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Problem in Predicting

?
• Inference time
• Epoch training time

• Just Linear operations right?
• Matrix x Matrix = O(n3)
• Matrix x Vector = O(n2)✘

• Ignores non-linearity of hardware
• Issues between hardware versions
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Approach: Benchmark and predict

...

Characterize hardware 
and network (layer)

Why Deep Learning?
Analytical approaches based on the number of FLOPs and data size often neglect nonlinearities from model or hardware 
features
Data transfer
backpropagation with different optimisers
suboptimal hardware utilisation (especially of GPUs) 4/43
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• Utilisation of the available processing units and memory bandwidth
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An ML model to predict execution time

10

...

Model features: matrix size, input 
dimensions, optimiser, ...
Hardware features: clock frequency, 
number of cores, memory bandwidth, …

Hidden layers

Execution time prediction
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Data generation

Benchmark fundamental operations on different GPUs
• Convolution and fully connected layers (vector-matrix multiplication)
• Random parameters
• 5 Iterations → Use mean time
• 80% - 10% - 10% split for train / test / validation

11

OPs

single
GPU

all
GPUs

Full 
model

Outlook

7/43



Outline

• Predicting Deep Learning execution time
• Problem and Approach
• Predicting Execution time for individual operations
• Predicting for a full model

• Predicting SPEC 2017 performance
• Problem and Approach
• The Data
• Data preparation
• Deep Learning models
• Results

• Conclusions

8/43



Single GPU models for convolutions

A model trained on data from a 
single GPU

Input features
• Batch size
• Matrix size
• Kernel size
• Input dimension
• Output dimension

• Input padding
• Kernel strides
• Optimiser (one-hot encoded)
• Activation function (one-hot 

encoded)
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Predictive Model Architecture
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Design
• 4 Layer MLP
• Dropout Layer
• Adam Optimiser
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Results
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Error 
1.65 ms / 11.2%

Error 
3.32 ms / 13.6%

Error 
6.07 ms / 14.8%

Error 
7.84 ms / 16.2%

Error 
11.9 ms / 16.0%

Error 
2.55 ms / 14.1%



Comparison with Linear model

• Separate cases for forward and 
forward+backward pass with a 
specific optimiser
• Number of required floating 

point operations as additional 
feature for linear model
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•Forward pass only

Error 
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Comparison with Linear model

• Separate cases for forward and 
forward+backward pass with a 
specific optimiser
• Number of required floating 

point operations as additional 
feature for linear model
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•Forward and backward pass with SGD

Error 
3.18 ms / 21.2%

Error 
8.95 ms / 167.4%

DNN Linear model
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A General Model

• A model trained on data from 
multiple GPUs

Additional input features
• GPU clock frequency (MHz)
• number of GPU shader units
• GPU memory bandwidth (GB/s)
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•Model architecture?
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Can we predict performance of unseen 
hardware?
Cross-validation 
• Train a model on data 

from five GPUs
• Predict the execution 

time for the sixth GPU
• Repeat for every 

combination
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Can we predict performance of unseen 
hardware?

2222
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Error 
3.65 ms / 39.6%

Error 
4.23 ms / 21.2%

Error 
8.09 ms / 21.7%

Error 
7.94 ms / 14.4%

Error 
12.8 ms / 21.7%

Error 
4.24 ms / 25.6%



Test for full models

2323
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VGG-16 for image 
classification

Simonyan & Andrew Zisserman: Very Deep Convolutional Networks for 
Large-Scale Image Recognition
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SPEC CPU 2017 score

Predicting SPEC CPU 2017 scores for new computers
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Filling in the gaps with Machine Learning

• Benchmarking systems is costly
• Time to conduct tests
• Financial (hardware + software)

• Machine Learning is promising alternative to building and testing
• Especially Deep Learning

• We demonstrate the potential of deep learning for predicting performance
• using Multi-layer Perceptrons and Convolutional Neural Networks

