
From the roots to the sky:
end-to-end concurrency verification

at DresdenRC

Jonas Oberhauser
Dresden Research Center

Selected achievements of DresdenRC in the recent years
Found & patched concurrency bugs New concurrency algorithms

LKMM

queue – BBQ: up to 10x improved throughput, latency

work stealing – BWoS: better latency, more throughput

lock – CloF: automatically configurable, improved throughput

HMCS lock

6+ bugs in the Linux
Kernel Memory Model

Missing barrier in the
HMCS lock paper leading
to hang

Missing barrier leading
to data corruption

10+ barrier and algorithmic
bugs in various internal
components

1 missing barrier and 1
misplaced barrier breaking
integrity of critical sections

Missing barrier in MCS

ASPLOS’21, OOPSLA’21, NETYS’21, SOSP’21, ATC’22, OOPSLA’22, ASPLOS’23, OSDI’23 - code used in several product lines

3 months Arm-internal
discussion whether the bug can happen on Arm

Grandfather paradox

Fix bugs

leave bug
that increases

throughput by 5%
& causes 5 minutes

downtime each month

non-safety-critical products

Kernel

Concurrency Library

HW Mapping

Hardware

Application Layer

Concurrency

Shared memory

Thread-Safe Object
channels, maps, lists

System

CPU

Challenge
• design application layer & system to leverage evolving

hardware & compiler optimizations
• manage resulting complexity
• disable optimizations selectively when they make the

application incorrect (e.g. with barriers)

gcc -O3
barrier

Highly optimized –
program now crashes after only 100µsec!

→Weak Memory Model
(WMM)

NUMA

speculation
accelerators

wfe prefetch near/far atomic

locked
lockfreek-fifo

PIM

Kernel

Concurrency Library

HW Mapping

Hardware

Application Layer

Opening Pandora’s System Box

VERIFIED!
formally verified high
performance kernel

unverified
CLH Big Kernel Lock

unverified
handwritten HW mapping

unverified
commercial Arm processor

missing release-barrier –
two threads can enter
critical section!

release-barrier is
implemented wrong –
two threads can still
enter critical section!

How to do end-to-end Verification?

Layer n+1

Layer n

manual
simulation proof:
every execution

of layer n
corresponds to an
execution of layer

n+1

Solution in Industry?

- Much larger problem scale
- High speed of change

→ manual, unbounded, gap-free proof
can’t keep up!

What to do?

Solution from Academia

1. learn how to think from academia
2. look for biggest bang for the buck –

80% verified with 20% effort
3. choose methods on case-by-case

basis (no silver bullet…)

Level of detail at each level
I DON’T KNOW
THAT WMMS

EXIST!

I KNOW WHAT WMMS LOOK
LIKE

BUT NOT EXACTLY
HOW THEY’RE MADE

I KNOW THE HW
MAPPINGS OF

WMMS

HW mappings

Hardware
implementation

<15 LoC
… ×500

50-200 LoC

4500 LoC+

Concurrency Library

HW Mapping

Hardware

Application Layer

LEVEL O
F DETAIL

LEVEL O
F DETAIL

Degrees of freedom at each level

???

DEG
REES O

F FREEDO
M

Extremely fixed spec (= ISA), high similarity
even between Arm, RISC-V, x86

Completely fixed at runtime –
no “new StoreBuffer()”

Relatively standard spec (atomic add, atomic
mult, …, atomic store…, release barrier, …)

limited implementation space – maybe 6
classes of implementations

100s of completely different
implementations for the same data structure

many different specs, but each spec is small

Nobody knows what the spec is even
Other than “don’t crash, don’t hang”

Up to millions LOC

Break down HW WMM into “easy”-to-prove
parts manually

prove parts semi-automatically with
SMT-solver to make sure details are right

Manually build proof robots for each of ≈6
classes

RMW proverLoad/store prover fence prover

Explorative model checker on small test
cases written by engineer VSync

0 false-positive deadlock prediction
based on formal happens-before analysis

probabilistic systematic testing based on
order reduction theory

Concurrency Library

HW Mapping

Hardware

Application Layer

……

relax MCS lock
with state-of-art

WMM-aware
Model Checker

(2019 GenMC)

whole CPU… hangs!

Run on 128 core
ARM server

VERIFIED!
MCS lock

with barriers removed

whole CPU… hangs!

Run on 128 core
ARM server

build toolchain
to verify

algorithms and
remove barriers

by iteratively
removing &

checking with
model checker

Concurrency
Library

HW Mapping

Hardware

Application
Layer

Case Study: Concurrency Library

• 99% of algorithms only hang in spinloops

• breakthrough: spinloop termination on
WMMs is decidable on finite client!

ASPLOS’21, OOPSLA’21

Opensource standard 2012-2021:
DPDK ringbuffer

30 lines of pseudo-code

BBQ@ATC’22
avoid those races by working

on different “blocks”

initial version:
full of subtle bugs
even after 24 hour

stress tests

Efficient Model Checkers can only check
safety – not liveness!

The Safest Car in the world!
performance of racing on

same variable by two threads
based on CPU ID
(CloF@SOSP’21)

2012

• Found many bugs

• Used by our normal engineers when
designing new complex concurrent
algorithms to improve product
performance

• 0 bugs reported from product lines

Summary & Lessons Learned

- Each layer has a different point in
“detail” vs “degrees of freedom” making
different methodologies and different
amount of gaps effective

- Learned a lot about the architecture at
each layer by opening “system box” and
doing verification

- Could build more efficient concurrency
algorithms due to that knowledge

- More efficient concurrency needs
verification to manage complexity

Concurrency
Library

HW Mapping

Hardware

Application
Layer

vertically:
“end to end”

horizontally:
many gaps…

speculation
accelerators

prefetch near/far atomic

locked
lockfreek-fifo

PIM

NUMA

