The story of BPF

A practical guide to land patches

e What BPF stands for?

e Does it matter ?

 The name given to an instruction set 30 years ago by Steven McCanne and
Van Jacobson.

* Little they knew that in 2011 a startup decides to revolutionize
Software Defined Networking.

\Q} PLUMGgrid

* Physical -> Virtual

e Servers -> Virtual Machines

* Technology: hypervisor
« KVM, QEMU

* Networking hardware -> Virtual routers, switches, firewalls
* Technology: iovisor

One physical server:

* 5VMs

* 1 router

2 switches
* 5 firewalls

Eaﬁ

Traditional approach

e VM -> kvm.ko

e VVirtual router -> vrouter.ko
e Virtual switch -> vswitch.ko

e Virtual firewall -> vfirewall.ko

PLUMgrid’s solution v1

* jovisor.ko
* switch, router, firewall — binary blobs of x86 code
* pushed to a host by a remote controller
* Including 3" party NAT, packet captures, etc

* What can go wrong?

» After 4Gbyte of networking traffic the kernel would crash
e 32-bit overflow ?

 Race condition ?

* What can go wrong?

arch/x86/Makefile: KBUILD CFLAGS +=-mno-red-zone

S\\ Stackoverﬂ_ow About Products For Teams

1
Home Why can't kernel code use a Red Zone
PUBLIC Asked 7 years, 9 months ago Modified 5 years, 3 months ago Viewed 5k times
@ Questions H
. It is highly recommended when creating a 64-bit kernel (for x86_64 platform), to instruct the
a9s compiler not to use the 128-byte Red Zone that the user-space ABI does. (For GCC the
Users 26 compiler flag is —-mno-red-zone).

Companies The kernel would not be interrupt-safe if it is enabled.

PLUMgrid’s solution v2

* Verify x86 code | YOU SHALL j

* The verifier was born.

_NOT PASS

* Verification pain points with x86 asm
* Lots of ways to compute an address.
* Lots of memory access instructions.

e Solution: reduced x86 instruction set.
e Hack GCC x86 backend.

 The first iovisor.ko had the verifier and no JIT.

PLUMgrid’s solution v3

* New instruction set (x86 like)
* GCC backend that emits binary code

* jovisor.ko
* The verifier for this instruction set
* JIT to x86
* No interpreter

How to upstream iovisor.ko ?

* Talk to key people when possible

* New instruction set is scary to compiler folks
* Even scarier to kernel maintainers

e Solution:

-

Make it look familiar

* |s there an instruction set in the kernel with similar properties?

* BPF, iptables, netfilter tables, inet_diag

* Make new instruction set look as close as possible to BPF

* Reuse opcode encoding and 8-byte size of insn
e Callit ‘extended’ BPF

sock_filter {

__ule code;
__us8 G
__u8 oy
_u32 k;

/*
/*
/*
/*
/*

Filter block */

Actual filter code */
Jump true */

Jump false */

Generic multiuse field */

j

bpf_insn {

__u8 code;
__u8 dst_reg:4
__u8 src_reg:4
__sle off;
__s32 imm;

)

b

/*
/*
/*
/*
/*

opcode */

dest register */

source register */

signed offset */

signed immediate constant */

Next steps

* Read netdev@vger mailing list for 6 month
* Understand the land
* |dentify key people

* And post the jumbo patch? No.

Build reputation

* Find lockdep report in your area of interest.

fFararararaarrnrararaaraarr

56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.

766097] Possible unsafe locking scenario:
766097]

780146] CPUO

786807] -———-

793188] lock(&(&vb->lock)->rlock);

799593] <Interrupt>

805889] lock(&(&vb->1ock)->rlock);
812266]

812266] *** DEADLOCK ***

812266]

830670] 1 lock held by ksoftirqd/1/13:
836838] #@: (rcu_read_lock){.+.+..}, at

: [<ffFffffff8118f44c>] vm_unmap_aliases+0x8c/0x380

My 15t kernel patch:
Move module_free() of x86 JITed memory into a worker.

