
Timestamping  
through a

Data-Structure Lens

Umang Mathur

Joint Work with Awesome Collaborators

Race detected

Not detected

Analysis

What do I do?

Execution

1

 Dynamic Analysis for Detecting Concurrency Bugs

Causality in Concurrent Computations
2

Causality in Concurrent Computations
2

Are two given events causally related?

Causality in Concurrent Computations
2

Are two given events causally related?

“

”

Causality in Concurrent Computations
2

Distributed Storage 
(Dynamo)

Debugging and
Visualization

Program Analysis  
for Bugs Detection

Are two given events causally related?

“

”

Happens-Before for Capturing Causality
3

Happens-Before for Capturing Causality
3

Are two given events causally related?

T
im

e

E3

E1

E4

E7

E2

E6

E5

Happens-Before for Capturing Causality
3

Are two given events causally related?

T
im

e

E3

E1

E4

E7

E2

E6

E5

• Happens-before (<HB) partial order on events

• Ei <HB Ej (“Ei happens before Ej”) if

• Ei and Ej are in the same process

• Ej receives the message that Ei sends

• transitively (Ei <HB Ek and Ek <HB Ej)

Happens-Before for Capturing Causality

Are two given events causally related?

T
im

e

E3

E1

E4

E7

E2

E6

E5

3

• E1 <HB E3 (send-receive)

• E3 <HB E5 (same process)

• E1 <HB E6 (transitivity)

Happens-Before for Capturing Causality

Are two given events causally related?

T
im

e

E3

E1

E4

E7

E2

E6

E5

3

• E1 <HB E3 (send-receive)

• E3 <HB E5 (same process)

• E1 <HB E6 (transitivity)

Happens-Before for Capturing Causality

Are two given events causally related?

T
im

e

E3

E1

E4

E7

E2

E6

E5

• E1 <HB E3 (send-receive)

• E3 <HB E5 (same process)

• E1 <HB E6 (transitivity)

3

Logical Timestamps
4

“

”

Logical Timestamps
4

“

”

VE : Processes → ℕ

• VE(p) = Number of events of process p that E “knows” about

Timestamp of event E

Logical Timestamps
4

VE : Processes → ℕ

• VE(p) = Number of events of process p that E “knows” about

Timestamp of event E

E1 ≤HB E2 iff VE1 ⊑ VE2

For all p, 
VE1(p) ≤ VE2(p)

• For every process p, maintain Vp

• Initially:

• Vp(q) = 0 for every p, q

• Before executing an event in p:

• Vp(p) ← Vp(p) + 1

• At a send event in p:

• attach a copy of Vp to message

• At a receive (of message m) event in p:

• merge the timestamp of m

• Vp ← Vp ⊔ Vm

Computing Timestamps
5

E3

E1

E4

E7

E2

E6

E5

p1 p2 p3

• For every process p, maintain Vp

• Initially:

• Vp(q) = 0 for every p, q

• Before executing an event in p:

• Vp(p) ← Vp(p) + 1

• At a send event in p:

• attach a copy of Vp to message

• At a receive (of message m) event in p:

• merge the timestamp of m

• Vp ← Vp ⊔ Vm

Computing Timestamps
5

E3

E1

E4

E7

E2

E6

E5

p1 p2 p3

[0,0,0] [0,0,0] [0,0,0]

• For every process p, maintain Vp

• Initially:

• Vp(q) = 0 for every p, q

• Before executing an event in p:

• Vp(p) ← Vp(p) + 1

• At a send event in p:

• attach a copy of Vp to message

• At a receive (of message m) event in p:

• merge the timestamp of m

• Vp ← Vp ⊔ Vm

Computing Timestamps
5

E3

E1

E4

E7

E2

E6

E5

p1 p2 p3

[0,0,0] [0,0,0] [0,0,0]

[1,0,0]

• For every process p, maintain Vp

• Initially:

• Vp(q) = 0 for every p, q

• Before executing an event in p:

• Vp(p) ← Vp(p) + 1

• At a send event in p:

• attach a copy of Vp to message

• At a receive (of message m) event in p:

• merge the timestamp of m

• Vp ← Vp ⊔ Vm

Computing Timestamps
5

E3

E1

E4

E7

E2

E6

E5

p1 p2 p3

[0,0,0] [0,0,0] [0,0,0]

