Predicting the performance of
systems through Deep Learning

Stephen McGough

stephen.mcgough@newcastle.ac.uk

Huawei Global Software Technology Summit
15t June 2023
Edinburgh, UK

mailto:stephen.mcgough@newcastle.ac.uk

Outline

* Predicting Deep Learning execution time
* Problem and Approach

2/43

Problem in Predicting

* Inference time

@? * Epoch training time

3/43

Problem in Predicting

* Inference time
@? * Epoch training time

 Just Linear operations right?
* Matrix x Matrix = O(n3)
* Matrix x Vector = O(n?)

3/43

Problem in Predicting

* Inference time
? * Epoch training time

ar operations right?
Matrix = O(n3)
Vector = O(n?)

e Jus
* Ma

* MZri

* [gnores non-linearity of hardware

* |ssues between hardware versions
3/43

Approach: Benchmark and predict

Characterize hardware
and network (layer)

Why Deep Learning?

Analytical approaches based on the number of FLOPs and data size often neglect nonlinearities from model or hardware
features

Data transfer

backpropagation with different optimisers

suboptimal hardware utilisation (especially of GPUs) 4/43

Factors influencing the execution time

Model features

* Required number floating/fixed
point operations

» temporal sequence of operations
(serial/parallel)

* Amount of data
* Optimiser Ful

Outlook

5/43

Factors influencing the execution time

Model features Hardware features

* Required number floating/fixed « Clock frequency

in ration ' '
point operations * Number of processing units /

* temporal sequence of operations <hader units
(serial/parallel)

e Amount of data
* Optimiser

* Available memory bandwidth

5/43

Outlook

Factors influencing the execution time

Model features Hardware features

* Required number floating/fixed « Clock frequency

oint operations . .
P P * Number of processing units /

* temporal sequence of operations <hader units
(serial/parallel)

e Amount of data
* Optimiser

* Available memory bandwidth

e Utilisation of the available processing units and memory bandwidth

5/43

Outlook

An ML model to predict execution time

Model features: matrix size, input

... dimensions, optimiser, ...

Hardware features: clock frequency,

number of cores, memory bandwidth, ...

Hidden layers

Full
LOOQQQOOOOOOC model

Execution time prediction

Outlook

6/43

Data generation

Benchmark fundamental operations on different GPUs
e Convolution and fully connected layers (vector-matrix multiplication) » Ex
* Random parameters

* 5 [terations - Use mean time

* 80% - 10% - 10% split for train / test / validation @

Full
model

@

Outlook

7/43

Outline

* Predicting Execution time for individual operations

8/43

Single GPU models for convolutions

A model trained on data from a
single GPU

Input features * Input padding

* Batch size e Kernel strides

* Matrix size * Optimiser (one-hot encoded)

* Kernel size e Activation function (one-hot

* Input dimension encoded)

e Output dimension
9/43

OPs

o
D) .

W

Full
model

@

Outlook

Predictive Model Architecture

OPs

6
Design 5 $-
* 4 Layer MLP 44
* Dropout Layer ~ |$ aPUs
e Adam Optimiser %3'
g U

Full
model

@

2 3 Outlook
10/43 # layers

Results

Tesla V100 Tesla P100 Tesla M60
160 350
S 250 A &
1o F 300 p
5 120 % 200 5 250
£ E £ OPs
e 100 S S
E £150 £ 200
) 80 . _;,’]] e
© D © ©
S 60 - g - 7450 '
& 40 A & g5 100
20 Error =l Error 50 Error
1.65ms/11.2% 3.32ms / 13.6% . 6.07 ms / 14.8% all
0 0 0
50 100 150 0 50 100 150 200 250 0 100 200 300 GPUs
measured time (ms) measured time (ms) measured time (ms)
Tesla K80 Tesla K40 GeForce GTX1080Ti
500 Vs 700 //7 160 & /,’.
/ 14
w00 — . Full
m m © 120 model
% %soo % o0
1
£ 300 . £ 400 E b,
° e ° y - 80
g 4 £ 300 8
5 9]
£ 200 - s S 0
g g g
a & 200 S 40 :
100 Error 100 Error I O Error
201 g Outlook
7.84 ms / 16.2% 11.9ms / 16.0% S 2.55ms /14.1%
0 0 : 0
0 100 200 300 400 500 0 200 400 600 0 50 100 150

measured time (ms) measured time (ms) measured time (ms)