SPEC 2017 score
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Features in SPEC CPU 2017 dataset

34 attributes / features
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Result with no optimization

What we’ll
predict
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SPEC CPU 2017 Data example
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Cleaning the data

• Data needs to be very ‘clean’
• ‘1024MB’, ‘1GB’ – convert to same units
• ‘1 CPU’, ‘1 cpu’ – convert to same case
• Base result = ‘0’ – removal of outliers
• ‘1GB’, ‘ 1 GB’, ‘1 GB’ – removal of spurious spaces
• ’1GB’, ‘2GB’, ‘4GB’ – make categorical

• Our reproducibility package contributes code to clean the SPEC CPU 
2017 data to support further analyses.
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Removal of highly correlated features

• Highly correlated features don’t help with producing better results
• And sometimes make things worse
• Kendall’s rank correlation used to identify those features > 70% 

corelated with others
• 7 features removed

Pearson and Spearman  gave very similar results 26/43
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Challenges

• Choosing the best Neural Network isn’t trivial
• Shape of the network
• Layers and width

• Types of ‘neurons’
• Activation functions
• Loss function
• Optimizers
• Stride size
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Challenges

• Choosing the best Neural Network isn’t trivial
• Shape of the network
• Layers and width

• Types of ‘neurons’
• Activation functions
• Loss function
• Optimizers
• Stride size
• Epochs

Neural architecture search space

Hyperparameter search space
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Searching for Neural Network (MLP)

• Fully-Connected Networks: trapezium shaped
• Number of neurons: From 2n to 2n-m

• Range = n∈ [4, …, 11], m∈ [1, …, 10]
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Searching for Neural Network cont. (CNN)

• CNN design: trapezium shaped
• Number of convolutional layers: From 2n to 2n-m

• Range = n∈ [7, …, 11], m∈ [4, …, 7]
• Kernel ∈ [1, 3]

• Number of neurons: From 2p to 2p-q

• Range = p∈ [7, ..., 11], q∈ [5, ..., 7]



Searching for Neural Network cont.
(ResNet Inspired)
• Identity block

• Convolutional block

• Super block

• Final architecture



Hyperparameter search

• Optimizers: SGD, Adam, Rmsprop

• Loss functions: MAE and MSE

• Activation functions: sigmoid, tanh, ReLU

• Stride size ∈ [1, …, 4]

• Training epochs [50, 100, 150, 200, 250, 300, 350, 400]
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Metrics

• R2: strength of the relationship between predictions and actual
• Closer to 1 is better

• MAE: how big error is between predicted and actual
• Closer to 0 is better

• MSE: Similar to MAE but more impact from large differences
• Closer to 0 is better

𝑦! is the true value, 𝑦!" is the predicted value and #𝑦! is the mean of all true values 



Baseline comparison methods

• Linear Regression

• Support Vector Regression

• Random Forest Regression

𝜀
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Comparison of approaches

Model Best R2

Trapezium CNN 0.9864

Random Forest Regression 0.9830

Fully Connected MLP 0.9735

Residual Neural Network 0.9501

Linear Regression 0.5260

Support Vector Regression -0.0040
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Overall Comparison – sorter by R2



Overall Comparison – sorted by MAE



How do we do across the range?
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Hyperparameters

• Optimizer: Adam though RMSprop close
• Loss function: MAE, even when metric was MSE
• Activation function: Sigmoid
• Stride: 1 or 2
• Kernel size: normally 3
• Training epochs: Normally 250, though some exceptions 

- Though model dependent
40/43



Residuals of different models
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Conclusions

• Demonstrated we can accurately predict the performance of systems 
by using Deep Learning models – both DL models and SPEC2017
• DL outperforms Linear approaches – often by a lot
• (1D) CNNs work the best, ResNet doesn’t work well here
• A Neural Architecture Search reveals improvements in results
• More searching could improve, but diminishing returns

• Random Forest is a reasonable alternative – for main cases
• More features would improve performance – break down differences
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