[1,0,0]

[1,0,0]

[1,0,0]

• For every process p, maintain Vp

• Initially:

• Vp(q) = 0 for every p, q

• Before executing an event in p:

• Vp(p) ← Vp(p) + 1

• At a send event in p:

• attach a copy of Vp to message

• At a receive (of message m) event in p:

• merge the timestamp of m

• Vp ← Vp ⊔ Vm

Computing Timestamps
5

E3

E1

E4

E7

E2

E6

E5

p1 p2 p3

[0,0,0] [0,0,0] [0,0,0]

[1,0,0]

[1,0,1]

[1,1,0]

Point-wise maximum or “Join”

[1,0,0]

[1,0,0]

• For every process p, maintain Vp

• Initially:

• Vp(q) = 0 for every p, q

• Before executing an event in p:

• Vp(p) ← Vp(p) + 1

• At a send event in p:

• attach a copy of Vp to message

• At a receive (of message m) event in p:

• merge the timestamp of m

• Vp ← Vp ⊔ Vm

Computing Timestamps
5

E3

E1

E4

E7

E2

E6

E5

p1 p2 p3

[0,0,0] [0,0,0] [0,0,0]

[1,0,0]

[1,0,1]

[1,1,0]

[2,0,0]

[3,0,0]

[1,2,2]

[1,2,0]

[1,0,0]

[1,0,0]

[1,0,0]

[1,0,0]

Computing Timestamps
5

E3

E1

E4

E7

E2

E6

E5

p1 p2 p3

[0,0,0] [0,0,0] [0,0,0]

[1,0,0]

[1,0,1]

[1,1,0]

[2,0,0]

[3,0,0]

[1,2,2]

[1,2,0]

• For every process p, maintain Vp

• Initially:

• Vp(q) = 0 for every p, q

• Before executing an event in p:

• Vp(p) ← Vp(p) + 1

• At a send event in p:

• attach a copy of Vp to message

• At a receive (of message m) event in p:

• merge the timestamp of m

• Vp ← Vp ⊔ Vm

Fundamental timestamp operations:
Copy and Join

Data Structure for Timestamping
6

Data Structure for Timestamping

Get(p)

Operations [10,13,2,21,0,11]
p1 p2 p3 p4 p5 p6

Get(p3) 2

6

Data Structure for Timestamping

Get(p)

JoinWith(V)

Operations [10,13,2,21,0,11]
p1 p2 p3 p4 p5 p6

[15,13,2,22,7,11]
p1 p2 p3 p4 p5 p6

JoinWith([15,0,0,21,7,10])

6

Data Structure for Timestamping

Get(p)

JoinWith(V)

CopyFrom(V)

Operations [10,13,2,21,0,11]
p1 p2 p3 p4 p5 p6

[15,13,2,17,5,11]
p1 p2 p3 p4 p5 p6

CopyFrom([15,13,2,17,5,11])

6

Data Structure for Timestamping

Get(p)

JoinWith(V)

CopyFrom(V)

Increment(p)

Operations [10,13,2,21,0,11]
p1 p2 p3 p4 p5 p6

[10,13,3,21,0,11]
p1 p2 p3 p4 p5 p6

Increment(p3)

6

Data Structure for Timestamping

Get(p)

JoinWith(V)

CopyFrom(V)

Increment(p)

Operations Performance

6

Data Structure for Timestamping

Get(p)

JoinWith(V)

CopyFrom(V)

Increment(p)

Operations Performance

Time

Space

6

Data Structure for Timestamping

Get(p)

JoinWith(V)

CopyFrom(V)

Increment(p)

Operations Performance

Time

Space

Per operation

Amortized

6

Vector Clock
7

Vector Clock

Flat array/map, indexed by process ids
p1 p2 p3 p4 p5 p6

10 13 2 21 0 11

7

Vector Clock

Flat array/map, indexed by process ids

for each process p:

 if V1.Get(p) < V2.Get(p):

 V1.p := V2.Get(p)

V1.JoinWith(V2)

p1 p2 p3 p4 p5 p6

10 13 2 21 0 11

7

Vector Clock

Flat array/map, indexed by process ids

for each process p:

 if V1.Get(p) < V2.Get(p):