Comparison with Linear model

* Separate cases for forward and
forward+backward pass with a

specific optimiser $-

OPs

* Number of required floating $ N
point operations as additional o
feature for linear model \}

Full
model

@

Outlook

12/43

Comparison with Linear model

* Separate cases for forward and

- oP
forward+backward pass with a *Forward pass only -
specific optimiser _ $-

, , DNN Linear model
* Number of required floating . . $ N
point operations as additional _ _ s
feature for linear model <30 £ j
£ gzo
520 3 |
g R 2 0] ooz i Full
210 %* ' E ©7| g E model
fﬁ 0.83 ms / 13.0% of . 242ms/116.8% @
O0 10 20 30 40 0 10 20 30 40
measured time (ms) measured time (ms)
Outlook
12/43

Comparison with Linear model

* Separate cases for forward and
forward+backward pass with a
specific optimiser

* Number of required floating
point operations as additional
feature for linear model

1201

—~ 100

predicted time (ms

201

0.

.Forward and backward pass with SGD

80

60

40

DNN
o Error
/}') 3.18 ms / 21.2%
0 25 50 75 100 125

measured time (ms)

12/43

120/

100

predicted time (ms)

N
o

o

Linear model

o
=

o
=

N
ot

0

. S e
b L e
8 "m."-s'-. G %

ALY o

" 8.95ms/ 167.4%

Error

25

50 75 100 125

measured time (ms)

OPs

8
D) .

W

Full
model

@

Outlook

Outline

* Predicting for a full model

13/43

A General Model

* A model trained on data from

multiple GPUs o

Model architecture? |$ s(iaanLIJe

20
Additional input features

* GPU clock frequency (MHz)
* number of GPU shader units
 GPU memory bandwidth (GB/s)

el

10

()

m
£
]
wn Full

E model

Outlook

layers

Can we predict performance of unseen
hardware?

Cross-validation

OPs

single
GPU

 Train a model on data |
from five GPUs ~_ $

time for the sixth GPU

* Predict the execution Q20 |$-
* Repeat for every W @

combination o

model

@

Outlook

15/43

Can we predict performance of unseen

hardware?

140

=R
o N
S o

(o]
o

predicted time (ms)

Tesla V100

Error
3.65 ms / 39.6%
0 50 100 150

measured time (ms)

Tesla K80

Error
7.94ms [/ 14.4%

0 200 400 600 800
measured time (ms)

200

175

predicted time (ms)
= - [
N w ~ o N w
(6] o w o w o

700

predicted time (ms)
= N w H w [e)]
o o o o o o
o o o o o o

o

Tesla P100

o

Error
4.23ms [/ 21.2%

0 50 100 150 200

measured time (ms)

Tesla K40

Error
12.8 ms [/ 21.7%

0 200 400 600
measured time (ms)

w B
o o
o o

N
o
o

predicted time (ms)

100

200

150

100

predicted time (ms)

w
o

Tesla M60

OPs

single
GPU

Full
model

Outlook

Error

8.09 ms / 21.7%

0 100 200 300 400
measured time (ms)
GeForce GTX1080Ti

Error

4.24 ms [25.6%

0 50 100 150 200

measured time (ms)

Test for full models

Adam (Actual)

VGG-16 for image B Adam (Predicted)
Forward Pass (Actual)

== 1=

Time (ms)

Large-Scale Image Recognition 4
0 Outlook

classification B Forward Pass (Predicted)
2AX224x3 224224 % 64 SGD (Actual) OPs
B SGD (Predicted)
200 i single
GPU
ll?ﬂx 112x 128
/‘/7’
/1)) 56lx56x 256 all
) HH / 28X 28X 512 S GPUs
: %ﬁ%% 1x1x4096 1x1x1000
i Lo |
@ convolution4+ReL,U 100+
- f C max pooling
fully connected+ReLU
‘ " softmax
Simonyan & Andrew Zisserman: Very Deep Convolutional Networks for I I I I I I I

