
Enabling Serverless Research with

the vHive Ecosystem

Boris Grot

Edinburgh Architecture & Systems Lab (EASE)

University of Edinburgh

Huawei Global Software Technology Summit June 1, 2023

2

Trend toward greater modularity and disaggregation in cloud applications

Cloud Applications: from Monoliths to Serverless

MicroservicesMonolithic app Serverless

<f2>

<f4>

Account

Front-end

Customer

Catalogue
<f7>

<f5>

<f6>

<f9>

<f1>

<f3>

<f8>

Online Shop

Account

Data Access Layer

UI

Catalogue

Recom.Customer

Recom.
Recom.

Recom.

3

Datacenter application organized as a collection of stateless functions

- Functions invoked on-demand

▪ via triggers (e.g., user click) or by another function

- Functions are stateless: facilitates on-demand scale-in/scale-out

- Developers: pay only per invocation (CPU+memory), not idle time

▪ Key difference from monoliths & microservices!

▪ Financial incentive to reduce function footprint

- Cloud providers: high density and utilization at the server level

Serverless 101

What are the implications of the serverless model?

<f2>

<f4>

<f7>

<f5>

<f6>

<f9>

<f1>

<f3>

<f8>

<f4><f4>

<f7>

<f5>

Bad: Poor performance & low efficiency

- Frequent scaling due to traffic changes → cold start delays, overprovisioning

- Functions are stateless → communication bottlenecks inherent

- Massive degree of function interleaving on a server → poor uarch efficiency

- …

State of Serverless Clouds Today

Good: Programming & deployment simplicity; pay-per-use cost model

Big challenges are big opportunities for research!

Ugly: Proprietary serverless stacks across cloud providers

How to study and innovate?

State-of-the-Art in Serverless Experimentation

Bleeding-edge but proprietary serverless stacks

Need for a full-stack open-source framework for serverless research

Incomplete or non-representative

Industry Research/academia

Idea: Integrate Open-Source Components from across the Industry

Host management, container
runtime

(Cloud Native Computing
Foundation)

Communication (Google)

Kubernetes Knative

Cluster scheduler & Function-as-a-Service API
(Google, Cloud Native Computing Foundation)

MicroVM (Amazon, Google)

Holistic benchmarking
End-to-end & per-component analysis

The vHive Ecosystem

Representative of
serverless clouds

Open-source using latest production-
grade technologies

Firecracker

vHive: an open-source serverless stack
https://github.com/vhive-serverless

Representative of today’s clouds

• Knative FaaS API, Firecracker & gVisor
MicroVMs, Kubernetes

• First to support Firecracker snapshots

Robust methodology & performance analysis
tools

Google Cloud

Functions

Distinguished Artifact Award @ ASPLOS 🏆

Used by 30+ universities for research & teaching

Industry support, collaboration and adoption

https://github.com/vhive-serverless

Holistic benchmarking
End-to-end & per-component analysis

The vHive Ecosystem

Representative of
serverless clouds

Open-source using latest production-
grade technologies

Firecracker

vHive: an open-source serverless stack
https://github.com/vhive-serverless

Representative of today’s clouds

• Knative FaaS API, Firecracker & gVisor
MicroVMs, Kubernetes

• First to support Firecracker snapshots

Robust methodology & performance analysis
tools

vSwarm: a serverless benchmark suite
https://github.com/vhive-serverless/vswarm

Comprehensive real-world benchmarks

• ML training & inference, video analytics &
encoding, MapReduce, distributed compilation

• Varied runtimes & function composition patterns

• Data transfers via different mediums (inline, S3)

Gem5-runnable container images

• Enables full-system microarchitectural simulation

Google Cloud

Functions

https://github.com/vhive-serverless
https://github.com/vhive-serverless/vswarm

What kind of research can vHive enable?

9

vHive in action:

Understanding & Accelerating Function Cold Starts

11

Cloud services exhibit bursty traffic

- Traffic spikes & dips are frequent

- Infrastructure needs to react quickly to traffic changes

- Fast spawning of new function instances is crucial

Problem: starting a new function instance (cold start) is slow

- Potentially multiple orders-of-magnitude slower than executing a warm instance

- High latency of booting the microVM and initializing the runtime

State-of-the-art for faster cold starts:

- Checkpoint a fully-initialized microVM and language runtime into a snapshot

- Load a new function instance from the stored snapshot

The “Cold Start” Problem

Do snapshots solve the cold start problem?