 V1.p := V2.Get(p)

V1.JoinWith(V2)

for each process p:

 V1.p := V2.Get(p)

V1.CopyFrom(V2)

p1 p2 p3 p4 p5 p6

10 13 2 21 0 11

7

Vector Clock

Flat array/map, indexed by process ids

for each process p:

 if V1.Get(p) < V2.Get(p):

 V1.p := V2.Get(p)

V1.JoinWith(V2)

for each process p:

 V1.p := V2.Get(p)

V1.CopyFrom(V2)

Both Join and Copy take ϴ(|Processes|) time for Vector Clocks

p1 p2 p3 p4 p5 p6

10 13 2 21 0 11

7

Vector Clock Overhead
8

Vector Clock Overhead
8

t1 t2

acq(l)

rel(l)

acq(l)

r(x)

rel(l)

acq(m)

rel(m)

acq(m)

w(x)

rel(m)

Race detection

Vector Clock Overhead
8

t1 t2

acq(l)

rel(l)

acq(l)

r(x)

rel(l)

acq(m)

rel(m)

acq(m)

w(x)

rel(m)

• For every thread t, maintain vector clock Vt

• For every lock lk, maintain vector clock Vlk

 Vt.JoinWith(Vlk)

procedure acq(t, lk)

 Vlk.CopyFrom(Vt)

procedure rel(t, lk)

Race detection

Vector Clock Overhead
8

t1 t2

acq(l)

rel(l)

acq(l)

r(x)

rel(l)

acq(m)

rel(m)

acq(m)

w(x)

rel(m)

• For every thread t, maintain vector clock Vt

• For every lock lk, maintain vector clock Vlk

 Vt.JoinWith(Vlk)

procedure acq(t, lk)

 Vlk.CopyFrom(Vt)

procedure rel(t, lk)

Race detection

Total overhead = ϴ(|Processes| * Number of Events)

• Typically, ~10 billion events and ~100 processes

• Immense slowdown when detecting data races

Can we do better?

How can we do better?
9

Sub-linear time in join and copy?

How can we do better?
9

Sub-linear time in join and copy?

Skip looking at  
some entries

We may be able to do better!
10

We may be able to do better!
10

E2

E1

p1 p2

[27,3,9,45,17,26]

[11,6,5,32,14,20]

We may be able to do better!
10

E2

E1

p1 p2

[27,3,9,45,17,26]

[11,6,5,32,14,20]

We may be able to do better!
10

E3

E2

E1

p1 p2

[27,3,9,45,17,26]

[11,6,5,32,14,20]

We may be able to do better!
10

E3

E2

E1

p1 p2

[28,6,9,45,17,26]

[27,3,9,45,17,26]

[11,6,5,32,14,20]

We may be able to do better!
10

E3

E2

E1

p1 p2

[28,6,9,45,17,26]

[27,3,9,45,17,26]

[11,6,5,32,14,20]

Skip looking at  
some entries

{

Tree Clocks
11

Tree Clocks
11

• Store provenance information hierarchically

• Nodes store local times + extra metadata

• Hierarchical structure: how information was obtained transitively

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

Tree Clocks
11

• Store provenance information hierarchically

• Nodes store local times + extra metadata

• Hierarchical structure: how information was obtained transitively

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

Tree Clocks
11

• Store provenance information hierarchically

• Nodes store local times + extra metadata

• Hierarchical structure: how and when information was obtained

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

Tree Clocks
11

• Store provenance information hierarchically

• Nodes store local times + extra metadata

• Hierarchical structure: how and when information was obtained

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

Vector Clock Tree Clock

p1 p2 p3 p4 p5 p6

11 6 5 32 14 20

Provenance using Transitivity

a b p q r

12

Provenance using Transitivity

a b p q r

[101,0,1,0,0]

12

[101,0,0,0,0]

Provenance using Transitivity

a b p q r

[101,0,1,0,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

Provenance using Transitivity

a b p q r

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

Provenance using Transitivity

a b p q r

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[?,?,?,?,?]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

[?,?,?,?,2]

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[?,?,?,?,2]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

q r

Any news?

