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• Happens-before (<HB) partial order on events

• Ei <HB Ej  ( “Ei happens before Ej” ) if

• Ei and Ej are in the same process

• Ej receives the message that Ei sends

• transitively (Ei <HB Ek and Ek <HB Ej)



Happens-Before for Capturing Causality

Are two given events causally related?

T
im

e

E3

E1

E4

E7

E2

E6

E5

3

• E1 <HB E3 (send-receive)

• E3 <HB E5 (same process)

• E1 <HB E6 (transitivity)



Happens-Before for Capturing Causality

Are two given events causally related?

T
im

e

E3

E1

E4

E7

E2

E6

E5

3

• E1 <HB E3 (send-receive)

• E3 <HB E5 (same process)

• E1 <HB E6 (transitivity)



Happens-Before for Capturing Causality

Are two given events causally related?

T
im

e

E3

E1

E4

E7

E2

E6

E5

• E1 <HB E3 (send-receive)

• E3 <HB E5 (same process)

• E1 <HB E6 (transitivity)

3



Logical Timestamps
4

“

”



Logical Timestamps
4

“

”

VE :  Processes → ℕ 

• VE(p) = Number of events of process p that E “knows” about

Timestamp of event E



Logical Timestamps
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VE :  Processes → ℕ 

• VE(p) = Number of events of process p that E “knows” about

Timestamp of event E

E1 ≤HB E2   iff    VE1 ⊑  VE2

For all p, 
VE1(p) ≤  VE2(p)



• For every process p, maintain Vp

• Initially:

•  Vp(q) = 0 for every p, q

• Before executing an event in p:

• Vp(p) ← Vp(p) + 1

• At a send event in p:

• attach a copy of  Vp to message

• At a receive (of message m) event in p:

• merge the timestamp of m

• Vp ← Vp ⊔ Vm
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• For every process p, maintain Vp

• Initially:

•  Vp(q) = 0 for every p, q

• Before executing an event in p:

• Vp(p) ← Vp(p) + 1

• At a send event in p:

• attach a copy of  Vp to message

• At a receive (of message m) event in p:

• merge the timestamp of m

• Vp ← Vp ⊔ Vm

Fundamental timestamp operations:
Copy and Join 
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Get(p3) 2
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Data Structure for Timestamping

Get(p)

JoinWith(V)

Operations [10,13,2,21,0,11]
p1 p2 p3 p4 p5 p6

[15,13,2,22,7,11]
p1 p2 p3 p4 p5 p6

JoinWith([15,0,0,21,7,10])
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Data Structure for Timestamping

Get(p)

JoinWith(V)

CopyFrom(V)

Operations [10,13,2,21,0,11]
p1 p2 p3 p4 p5 p6

[15,13,2,17,5,11]
p1 p2 p3 p4 p5 p6

CopyFrom([15,13,2,17,5,11])
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Data Structure for Timestamping

Get(p)

JoinWith(V)

CopyFrom(V)

Increment(p)

Operations [10,13,2,21,0,11]
p1 p2 p3 p4 p5 p6

[10,13,3,21,0,11]
p1 p2 p3 p4 p5 p6

Increment(p3)
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Data Structure for Timestamping

Get(p)

JoinWith(V)

CopyFrom(V)

Increment(p)

Operations Performance

Time

Space

Per operation

Amortized
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Vector Clock

Flat array/map, indexed by process ids

for each process p:

    if V1.Get(p) < V2.Get(p):

        V1.p := V2.Get(p)

V1.JoinWith(V2)

for each process p:

    V1.p := V2.Get(p)

V1.CopyFrom(V2)

Both Join and Copy take ϴ(|Processes|) time for Vector Clocks

p1 p2 p3 p4 p5 p6

10 13 2 21 0 11
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• For every thread t, maintain vector clock Vt

• For every lock lk, maintain vector clock Vlk

    Vt.JoinWith(Vlk)

procedure acq(t, lk)
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t1 t2

acq(l)

rel(l)

acq(l)

r(x)

rel(l)

acq(m)

rel(m)

acq(m)

w(x)

rel(m)

• For every thread t, maintain vector clock Vt

• For every lock lk, maintain vector clock Vlk

    Vt.JoinWith(Vlk)

procedure acq(t, lk)

    Vlk.CopyFrom(Vt)

procedure rel(t, lk)

Race detection

Total overhead = ϴ(|Processes| * Number of Events)

• Typically,  ~10 billion events and ~100 processes

• Immense slowdown when detecting data races

Can we do better?
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Sub-linear time in join and copy?

Skip looking at  
some entries
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Tree Clocks
11

• Store provenance information hierarchically

• Nodes store local times + extra metadata 

• Hierarchical structure: how and when information was obtained

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

Vector Clock Tree Clock

p1 p2 p3 p4 p5 p6

11 6 5 32 14 20
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Information about how knowledge was conveyed can help!
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p2 knows of p5 
transitively via p3
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Sub-linear time

How 
knowledge arrived

When 
knowledge arrived

+ =
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Tree Clock Copy?

In general, tree clock copy will take O(|proceses|) time

    Vt.JoinWith(Vlk)

procedure acq(t, lk)

    Vlk.MonotoneCopyFrom(Vt)

procedure rel(t, lk)

Race detection

acq(t, lk)

rel(t, lk)

Vlk does 
not change{

Copy is monotone ⇒ same semantics as join!
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Data Structure Optimality

Data structure D is optimal  
if  

no other data structure can offer asymptotically better performance

Optimality of data-structure
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Tree Clock Optimality for Race Detection

Tree Clocks offer optimal performance when computing Happens-

Before partial order for the purpose of data race detection 

Optimality of Tree-Clocks

19
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p5 4 14p4 2318
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VCWork(σ) ⋍ k * MinWork(σ) TCWork(σ) ≤ 3 * TimeWork(σ)

Optimality of Tree-Clocks
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Does it work?

• 153 benchmarks 

• Trace sizes -  51 to 2.1B
github.com/umangm/rapid

Partial Order

Partial Order + Race Detection

Task HB

2.97x

1.11x

SHB

2.66x

1.80x

Maz

2.02x

1.49x
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Does it work?

TCWork(σ) ≤ 3 * TimeWork(σ)

Optimality of Tree-Clocks
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To Summarize
• Timestamping via a data structure lens

• Abstract operations stay same

• Implementation details differ, and matter!

• Tree clocks

• Store how and when knowledge was discovered

• Optimal data structure for data race detection

• Impressive speedups

• What’s next?

• Tree clocks in other domains

• Design/discovery of new data structures
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Thank You!