12

Scheduler: predictably low latency [AWS’20]

- Irrespective of warm or cold invocation

Load function state

- Setup: vHive with Firecracker microVM + snapshot support

1. Restore virtual machine monitor (VMM) state

a. Restore the architectural state (fast)

b. Map the guest memory file without populating its contents

c. Resume the VM from the point at which the snapshot was created

2. Restore the connection between the function instance and the Scheduler

Process the function invocation

Understanding Cold Starts from a Snapshot

Schedule

Observed latency

Restore VMM

Restore connection

Load function state

Function
processing

Performance of Baseline Snapshots

13

Warm-start (left bars) and cold-start (right bars) latencies

What slows down function processing?

Take-away: cold starts from a snapshot are ~20x slower vs. warm

Cold start delays dominated by connection restoration & actual function processing

Load VMM Connection establishing Function processing

L
a
te

n
c
y
 (

m
s
)

Function Memory Usage in Focus

Functions, even simple ones, have a sizable memory footprint

- Many libraries and modules in user code

- Large guest kernel footprint

Snapshots rely on lazy paging

- Guest memory (file) is mapped but not populated with contents

▪ Page faults are served one by one, on demand

▪ Accessed memory pages are scattered on disk → poor spatial locality in disk I/O

- Lazy paging is the underlying cause of the slowdown in functions started from a snapshot

Take-away: serial and sparse disk accesses slowdown function execution

14

Function Memory Usage in Focus (con’d)

Study: Trace page faults with userfaultfd

(stock Linux user-level page fault handling mechanism)

- Record memory usage across invocations of the same function

Take-aways:

- Actual memory footprint is non-trivial

▪ up to 100MB per invocation

- Memory working sets are stable across invocations

▪ Same language runtime, libraries, guest networking stack, …

▪ 76-99% of pages are the same, even with different inputs!

15

Idea: Record & prefetch the pages comprising a function’s working set

Memory footprint (number of pages)

REcord-And-Prefetch (REAP) Snapshots

Record phase (1st invocation)
1. Intercept page faults with Linux userfaultfd

2. Capture working set (WS) pages in a compact file

3. Write the WS file to disk (SSD, HDD, AWS S3, …)

Prefetch phase (2nd and future invocations)

1. Read the WS file from the disk

2. Prefetch all WS pages into the guest memory

3. Install missing, non-WS, pages on demand

16

REAP trades off a little extra storage for faster cold starts

Guest memory

Working set file

(2) Capture the working set

Guest memory file

(1) Load pages on demand

Guest memory

(3) Write the WS file to disk

Working set file

(1) Read the WS file

(2) Prefetch WS pages

(3) Install non-WS pages on demand

Evaluation: Baseline snapshots vs REAP

17

3.7x faster cold function invocations vs baseline snapshots

Execution latency from a cold start (left bars: Firecracker snapshots, right bars: REAP)

REAP reduces function processing time by 4.5x on avg

REAP eliminates 97% of all page faults on avg

Load VMM Connection establishing Function processing

L
a
te

n
c
y
 (

m
s
)

18

Baseline snapshots suffer from high page fault
overhead of lazy paging

There exists high commonality in the memory
working set across invocations

REAP records the working set of one invocation and
prefetches it for subsequent invocations

- Acceleratates snapshot-based cold starts by 3.7x

Amazon has integrated REAP into Firecracker

REAP Snapshots Take-aways

Enabled by vHive

19

vHive in action:

Understanding & Accelerating Lukewarm Invocations

20

Unique characteristics:

- Short function execution times: a few ms or less is common

▪ Contrast: Linux scheduling quantum: 10-20ms

- Small memory footprint: as low as 128MB per instance

- Infrequent invocations (seconds or minutes) [Microsoft Azure @ATC20]

Implications:

- Thousands of functions resident on a server

- Huge degree of interleaving between two invocations of the same function

Serverless on a Server

What are the implications for microarchitecture?

f

Execution time

fffff fffff fffff ffff fffff ffff fffffffff

Inter-arrival time

21

Longer inter-arrival times → Higher degree of interleaving → Higher slowdown

Drastic performance degradation for typical inter-arrival times (IATs)

- Up to 2.7x slowdown for IAT > 1s

Effect of Interleaving

What causes the performance degradation?