1 17/43 2 4 8 16 32
Batch Size

Outline

* Predicting SPEC 2017 performance
* Problem and Approach

18/43

Predicting SPEC CPU 2017 scores for new computers

BEEE) SPECCPU 2017 score

19/43

Predicting SPEC CPU 2017 scores for new computers

BEEE) SPECCPU 2017 score

19/43

Predicting SPEC CPU 2017 scores for new computers

BEEE) SPECCPU 2017 score

19/43

Filling in the gaps with Machine Learning

 Benchmarking systems is costly
e Time to conduct tests
* Financial (hardware + software)

* Machine Learning is promising alternative to building and testing
e Especially Deep Learning

 We demonstrate the potential of deep learning for predicting performance
* using Multi-layer Perceptrons and Convolutional Neural Networks

% SPEC 2017 score

20/43

Outline

* Predicting Deep Learning execution time
* Problem and Approach
* Predicting Execution time for individual operations
* Predicting for a full model

* Predicting SPEC 2017 performance
* Problem and Approach
* The Data
* Data preparation
* Deep Learning models
* Results

* Conclusions

21/43

Features in SPEC CPU 2017 dataset

Data Type Column

String Benchmark, Hardware Vendor, System, 34 attributes / features
Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor

Numerical = Peak Result, Base Result, Energy Peak Result,

Energy Base Result, # Cores, # Chips, Memory,
Enabled Threads Per Core, Processor MHz

Binary Parallel

Ternary Base Pointer Size

Quaternary Peak Pointer Size

Date HW Avail, SW Avail, Test Date, Published,
(mon-yyyy) Updated

Text Disclosures 22/43

Features in SPEC CPU 2017 dataset

Data Type Column

String Benchmark, Hardware Vendor, System, 34 attributes / features
Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor

Numerical Peak Result, Base Result, Energy Peak Result,

, . L
Energy Base Result, # Cores, # Chips, Memory, Best result with optimization

Enabled Threads Per Core, Processor MHz

Binary Parallel

Ternary Base Pointer Size

Quaternary Peak Pointer Size

Date HW Avail, SW Avail, Test Date, Published,
(mon-yyyy) Updated

Text Disclosures 22/43

Features in SPEC CPU 2017 dataset

Data Type Column

String Benchmark, Hardware Vendor, System, 34 attributes / features
Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor

Numerical Peak Result, Base Result, Energy Peak Result,

Energy Base Result, # CoTes; E enior Best result with optimization
Enabled Threads Per Core, Processor MHz

Result with no optimization
Binary Parallel

Ternary Base Pointer Size

Quaternary Peak Pointer Size

Date HW Avail, SW Avail, Test Date, Published,
(mon-yyyy) Updated

Text Disclosures 22/43

Features in SPEC CPU 2017 dataset

Data Type Column

String Benchmark, Hardware Vendor, System, 34 attributes / features
Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor

Numerical Peak Result, Base Result, Energy Peak Result,

Energy Base Result, # CoTes; E enior Best result with optimization
Enabled Threads Per Core, Processor MHz

Result with no optimization
Binary Parallel

Ternary Base Pointer Size What we’ll

Quaternary Peak Pointer Size predict

Date HW Avalil, SW Avail, Test Date, Published,
(mon-yyyy) Updated

Text Disclosures 22/43

SPEC CPU 2017 Data example

2nd Level Cache ='512 KB |1+D on chip per core’,
3rd Level Cache =256 MB 1+D on chip per chip, 16 MB shared / 4 cores’,

Benchmark = 'CINT2017',

Hardware Vendor = 'ASUSTeK Computer Inc.,
Other Cache = 'None,

Memory ='512 GB (8 x 64 GB 2Rx4 PC4-3200AA-R)',

System = 'ASUS ESC4000A-E10(KRPG-U8) Server System 2.60 GHz, AMD EPYC 7H12,,

Peak Result = 9.09,

Base Result = 8.87,

Energy Peak Result = 0.0,
Energy Base Result = 0.0,

Cores = 64,

Chips =1,

Enabled Threads Per Core = 2,
Processor = 'AMD EPYC 7H12'
Processor MHz = 2600

CPU(s) Orderable ='1 chip’,
Parallel = 'Yes',

Base Pointer Size = '64-bit’,
Peak Pointer Size = '32/64-bit’,
1st Level Cache ='32 KB | + 32 KB D on chip per core',