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[?,?,?,2,2]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

q r

Any news?

q ⟼ 2

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[?,?,?,2,2]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

q r

Any news?

q ⟼ 2

Anything else?

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[?,?,?,2,2]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

q r

Any news?

q ⟼ 2

p ⟼ 3

Anything else?

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[?,?,4,2,2]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

q r

Any news?

q ⟼ 2

p ⟼ 3

Anything else?

😒. I know better

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[?,?,4,2,2]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

q r

Any news?

q ⟼ 2

p ⟼ 3

Anything else?

😒. I know better

p told me about a and b

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[100,57,4,2,2]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

q r

Any news?

q ⟼ 2

p ⟼ 3

Anything else?

p told me about a and b

I already know!

😒. I know better

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[100,57,4,2,2]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

q r

Any news?

q ⟼ 2

p ⟼ 3

Anything else?

p told me about a and b

I already know!

😒. I know better

Information about how knowledge was conveyed can help!

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[100,57,4,2,2]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

q r

Any news?

q ⟼ 2

p ⟼ 3

Anything else?

p told me about a and b

I already know!

😒. I know better

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

Provenance using Transitivity

a b p q r

[101,57,3,2,0]

[100,57,4,2,2]

[101,57,4,0,0]

[101,57,4,0,1]

[101,0,1,0,0]

[101,57,3,1,0]

12

[101,0,0,0,0]

[0,57,0,0,0]
[101,57,2,0,0]

[101,57,3,0,0]

q r

Any news?

q ⟼ 2

p ⟼ 3

Anything else?

p told me about a and b

I already know!

😒. I know better

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

p2 knows of p5
transitively via p3

Provenance using Time of Arrival
13

Provenance using Time of Arrival
13

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[1,1,1,3,0]

[1,1,1,3,1]
[1,1,1,4,0]

[0,0,1,0,0]

Provenance using Time of Arrival
13

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[?,?,?,?,2]

[1,1,1,3,0]

[1,1,1,3,1]
[1,1,1,4,0]

[0,0,1,0,0]

[1,1,1,5,0]

Provenance using Time of Arrival
13

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[?,?,?,?,2]

Any news?

[1,1,1,3,0]

[1,1,1,3,1]
[1,1,1,4,0]

[0,0,1,0,0]

[1,1,1,5,0]

r s

Provenance using Time of Arrival
13

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[?,?,?,?,2]

Any news?

r ⟼ 5

[1,1,1,3,0]

[1,1,1,3,1]
[1,1,1,4,0]

[0,0,1,0,0]

[1,1,1,5,0]

r s

Provenance using Time of Arrival

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[?,?,?,5,2]

Any news?

r ⟼ 5

13

[1,1,1,3,0]

[1,1,1,3,1]
[1,1,1,4,0]

[0,0,1,0,0]

[1,1,1,5,0]

r s

Provenance using Time of Arrival

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[?,?,?,5,2]

Any news?

r ⟼ 5

Anything else?

13

[1,1,1,3,0]

[1,1,1,3,1]
[1,1,1,4,0]

[0,0,1,0,0]

[1,1,1,5,0]

r s

`

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[?,?,?,5,2]

Any news?

r ⟼ 5

Anything else?

q ⟼ 1

13

Talked to q at time 4
[1,1,1,3,0]

[1,1,1,3,1]
[1,1,1,4,0]

[0,0,1,0,0]

[1,1,1,5,0]

Okay …

Provenance using Time of Arrival
r s

Provenance using Time of Arrival

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[?,?,1,5,2]

Any news?

r ⟼ 5

Anything else?

q ⟼ 1

13

Talked to q at time 4
[1,1,1,3,0]

[1,1,1,3,1]
[1,1,1,4,0]

[0,0,1,0,0]

[1,1,1,5,0]

Okay …

r s

Provenance using Time of Arrival

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[?,?,1,5,2]

Any news?

r ⟼ 4

Anything else?

q ⟼ 1

13

Talked to q at time 3

Talked to p at time 2

[1,1,1,3,0]

[1,1,1,3,1]
[1,1,1,4,0]

[0,0,1,0,0]

[1,1,1,5,0]

Okay …

r s

Provenance using Time of Arrival

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[?,?,1,5,2]

Any news?

r ⟼ 4

Anything else?

q ⟼ 1

Talked to p at time 2

13

Talked to q at time 3
[1,1,1,3,0]

[1,1,1,3,1]
[1,1,1,4,0]

[0,0,1,0,0]

[1,1,1,5,0]

Okay …

Stop! Now I know
everything

r s

Provenance using Time of Arrival

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[0,0,1,0,0]
[1,1,1,3,0]

[1,1,1,3,1]

[1,1,1,5,2][1,1,1,5,0]

r s

Any news?

r ⟼ 4

Talked to q at time 3

Anything else?