Typical IAT

S
lo

w
d

o
w

n

22

Compare back-to-back to interleaved executions of a function

- Function-under-test runs isolated

- Interleaving modelled by a stressor

Use Top-Down Methodology for analysis

- Machine: Intel Broadwell CPU

(10 cores, SMT disabled, 32KB L1-I/D, 256KB L2/core, 25MB LLC)

- Collect CPU performance counters

Serverless workloads: 20 functions

- Large variety in functionality and runtimes

- Compiled, JIT-ed and interpreted languages

- Publicly available https://github.com/vhive-serverless/vswarm

Characterization Methodology

f

invocations

Execution time

f f f f

Back-to-Back Execution

…

f

Interleaved Execution

…x

Execution time

f x f x

Thrashing

invocations

f

https://github.com/vhive-serverless/vswarm

23

- Interleaving increases the mean CPI by 70%

- Reason: Lukewarm execution

▪ Function in memory, but no µ-arch state on-chip

Understanding the Impact of Interleaving

Python Node JS Golang

24

- Front-end stalls is the largest source of stalls

- 56% of additional stall cycles in interleaved execution come from fetch latency

Top-Down CPI Analysis

Instruction delivery a critical performance bottleneck for warm invocations

Back-to-back

execution

Interleaved

execution

Identical trends on Intel IceLake

25

Instruction Fetch Pain Points

L3 instruction misses hurt performance under interleaving

L2 Cache (256KB/core)

- Serverless workloads frequently miss in L2 cache
▪ (50+ MPKI, on average)

- Dominated by instruction misses

- Similar for both back-to-back and interleaved

L3 Cache (25MB)

- Almost no L3 instruction misses for back-to-back

execution

- Frequent L3 misses for instructions under

interleaving (18 MPKI)
▪ Instructions fetched from main memory → high stall cycles

Interleaved
execution

Interleaved
execution

Studied instruction traces from 25 consecutive invocations of each function.

Compared instruction footprint & commonality at cache-block granularity across invocations

Two key insights:

1. High commonality across invocations

▪ > 85% of cache blocks are the same in all invocations

2. Large instruction footprint: 300KB-800KB

▪ Deep software stacks result in large amount of code

Identified a common problem for serverless functions:

→ Large instruction footprints cannot be maintained on-chip under heavy interleaving

26

Understanding Instruction Misses

27

Basic Idea:

- Exploit high commonality of function invocations

▪ Prefetch common instruction state

• Record instruction working set of one invocation

• Restore the instruction working with the next invocation

Addressing Cold On-chip Instruction State

Execution time

f ff f f

Memory

Subsystem

Core

…f

Inst

ffffff

Memory

Jukebox: record-and-replay instruction prefetcher for lukewarm

serverless function invocations

- Record: L2 misses using a spatio-temporal encoding

▪ Stores records in main memory

- Replay: prefetch the recorded addresses into the L2

- Fully decoupled from the core

▪ Triggered by function invocation

- Operates on virtual addresses

▪ Not affected by page reallocation

▪ Prefetching prepopulates TLB

28

Jukebox: Instruction Prefetcher for Serverless

Jukebox records and replays L2 instruction working sets

LLC

L2-$

D-$I-$

Core

InstJukebox

29

Jukebox’s recording and replaying of instruction working sets:

- Improves performance by 18%, on average
▪ Consistent improvement across benchmarks

- Covers >85% of off-chip instruction misses

- Requires only 32KB of metadata per function instance

Jukebox: Performance Improvements

Jukebox is simple & effective

30

Efficacy of recording and replaying

instruction working sets

Few overpredictions (<10%)

- High commonality → accurate prefetching

Good coverage:

>85% reduction in LLC misses for instructions

Low metadata cost: 16KB per instance

Jukebox: Prefetch Effectiveness

High efficacy validates Jukebox’s design

-85% miss

reduction

< 10%

overprediction

31

Serverless functions present new challenges for modern CPUs

→ Need a representative infrastructure to study serverless stacks: vHive

→ vHive enables open serverless research at any scale

Used vHive to reveal a CPU bottleneck due to lukewarm executions

→Large instruction footprints cannot be maintained on-chip under heavy function interleaving

→Frequent off-chip misses for instructions expose the CPU to long-latency stalls

Jukebox: Record-and-replay instruction prefetcher for lukewarm serverless functions

→ Simple and effective solution for cold on-chip instruction state

→ Improves performance by 18% with 16KB of in-memory metadata per instance

Jukebox Take-aways

Acknowledgements

Students & interns

Dmitrii Ustiugov (now @NTU-Singapore)

David Schall

Artemiy Margaritov

Shyam Jesalpura

Theodor Amariucai

Harshit Garg

Plamen Petrov

Michal Baczun

Yuchen Niu

Amory Hoste

Bora M. Alper

External collaborators

Rustem Feyzhanov (Instrumental)

Francisco Romero (Stanford)

Marios Kogias (Imperial)

Edouard Bugnion (EPFL)

Ana Klimovic (ETH)

Industry supporters

33

Thank you!

Questions?

Join our Serverless Research Community

https://vhive-serverless.github.io

EASE Lab

https://ease-lab.github.io

https://vhive-serverless.github.io/
https://ease-lab.github.io/

Backups

35

Functions are short
- Became significant shorter in last years

Functions are invoked infrequently
- Seconds to minutes.

