Mathematical Software (TOMS), 2017).

cf02

* Hyperelasticity

* Sandy Bridge (icc)

* Small 3D mesh (fit L3)
— FFC-opt
mmmm UFLACS
memm COFFEE-vI

mmmm This talk

F. Luporini, D.A. Ham, P.H.J. Kelly. An algorithm for the optimization of finite element integration