Storage ='1 x 480 GB SATA SSD;,

Operating System = 'Ubuntu 19.04 (x86_64), Kernel 5.0.0-20-generic’,

File System = 'ext4’,

Compiler = 'C/C++/Fortran: Version 2.0.0 of AOCC/,
HW Avail = "Jul-2020',

SW Avail = 'Jun-2019,

License = 9016,

Tested By = 'ASUSTeK Computer Inc!,

Test Sponsor = 'ASUSTeK Computer Inc.,

Test Date = 'Jun-2020,

Published = 'Jul-2020",

Updated = "Jul-2020',

23/43 .
Isclosures = 'HTML CSV PDF PS Text Config'

Outline

* Data preparation

24/43

Cleaning the data

* Data needs to be very ‘clean’

e 1024MPB’, “1GB’ — convert to same units

* ‘1 CPU’, ‘1 cpu’ — convert to same case

* Base result = ‘0’ — removal of outliers

e “1GB’, 1 GB’, ‘1 GB’ — removal of spurious spaces
* "1GB’, ‘2GB’, ‘4GB’ — make categorical

* Our reproducibility package contributes code to clean the SPEC CPU
2017 data to support further analyses.

25/43

Removal of highly correlated features

* Highly correlated features don’t help with producing better results
* And sometimes make things worse

* Kendall’s rank correlation used to identify those features > 70%
corelated with others

e 7 features removed

Pearson and Spearman gave very similar results 26/43

Outline

* Deep Learning models

27/43

Challenges

* Choosing the best Neural Network isn’t trivial

* Shape of the network
* Layers and width

* Types of ‘neurons’

* Activation functions
* Loss function

* Optimizers

e Stride size

28/43

Challenges

* Choosing the best Neural Network isn’t trivial

* Shape of the network
* Layers and width

* Types of ‘neurons’

e Activation functions |

* Loss function

* Optimizers

e Stride size

Neural architecture search space

- Hyperparameter search space

* Epochs

28/43

Searching for Neural Network (MLP)

* Fully-Connected Networks: trapezium shaped

e Number of neurons: From 2" to 2"m
 Range =n€ [4, ..., 11], me [1], ..., 10]

INPUT

2" Neurons

"Neurons

2”

2™ 2 Neurons

29/43

2™™ Neurons

A,O_, OUTPUT

Searching for Neural Network cont. (CNN)

* CNN design: trapezium shaped
* Number of convolutional layers: From 2" to 2™
* Range=n€|[7,..,11], me [4, ..., 7]
* Kernel € [1, 3]
* Number of neurons: From 2P to 2P
 Range =p€|[7, ..., 11], €[5, ..., 7]

FLATTEN
>

S

INRRRRIRRRIRRRRRRRNENENY

Searching for Neural Network cont.

(ResNet Inspired)

e |[dentity block

 Convolutional block

O
~
)
Conv3

—

* Super block /
; Convolutional
Block Identity Block g Identlty Block

(2P, 2P, 2P*2) (2P, 2P, 2P*2) (2P, 2P, 2P*2)

* Final architecture

R

Kemel =3

SUPER BLOCK
(2D| 2P 20*2)

SUPER BLOCK
(29"1. 2pf1. 29'3)

SUPER BLOCK

(zpvm' zpvm' 2pfm+2)

FLATTEN

Hyperparameter search

e Optimizers: SGD, Adam, Rmsprop

* Loss functions: MAE and MSE
 Activation functions: sigmoid, tanh, RelLU
e Stride size € [1], ..., 4]

* Training epochs [50, 100, 150, 200, 250, 300, 350, 400}

32/43

Outline

* Predicting Deep Learning execution time
* Problem and Approach
* Predicting Execution time for individual operations
* Predicting for a full model

* Predicting SPEC 2017 performance
* Problem and Approach
* The Data
* Data preparation
* Deep Learning models
* Results

* Conclusions

33/43

Metrics

* R2: strength of the relationship between predictions and actual
* Closer to 1is better

* MAE: how big error is between predicted and actual
* Closer to O is better

 MSE: Similar to MAE but more impact from large differences
* Closer to O is better

?:1 (yi — yg)z

RE=1-

N N
_ 1 / . 1 / 2
MAE = ;\yi y| MSE = N;wi—yl)

y; is the true value, y; is the predicted value and y; is the mean of all true values

Baseline comparison methods

* Linear Regression

* Support Vector Regression

 Random Forest Regression

Comparison of approaches

Wil e

Trapezium CNN 0.9864
Random Forest Regression 0.9830
Fully Connected MLP 0.9735
Residual Neural Network 0.9501
Linear Regression 0.5260
Support Vector Regression -0.0040

36/43

Overall Comparison — sorter by R?