Serverless Workload Characteristics

Jukebox

36

37

Fetch latency is the biggest source of stall cycles

Fetch latency doubles under interleaving

Front-end in Focus

Instruction fetch latency a key performance bottleneck

CPI normalized to

Back-to-back

execution

Additional cycles coming

from Interleaved execution

38

Instruction Misses L1-I

Note: I-cache misses is lower than L2-cache misses. This is due to how the hardware counters are implemented and is a very common case. Refer to

this article for more information: http://sites.utexas.edu/jdm4372/tag/cache/

Serverless function execution suffer from large amount of instruction misses.

http://sites.utexas.edu/jdm4372/tag/cache/

39

Instruction Misses L2

Note: I-cache misses is lower than L2-cache misses. This is due to how the hardware counters are implemented and is a very common case. Refer to

this article for more information: http://sites.utexas.edu/jdm4372/tag/cache/

Serverless function execution suffer from large amount of instruction misses.

http://sites.utexas.edu/jdm4372/tag/cache/

40

Instruction Misses L3

Note: I-cache misses is lower than L2-cache misses. This is due to how the hardware counters are implemented and is a very common case. Refer to

this article for more information: http://sites.utexas.edu/jdm4372/tag/cache/

Serverless function execution suffer from large amount of instruction misses.

http://sites.utexas.edu/jdm4372/tag/cache/

43

Instruction working set size

Large instruction working set despite short execution time

Similar instruction working set size over different invocations

Detailed nodeDriving

node

Core

Core Core

44

Use gem5 simulator for evaluating Jukebox

- Detailed model of the server node
▪ Dual core Skylake-like CPU model

▪ 32KB L1-I/D, 1MB L2/core, 8MB L3

- Secondary node for driving invocations.

- Functions run in isolation

- Cycle accurate simulation of the full system

▪ Exact same software stack as on real hardware

(Ubuntu 20.04, kernel: 5.4, same container images)

▪ First support for containers in gem5

• Publicly available:

https://github.com/vhive-serverless/vSwarm-u

Evaluation Infrastructure

Representative infrastructure for detailed evaluation

NIC

NIC

Ethernet

JB L2-$

D-$I-$

L2-$

D-$I-$

client

linux

Memory

Subsystem

Memory

L3-$

https://github.com/vhive-serverless/vSwarm-u

	Intro/Motivation
	Folie 1: Enabling Serverless Research with the vHive Ecosystem
	Folie 2: Cloud Applications: from Monoliths to Serverless
	Folie 3: Serverless 101
	Folie 4: State of Serverless Clouds Today
	Folie 5: State-of-the-Art in Serverless Experimentation
	Folie 6: Idea: Integrate Open-Source Components from across the Industry
	Folie 7: The vHive Ecosystem
	Folie 8: The vHive Ecosystem
	Folie 9: What kind of research can vHive enable?
	Folie 10: vHive in action: Understanding & Accelerating Function Cold Starts
	Folie 11: The “Cold Start” Problem
	Folie 12: Understanding Cold Starts from a Snapshot
	Folie 13: Performance of Baseline Snapshots
	Folie 14: Function Memory Usage in Focus
	Folie 15: Function Memory Usage in Focus (con’d)
	Folie 16: REcord-And-Prefetch (REAP) Snapshots
	Folie 17: Evaluation: Baseline snapshots vs REAP
	Folie 18: REAP Snapshots Take-aways
	Folie 19: vHive in action: Understanding & Accelerating Lukewarm Invocations
	Folie 20: Serverless on a Server
	Folie 21: Effect of Interleaving

	Characterization
	Folie 22: Characterization Methodology
	Folie 23: Understanding the Impact of Interleaving
	Folie 24: Top-Down CPI Analysis
	Folie 25: Instruction Fetch Pain Points
	Folie 26: Understanding Instruction Misses
	Folie 27: Addressing Cold On-chip Instruction State
	Folie 28: Jukebox: Instruction Prefetcher for Serverless
	Folie 29: Jukebox: Performance Improvements
	Folie 30: Jukebox: Prefetch Effectiveness
	Folie 31: Jukebox Take-aways
	Folie 32: Acknowledgements
	Folie 33

	Backup
	Folie 34: Backups
	Folie 35: Serverless Workload Characteristics
	Folie 36: Jukebox
	Folie 37: Front-end in Focus
	Folie 38: Instruction Misses L1-I
	Folie 39: Instruction Misses L2
	Folie 40: Instruction Misses L3
	Folie 43: Instruction working set size
	Folie 44: Evaluation Infrastructure