+static void bpf_jit_free_deferred(struct work_struct *work)

+{

o+ struct sk_filter *fp = container_of(work, struct sk_filter, work);
o unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;

o+ struct bpf_binary_header *header = (void *)addr;
+
+ set_memory_rw(addr, header->pages);
- module_free(NULL, header);
+ kfree(fp);
+}
<+

void bpf_jit_free(struct sk_filter *fp)

{

if (fp->bpf_func != sk_run_filter) {

- unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
- struct bpf_binary_header *header = (void *)addr;

- set_memory_rw(addr, header->pages);

- module_free(NULL, header);
- INIT_WORK(&fp->work, bpf_jit_free_deferred);
+ schedule_work(&fp->work);

Keep building reputation...

my kernel commit #5

Author: Alexei Starovoitov <ast@kernel.org>
Date: Tue Nov 19 19:12:34 2013 -0800

ipv4: fix race in concurrent ip_route_input_slow()

CPUs can ask for local route via ip_route_input_noref() concurrently.
if nh_rth_input is not cached yet, CPUs will proceed to allocate
equivalent DSTs on 'lo' and then will try to cache them in nh_rth_input
via rt_cache_route()
Most of the time they succeed, but on occasion the following two lines:
orig = *p;
prev = cmpxchg(p, orig, rt);
in rt_cache_route() do race and one of the cpus fails to complete cmpxchg.
But ip_route_input_slow() doesn't check the return code of rt_cache_route(),
so dst is leaking. dst_destroy() is never called and 'lo' device
refcnt doesn't go to zero, which can be seen in the logs as:
unregister_netdevice: waiting for lo to become free. Usage count = 1
Adding mdelay() between above two lines makes it easily reproducible.
Fix it similar to nh_pcpu_rth_output case.

Fixes: d2d68ba9fe8b ("ipv4: Cache input routes in fib_info nexthops.")
Signed-off-by: Alexei Starovoitov <ast@lumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>

diff --git a/net/ipv4/route.c b/net/ipv4/route.c
index f428935c50db. .f8da28278014 100644

--- a/net/ipv4/route.c

+++ b/net/ipv4/route.c

@@ -1776,8 +1776,12 @@ out: return err;

+ + + + + +

rth->dst.error= -err;
rth->rt_flags = ~RTCF_LOCAL;
}
if (do_cache)
rt_cache_route(&FIB_RES_NH(res), rth);
if (do_cache) {
if (Cunlikely(!rt_cache_route(&FIB_RES_NH(res), rth))) {
rth->dst.flags |= DST_NOCACHE;
rt_add_uncached_list(rth);
}

}
skb_dst_set(skb, &rth->dst);

Finally post eBPF patchset

Did it work?

Finally post eBPF patchset

Nope. It was rejected.

What is the biggest maintainer’s concern?

UAPI !

Need a plan B for eBPF

Add eBPF without exposing it in UAPI

How?

Need a plan B for eBPF

Add eBPF without exposing it in UAPI

Answer:

Rewrite existing BPF interpreter
Thankfully it was easy to make it 2 times faster.

10% of the speedup came from eBPF instruction set itself.
90% of the speedup from jump-threaded implementation.

That’s how ‘internal BPF’ was created.

Need to disambiguate two BPFs.

Daniel Borkmann came up with a name ‘classic BPF’.

The state of BPF in May 2014:
e cBPF converter to iBPF (internal BPF)
* Interpreter that runs iBPF

* x86, sparc, arm JIT compilers from iBPF to native code

eBPF doesn’t exist yet. There is no verifier either.

Where to apply iBPF ‘engine’ ?

The concepts of the verifier, maps, helpers were proposed.
Programs suppose to run from netif _receive skb.

The networking use case still struggles.

Arguments against:

- [ei]BPF instruction set is not extensible. Should be using TLV ?
- u8 opcode looks small. eBPF 2.0 will be coming ?

- The verifier is not supported by static analysis theory.

- It bypasses networking stack.

If the mountain will not come to Mohammed...

Strategy: on networking, pivot eBPF into tracing.

Strategy:

F - filter.
Proposal to ‘filter’ perf events.

Reuse verifier, maps, helpers concepts, but instead of network stack
execute programs from perf events and kprobes.

Unfortunate trade-off: clean design vs upstreamability.

BPF programs attached to kprobes return O to filter out kprobe.
‘filter out’ == don’t output kprobe event into perf ring buffer.
Since then all kprobe+bpf programs return O.

Made sense to upstream, since program == filter.

Pointless and confusing ‘feature’ long term.

Strategy:

Demonstrate that BPF tracing ‘filter’ is faster than predicate tree walker.

Demonstrate that BPF TC ‘classifier’ is faster than TC u32 classifier.

