
Johny Cache: the End of DRAM
Cache Conflicts in Tiered Main
Memory Systems

Baptiste Lepers
Willy Zwaenepoel

Tiered-memory systems

Goal:

hottest data should be at the top

CPU
Caches

DRAM

CXL, PMEM

SSD

HDD

2/28

Traditional approach

CPU
Caches

DRAM

CXL, PMEM

SSD

HDD

Software monitors memory accesses

Software decides to migrate pages

Full control over data placement

Profiling & migration overheads

Page granularity

3/28

Hardware approach

CXL, PMEM

DRAM

CPU Caches

Hardware uses DRAM as a “L4” cache.

4/28

Hardware approach

CXL, PMEM

DRAM

CPU Caches

Problem: conflicts cause writebacks.

5/28

Hardware approach

CXL, PMEM

DRAM

CPU Caches

Worst-case scenario:

2 writebacks to the slower tier

6/28

Problem with Linux

CXL, PMEM

DRAM

Linux is oblivious of hardware caching

Birthday paradox:

Multiple pages likely to be cached in the same slot ➔ many conflicts

7/28

This talk

When conflicts are minimized

Hardware caching performs well

8/28

CXL, PMEM

DRAM

Conflict minimization

Static policy : conflict-aware page allocation

Minimize overlaps at page allocation time

9/28

Conflict minimization

Dynamic policy : remap pages to avoid conflicts

Detect conflicts between hot pages

Remap (migrate) pages to avoid conflicts

CXL, PMEM

DRAM

10/28

Evaluation

1TB

DRAM

PMEM

Johnny Cache: conflict minimization

HeMem (SOSP’21): hot page migration

HeMem’s workloads

128GB

11/28

Evaluation: GUPS

Array 2x the DRAM size

Random writes on 10 % of the pages

DRAM

Experiment : Vary the number of threads doing random writes

12/28

Evaluation: GUPS (16 threads)

0%

20%

40%

60%

80%

100%

1 36 71 106 141

%
 D

R
A

M
 s

p
e
e
d

Time (seconds)

JC static

85% of DRAM speed

Conclusion #1: Near optimal by minimizing conflicts at allocation time

Linux

60% of DRAM speed

13/28

Evaluation: GUPS (16 threads)

0%

20%

40%

60%

80%

100%

1 36 71 106 141%
 D

R
A

M
 p

e
rf

o
rm

a
n
ce

Time (seconds)

JC dynamic

Hemem

14/28

Evaluation: GUPS (16 threads)

DRAM

Hemem: 50% of the hot data is misplaced

PMEM

DRAM JC: conflicts are unlikely

PMEM

➔ JC migrates less pages to “fix” the situation

15/28

Evaluation: GUPS (16 threads)

0%

20%

40%

60%

80%

100%

1 36 71 106 141

JC dynamic

Hemem

Conclusion #2: Fixing conflicts is cheaper than manual page migrations.

%
 D

R
A

M
 p

e
rf

o
rm

a
n
ce

Time (seconds)

16/28

Evaluation: GUPS (8 vs 16 threads)

JC dynamic 16 GUPS threads

Hemem 16 GUPS threads

%
 D

R
A

M
 p

e
rf

o
rm

a
n
ce

Time (seconds)

JC dynamic 8 GUPS threads

Hemem 8 GUPS threads

0%

20%

40%

60%

80%

100%

1 36 71 106 141

17/28

Evaluation: GUPS (8 vs 16 threads)

Number accesses > threshold

→ Pages marked as hot

Detecting hot pages:

1/ Sample memory accesses

2/ Periodically migrate hot pages and reset counters

With few threads, not enough samples are generated, and pages are never hot!

18/28

Evaluation: GUPS (8 vs 16 threads)
%

 D
R

A
M

 p
e
rf

o
rm

a
n
ce

Time (seconds)

Conclusion #3: Page migration is highly dependent on the detection of hot pages

JC dynamic 16 GUPS threads

Hemem 16 GUPS threads

JC dynamic 8 GUPS threads

Hemem 8 GUPS threads

0%

20%

40%

60%

80%

100%

1 36 71 106 141

19/28

Evaluation: dedicating cores to sampling?
%

 D
R

A
M

 p
e
rf

o
rm

a
n
ce

Time (seconds)

Conclusion #4: interferences when the sampling threads do not run on dedicated cores

JC dynamic - dedicated cores

Hemem - dedicated cores

JC dynamic - interferences

Hemem - interferences

0%

20%

40%

60%

80%

100%

1 36 71 106 141

20/28

Evaluation: GUPS++

Array 2x the DRAM size

Random writes on 10 % of the pages

DRAM

Many pages now contain hot items
It is not possible to fit all hot pages in DRAM.

items

21/28

Evaluation: GUPS++

0

5000000

10000000

1 36 71 106 141

M
u
p
d
a

te
s/

s

Time (seconds)

JC (all versions)

Linux

Hemem

Conclusion #5: caches are also good with small items

22/28

Evaluation: HPC applications

BC allocates large arrays, 1 is hot

➔JC static: the array does not conflict with itself

➔ Hemem & JC dynamic: overhead of sampling
23/28

Evaluation: key-value stores

Sampling struggles to find hot pages

Caches are less impacted than manual migrations 24/28

Evaluation

More in the paper!

(To appear OSDI’23.)

25/28

Limitations – MG.E (NAS benchmark)

Write intensive streaming application:

• Working set does not fit in the cache

• No spatial locality

→ Caching is counter-productive.

0

10000

20000

Linux Hemem JC
R

u
n
ti
m

e
 (

se
co

n
d
s)

26/28

Evaluation: GUPS (16 threads)

DRAM

Hemem: 50% of the accesses in PMEM

PMEM

DRAM

JC: conflicts on 100% of the items

PMEM

➔Possible solutions at the hardware level

(E.g., CPU caches sometimes do not cache streaming patterns!)

27/28

Conclusion

• It is possible to minimize conflicts at page allocation time

• It is possible to minimize conflicts dynamically

• Manual migrations are heavily dependent on sampling

• Caches work well by default

• Fixing conflicts is less expensive than manual migrations

Questions?

	Diapositive 1 Johny Cache: the End of DRAM Cache Conflicts in Tiered Main Memory Systems
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28