Architecture Loss Fn Kernel Sizes Stride Sizes Number of Filters (m, n) Neurons in Layers (p, q) Optimizer Epochs R2 MAE MSE
1 TriCNN MAE 3 1 (9,7) L] Adam 250 0.98638701 5.67389728 465.3285655
2 TriCNN MAE 3 2 (9,7,6,5,4) [9,...,4] Adam 250 0.98590661 5.83946465 476.0394343
3 TriCNN MAE 3 2 (9,7) 19; .0 5) Adam 300 0.98579341 5.76197731 494.124225
1 TriCNN MAE 3 1 9,7) LIS Adam 150 0.98529142 6.25318407 513.9629513
5 TriCNN MAE 3 2 (9,7,6,5,4) 19, i) RmsProp 150 0.98282719 7.14056732 620.2982421
6 TriCNN MAE 3 2 (9,7,6,5,4) 19,d] Adam 200 0.98280914 6.03564805 582.3068145
7 TriCNN MAE 3 2 (9,7,6,5,4) [9,...,4] Adam 300 0.98278342 5.61076184 582.0247239
8 TriCNN MAE 3 1 (9,7) 19 .50 Adam 300 0.98107176 5.78137347 645.4129883
9 TriCNN MAE 3 2 9,7) 19, a5 RmsProp 250 0.98095925 6.72097815 669.8856237
10 TriCNN MAE 3 1 9,7) 19,0 Adam 200 0.98089907 6.32291809 665.1641919
11 TriCNN MAE 3 2 (9,7) [9....,5] Adam 150 0.98047251 6.71537772 663.7030719
12 TriCNN MAE 3 1 (7. 6,5, 4) LR RmsProp 300 0.98038864 6.9974749 653.5821786
~ RF 0.9803076 4.76701531 688.0001262
13 TriCNN MAE 3 1 (7.6,5,4) 195 <38 RmsProp 200 0.98002879 7.62788323 684.7595471
14 TriCNN MAE 2 1 (9,7) |38, :556]) Adam 150 0.9793459 6.519971 703.0615545
15 TriCNN MAE 3 2 (9,7) 195 080 Adam 100 0.97782539 8.23651529 754.5381605
16 TriCNN MAE 3 2 (9,7,6,5,4) [9....,4] Adam 100 0.97748578 7.30871799 757.4994833
17 TriCNN MAE 3 2 (9,7,6,5,4) [9....,4] Adam 150 0.97726148 6.65855022 772.0747562
18 TriCNN MAE 3 1 (7.6,5,4) LR | RmsProp 250 0.97665471 7.86703389 775.8960386
19 TriCNN MAE 3 2 (9,7,6,5,4) 19,54 RmsProp 250 0.97650919 7.97325412 852.3545636
20 TriCNN MAE 3 2 9,7) 195 . RmsProp 300 0.97636563 6.91501173 816.7881606
45 TriMLP MAE [11,...,6] Adam 250 0.97347275 9.12443258 906.1439402
159 Residual MAE Number of Superblocks = (2, 5,5, 2) ((6, 6, 8), (7,7, 9), (8, 8, 10), (9, 9, 11)) 1 RmsProp 250 0.95007233 10.595069 1006.134564
~ LR 0.52639158 82.4596122 15761.16107
~ SVR -0.0045634 113.749207 33448.30886

* TriCNN = Trapezium-shaped CNN, RF = Random Forest Regression, TriMLP = Trapezium-shaped MPL, LR = Linear Regression, SVR = Support Vector Regression