Finally on September 26, 2014

(bpf: verifier (add ability to receive verification log), 2014-09-26)
(bpf: verifier (add docs), 2014-09-26)

(bpf: handle pseudo BPF_CALL insn, 2014-09-26)

(bpf: expand BPF syscall with program load/unload, 2014-09-26)

(bpf: add lookup/update/delete/iterate methods to BPF maps, 2014-09-26)
(bpf: introduce BPF syscall and maps, 2014-09-26)

eBPF is learning to walk.

(net: sock: allow eBPF programs to be attached to sockets, 2014-12-01)
(cls_bpf: add initial eBPF support for programmable classifiers, 2015-03-01)
(tracing, perf: Implement BPF programs attached to kprobes, 2015-03-25)

Are we done?

Are we done?

Kernel was just the beginning.

Landing new backend in LLVM was just as difficult.

LLVM community

* Most developers have direct write access
* Anyone can revert anyone else’s commit
* s/MAINTAINERS/CODE_OWNERS.TXT/

* Back then LLVM was using SVN

* Phabricator for diffs

* C++ in CamelStyle

LLVM community

* No UAPI concerns
 Compiler internals are changing a lot
* Backward incompatible backend changes is not a concern

e Kernel UAPI doesn’t justify or restrict LLVM choices
* Continuous integration and testing is mandatory

 Build bots run tests right after diff lands
* Backends have to contribute build bots
* Many operating systems
* Approved diffs might get reverted and re-landed many times

* Monthly meetup at Tied House, Mountain View, CA

LLVM BPF backend

Differential Revision: http://reviews.llvm.org/D6494

1lvm-svn: 227008

11vm/CODE_OWNERS . TXT 4 +
11lvm/include/11vm/ADT/Triple.h 1+
11lvm/include/11vm/IR/Intrinsics.td 1 +
11lvm/include/11vm/IR/IntrinsicsBPF.td 22 +++++
11lvm/1ib/Support/Triple.cpp 8 ++
11lvm/11b/Target/BPF/BPF.h 22 +++++

I

I

I

I

I

I
11lvm/11b/Target/BPF/BPF.td | 31 ++++++
11lvm/11b/Target/BPF/BPFAsmPrinter. cpp | 87 +++++++++++++++++
11lvm/11b/Target/BPF/BPFCallingConv.td | 29 ++++++
11lvm/11b/Target/BPF/BPFFrameLowering. cpp | 39 ++++++++
1lvm/11b/Target/BPF/BPFFrameLowering.h | 41 ++++++++
11lvm/11b/Target/BPF/BPFISelDAGToDAG. cpp | 159 +++++++++++++++Ht+HtHHH
1lvm/11b/Target/BPF/BPFISelLowering. cpp | 642 +++++++++++++++H++++HHHH+
1lvm/1ib/Target/LLVMBuild. txt I 2 +-
69 files changed, 4644 insertions(+), 1 deletion(-)

Proposed in Dec 2014

Subscribers

E ealfie (Ezequiel Alfie)

majnemer (David Majnemer)
chandlerc (Chandler Carruth)
echristo (Eric Christopher)
joerg (Joerg Sonnenberger)
pete (Pete Cooper)

rengolin (Renato Golin)

http://reviews.llvm.org/D6494

took 2 month to land in Jan 2015 as
experimental backend.

kristof.beyls (Kristof Beyls)

AR -1 JOR. Jof =

arsenm (Matt Arsenault)

t.p.northover (Tim Northover)

F'a tstellarAMD (Tom Stellard)

llvm-commits (Mailing List “llvm-commits")

g | aemerson (Amara Emerson)

To graduate BPF backend from experimental status

* It has to have users
* It needs more than one developer

* Developers must help with tree wide refactoring
* Build bot

BPF backend in GCC

* Emits BPF byte code directly. Upstream blocker.
* Unlike LLVM GCC doesn’t have integrated assembler. GCC has to emit plain text
* Would have to make libbfd/gas/Id work

* Being lazy as an upstream strategy sometimes works too
* In 2019 Oracle GCC engineers implemented everything

Steps that did NOT help to land patches

* Present at the conferences

e Describe amazing future

Summary: Strategies to land patches

* Learn the community

* Understand maintainer’s concerns
* Build the
* Make new ideas

* Make existing code
* Split big ideas into small building blocks
* Be prepared to

Slide 42

What questions do you have?