Okay …

q ⟼ 1

Stop! Now I know
everything

13

Talked to p at time 2

[1,1,1,4,0]

Provenance using Time of Arrival

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[0,0,1,0,0]
[1,1,1,3,0]

[1,1,1,3,1]

[1,1,1,4,2]

[1,1,1,4,1]

r s

Any news?

r ⟼ 4

Talked to q at 3

Anything else?

Okay …

q ⟼ 1

Talked to p at 2

Stop! Don’t say
any more!

Information about when knowledge arrived can help!

13

Provenance using Time of Arrival

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[0,0,1,0,0]
[1,1,1,3,0]

[1,1,1,3,1]

[1,1,1,4,2]

[1,1,1,4,1]

r s

Any news?

r ⟼ 4

Talked to q at 3

Anything else?

Okay …

q ⟼ 1

Talked to p at 2

Stop! Don’t say
any more!

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

13

Provenance using Time of Arrival

p q r sa

[0,1,0,0,0]

[1,0,0,1,0]

[1,0,0,0,0]

[1,1,0,2,0]

[0,0,1,0,0]
[1,1,1,3,0]

[1,1,1,3,1]

[1,1,1,4,2]

[1,1,1,4,1]

r s

Any news?

r ⟼ 4

Talked to q at 3

Anything else?

Okay …

q ⟼ 1

Talked to p at 2

Stop! Don’t say
any more!

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

p3 learnt of the  
14th event of p5

when p3 was doing
its 3rd event

13

Provenance

Sub-linear time

How 
knowledge arrived

When 
knowledge arrived

+ =

14

Tree Clock
15

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

Tree Clock
15

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

Root thread owns
the tree clock

Tree Clock
15

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

Tree Clock

Root knows of 
14 events of p5

Root knows of 
11 events of p1

15

Tree Clock

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

How knowledge
arrived

Root got to  
know of p5  

transitively via p3

15

Root got to  
know of p5  

transitively via p3

Tree Clock

Arrival time  
local time at p3  

when it learnt about p5

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

When knowledge
arrived

15

Tree Clock

p4 32 1p6 20 2p5 14 3

p3 5 4

p2 6 ⟂

p1 11 2

Children sorted in
decreasing order of  

arrival time

15

When knowledge
arrived

Tree Clock Join
16

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

V6V1

16

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

V6.JoinWith(V1)

V6V1

16

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join
16

Only Traversed

Traversed and Updated

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

Only Accessed

Accessed and Updated

16

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

Only Accessed

Accessed and Updated

16

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

Only Accessed

Accessed and Updated

16

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 23 18

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

Only Accessed

Accessed and Updated

16

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 23 18

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

Only Accessed

Accessed and Updated

16

No need to traverse
descendants

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

Only Accessed

Accessed and Updated

16

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

Only Accessed

Accessed and Updated

16

No need to traverse
descendants

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

Only Accessed

Accessed and Updated

16

No need to traverse
right siblings

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p4 3120p2 20 9

p1 1625

p3 17 7

Accessed and Updated

Only Accessed

16

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p4 3120p2 20 9

p1 1625

p3 17 7

Accessed and Updated

Only Accessed

16 20 17 23 4 2 11 2

p1 p2 p3 p4 p5 p6 p7 p8

16

p1 4 4p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p3 10 3

p4 3120 p2 14 7p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Tree Clock Join

p8 10 8

p5 8 20

p6 25 ⟂

p7 2416

p4 3120p2 20 9

p1 1625

p3 17 7

Accessed and Updated

Only Accessed

16 20 17 23 4 2 11 2

p1 p2 p3 p4 p5 p6 p7 p8

16

Tree Clock Copy?
17

Tree Clock Copy?
17

In general, tree clock copy will take O(|proceses|) time

Tree Clock Copy?
17

In general, tree clock copy will take O(|proceses|) time

 Vt.JoinWith(Vlk)

procedure acq(t, lk)