Overall Comparison — sorted by MAE

Architecture Loss Fn Kernel Sizes Stride Sizes Number of Filters (m, n) Neurons in Layers (p, q) Optimizer Epochs R2 MAE MSE
1 TriCNN MAE 3 1 9,7) [9,...,5] Adam 250 0.98638701 5.67389728 465.3285655
2 TriCNN MAE 3 2 (9,7,6,5,4) [9,...,4] Adam 250 0.98590661 5.83946465 476.0394343
3 TriCNN MAE 3 2 9,7) [9,...,5] Adam 300 0.98579341 5.76197731 494.124225
4 TriCNN MAE 3 1 ©,7) [9, ..., 5] Adam 150 0.98529142 6.25318407 513.9629513
5 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 300 0.98278342 5.61076184 582.0247239
6 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 200 0.98280914 6.03564805 582.3068145
7 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] RmsProp 150 0.98282719 7.14056732 620.2982421
8 TriCNN MAE 3 1 9,7) [9,...,5] Adam 300 0.98107176 5.78137347 645.4129883
9 TriCNN MAE 3 1 (7, 6,5, 4) [9,...,5] RmsProp 300 0.98038864 6.9974749 653.5821786
10 TriCNN MAE 3 2 9,7) [9,...,5] Adam 150 0.98047251 6.71537772 663.7030719
11 TriCNN MAE 3 1 9,7) [9,..., 5] Adam 200 0.98089907 6.32291809 665.1641919
12 TriCNN MAE 3 2 9,7) [9,...,5] RmsProp 250 0.98095925 6.72097815 669.8856237
13 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 200 0.98002879 7.62788323 684.7595471
~ RF 0.9803076 4.76701531 688.0001262
14 TriCNN MAE 2 1 9,7 [11,..., 6] Adam 150 0.9793459 6.519971 703.0615545
15 TriCNN MAE 3 2 9,7) [9,...,5] Adam 100 0.97782539 8.23651529 754.5381605
16 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 100 0.97748578 7.30871799 757.4994833
17 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 150 0.97726148 6.65855022 772.0747562
18 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 250 0.97665471 7.86703389 775.8960386
19 TriCNN MAE 3 2 9,7) [9,...,5] RmsProp 200 0.97613855 7.72461632 807.1294185
20 TriCNN MAE 3 2 9,7) [9,...,5] RmsProp 300 0.97636563 6.91501173 816.7881606
48 TriMLP MAE [11,..., 6] Adam 250 0.97347275 9.12443258 906.1439402
135 Residual MAE Number of Superblocks = (2, 5,5,2) ((6, 6, 8), (7, 7, 9), (8, 8, 10), (9, 9, 11)) 1 RmsProp 250 0.95007233 10.595069 1006.134564
LR 0.52639158 82.4596122 15761.16107
SVR -0.0045634 113.749207 33448.30886

* TriCNN = Trapezium-shaped CNN, RF = Random Forest Regression, TriMLP = Trapezium-shaped MPL, LR = Linear Regression, SVR = Support Vector Regression

How do we do across the range?

Model - CNN - Linear Regression - RF - SVR

CNN Linear Regression RF SVR

6000 A
%)
Q
£ 40001
S
o 2000- o . .
?
E 0 FL. .
m <
8 -2000- ! -
O ®

4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4-4 -2 0

Theoretical quantiles

39/43

Hyperparameters

* Optimizer: Adam though RMSprop close

* Loss function: MAE, even when metric was MSE

* Activation function: Sigmoid

 Stride: 1 or 2

e Kernel size: normally 3

* Training epochs: Normally 250, though some exceptions

- Though model dependent

40/43

Residuals of different models

SVR-

Model

CNN-

Model =/ CNN E2 Linear Regression =2 RF - SVR

RF-

Linear Regression -

~2000

0

41/43

2000
Residuals

4000

6000

Outline

* Conclusions

42/43

Conclusions

 Demonstrated we can accurately predict the performance of systems
by using Deep Learning models — both DL models and SPEC2017

* DL outperforms Linear approaches — often by a lot
* (1D) CNNs work the best, ResNet doesn’t work well here

* A Neural Architecture Search reveals improvements in results
* More searching could improve, but diminishing returns

 Random Forest is a reasonable alternative — for main cases
* More features would improve performance — break down differences

stephen.mcgough@newcastle.ac.uk

https://github.com/CDECatapult/ml-performance-prediction https://github.com/cengizmehmet/BenchmarkNets

With thanks to: Mehmet Cengiz, Matthew Forshaw, Amir Atapour-Abarghouei, Stephen Bonner, Daniel Justus and John Brennan

https://github.com/CDECatapult/ml-performance-prediction
https://github.com/cengizmehmet/BenchmarkNets
mailto:stephen.mcgough@newcastle.ac.uk

