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Tiered-memory systems

Goal:

hottest data should be at the top

CPU 
Caches

DRAM

CXL, PMEM

SSD

HDD
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Traditional approach

CPU 
Caches

DRAM

CXL, PMEM

SSD

HDD

Software monitors memory accesses

Software decides to migrate pages

Full control over data placement

Profiling & migration overheads

Page granularity
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Hardware approach

CXL, PMEM

DRAM

CPU Caches

Hardware uses DRAM as a “L4” cache.
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Hardware approach

CXL, PMEM

DRAM

CPU Caches

Problem: conflicts cause writebacks.
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Hardware approach

CXL, PMEM

DRAM

CPU Caches

Worst-case scenario:

2 writebacks to the slower tier
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Problem with Linux

CXL, PMEM

DRAM

Linux is oblivious of hardware caching

Birthday paradox:

Multiple pages likely to be cached in the same slot ➔ many conflicts
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This talk

When conflicts are minimized

Hardware caching performs well
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CXL, PMEM

DRAM

Conflict minimization

Static policy : conflict-aware page allocation

Minimize overlaps at page allocation time
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Conflict minimization

Dynamic policy : remap pages to avoid conflicts

Detect conflicts between hot pages

Remap (migrate) pages to avoid conflicts

CXL, PMEM

DRAM
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Evaluation

1TB

DRAM

PMEM

Johnny Cache: conflict minimization

HeMem (SOSP’21): hot page migration

HeMem’s workloads

128GB
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Evaluation: GUPS

Array 2x the DRAM size

Random writes on 10 % of the pages

DRAM

Experiment : Vary the number of threads doing random writes
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Evaluation: GUPS (16 threads)
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Conclusion #1: Near optimal by minimizing conflicts at allocation time

Linux

60% of DRAM speed
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Evaluation: GUPS (16 threads)
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Evaluation: GUPS (16 threads)

DRAM

Hemem: 50% of the hot data is misplaced

PMEM

DRAM JC: conflicts are unlikely

PMEM

➔ JC migrates less pages to “fix” the situation
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Evaluation: GUPS (16 threads)
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Conclusion #2: Fixing conflicts is cheaper than manual page migrations.
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Evaluation: GUPS (8 vs 16 threads)

JC dynamic 16 GUPS threads

Hemem 16 GUPS threads
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Evaluation: GUPS (8 vs 16 threads)

Number accesses > threshold

→ Pages marked as hot

Detecting hot pages:

1/ Sample memory accesses

2/ Periodically migrate hot pages and reset counters

With few threads, not enough samples are generated, and pages are never hot!
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Evaluation: GUPS (8 vs 16 threads)
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Conclusion #3: Page migration is highly dependent on the detection of hot pages

JC dynamic 16 GUPS threads

Hemem 16 GUPS threads

JC dynamic 8 GUPS threads

Hemem 8 GUPS threads
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Evaluation: dedicating cores to sampling?
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Conclusion #4: interferences when the sampling threads do not run on dedicated cores

JC dynamic - dedicated cores

Hemem - dedicated cores

JC dynamic - interferences

Hemem - interferences
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Evaluation: GUPS++

Array 2x the DRAM size

Random writes on 10 % of the pages

DRAM

Many pages now contain hot items
It is not possible to fit all hot pages in DRAM.

items
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Evaluation: GUPS++
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Conclusion #5: caches are also good with small items
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Evaluation: HPC applications

BC allocates large arrays, 1 is hot

➔JC static: the array does not conflict with itself

➔ Hemem & JC dynamic: overhead of sampling
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Evaluation: key-value stores

Sampling struggles to find hot pages

Caches are less impacted than manual migrations 24/28



Evaluation

More in the paper!

(To appear OSDI’23.)
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Limitations – MG.E (NAS benchmark)

Write intensive streaming application:

• Working set does not fit in the cache

• No spatial locality

→ Caching is counter-productive.
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Evaluation: GUPS (16 threads)

DRAM

Hemem: 50% of the accesses in PMEM

PMEM

DRAM

JC: conflicts on 100% of the items

PMEM

➔Possible solutions at the hardware level

(E.g., CPU caches sometimes do not cache streaming patterns!)
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Conclusion

• It is possible to minimize conflicts at page allocation time

• It is possible to minimize conflicts dynamically

• Manual migrations are heavily dependent on sampling

• Caches work well by default

• Fixing conflicts is less expensive than manual migrations

Questions?
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