 Vlk.CopyFrom(Vt)

procedure rel(t, lk)

Race detection

acq(t, lk)

rel(t, lk)

Tree Clock Copy?
17

In general, tree clock copy will take O(|proceses|) time

 Vt.JoinWith(Vlk)

procedure acq(t, lk)

 Vlk.CopyFrom(Vt)

procedure rel(t, lk)

Race detection

acq(t, lk)

rel(t, lk)

Vlk does
not change{

Tree Clock Copy?

In general, tree clock copy will take O(|proceses|) time

 Vt.JoinWith(Vlk)

procedure acq(t, lk)

 Vlk.MonotoneCopyFrom(Vt)

procedure rel(t, lk)

Race detection

acq(t, lk)

rel(t, lk)

Vlk does
not change{

Copy is monotone ⇒ same semantics as join!

17

Data Structure Optimality
18

Data Structure Optimality

Data structure D is optimal  
if  

no other data structure can offer asymptotically better performance

Optimality of data-structure

18

Tree Clock Optimality for Race Detection

Tree Clocks offer optimal performance when computing Happens-

Before partial order for the purpose of data race detection

Optimality of Tree-Clocks

19

Tree Clock Optimality for Race Detection

p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

19

Tree Clock Optimality for Race Detection

p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Smallest number of data
structure accesses when

analysing σ

Minimum Timestamp Work  
MinWork(σ)

19

Tree Clock Optimality for Race Detection

p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Smallest number of data
structure accesses when

analysing σ

Minimum Timestamp Work  
MinWork(σ)

Number of tree clock
nodes traversed when

analysing σ

TreeClock Work  
TCWork(σ)

19

Tree Clock Optimality for Race Detection

p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

Smallest number of data
structure accesses when

analysing σ

Minimum Timestamp Work  
MinWork(σ)

Number of tree clock
nodes traversed when

analysing σ

TreeClock Work  
TCWork(σ)

Number of vector clock
entires accessed when

analysing σ

VectorClock Work  
VCWork(σ)

19

Tree Clock Optimality for Race Detection

p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

VCWork(σ) ⋍ k * MinWork(σ)

k processes

19

Tree Clock Optimality for Race Detection

p5 4 14p4 2318

p2 20 9

p1 16 ⟂

p3 17 7

p8 2 19

p7 11 2

p6 2 3

VCWork(σ) ⋍ k * MinWork(σ) TCWork(σ) ≤ 3 * TimeWork(σ)

Optimality of Tree-Clocks

19

Does it work?
20

Does it work?

• 153 benchmarks

• Trace sizes - 51 to 2.1B
github.com/umangm/rapid

20

http://github.com/umangm/rapid

Does it work?

• 153 benchmarks

• Trace sizes - 51 to 2.1B
github.com/umangm/rapid

Partial Order

Partial Order + Race Detection

Task HB

2.97x

1.11x

SHB

2.66x

1.80x

Maz

2.02x

1.49x

20

http://github.com/umangm/rapid

Does it work?

TCWork(σ) ≤ 3 * TimeWork(σ)

Optimality of Tree-Clocks
T

C
W

or
k

/
T

im
eW

or
k

T
C

W
or

k
/

M
in

W
or

k

VCWork / MinWork

21

To Summarize
22

To Summarize
• Timestamping via a data structure lens

• Abstract operations stay same

• Implementation details differ, and matter!

22

To Summarize
• Timestamping via a data structure lens

• Abstract operations stay same

• Implementation details differ, and matter!

• Tree clocks

• Store how and when knowledge was discovered

• Optimal data structure for data race detection

• Impressive speedups

22

To Summarize
• Timestamping via a data structure lens

• Abstract operations stay same

• Implementation details differ, and matter!

• Tree clocks

• Store how and when knowledge was discovered

• Optimal data structure for data race detection

• Impressive speedups

• What’s next?

• Tree clocks in other domains

• Design/discovery of new data structures

22

Thank You!

