
Predicting the performance of
systems through Deep Learning

Stephen McGough
stephen.mcgough@newcastle.ac.uk

Huawei Global Software Technology Summit
1st June 2023

Edinburgh, UK

mailto:stephen.mcgough@newcastle.ac.uk

Outline

• Predicting Deep Learning execution time
• Problem and Approach
• Predicting Execution time for individual operations
• Predicting for a full model

• Predicting SPEC 2017 performance
• Problem and Approach
• The Data
• Data preparation
• Deep Learning models
• Results

• Conclusions

2/43

Problem in Predicting

?
• Inference time
• Epoch training time

3/43

Problem in Predicting

?
• Inference time
• Epoch training time

• Just Linear operations right?
• Matrix x Matrix = O(n3)
• Matrix x Vector = O(n2)

3/43

Problem in Predicting

?
• Inference time
• Epoch training time

• Just Linear operations right?
• Matrix x Matrix = O(n3)
• Matrix x Vector = O(n2)✘

• Ignores non-linearity of hardware
• Issues between hardware versions
3/43

Approach: Benchmark and predict

...

Characterize hardware
and network (layer)

Why Deep Learning?
Analytical approaches based on the number of FLOPs and data size often neglect nonlinearities from model or hardware
features
Data transfer
backpropagation with different optimisers
suboptimal hardware utilisation (especially of GPUs) 4/43

Factors influencing the execution time

Model features
• Required number floating/fixed

point operations
• temporal sequence of operations

(serial/parallel)
• Amount of data
• Optimiser Full

model

OPs

single
GPU

all
GPUs

Outlook

5/43

Factors influencing the execution time

Model features
• Required number floating/fixed

point operations
• temporal sequence of operations

(serial/parallel)
• Amount of data
• Optimiser

Hardware features
• Clock frequency
• Number of processing units /

shader units
• Available memory bandwidth

OPs

single
GPU

all
GPUs

Full
model

Outlook

5/43

Factors influencing the execution time

Model features
• Required number floating/fixed

point operations
• temporal sequence of operations

(serial/parallel)
• Amount of data
• Optimiser

Hardware features
• Clock frequency
• Number of processing units /

shader units
• Available memory bandwidth

OPs

single
GPU

all
GPUs

Full
model

Outlook
• Utilisation of the available processing units and memory bandwidth

5/43

An ML model to predict execution time

10

...

Model features: matrix size, input
dimensions, optimiser, ...
Hardware features: clock frequency,
number of cores, memory bandwidth, …

Hidden layers

Execution time prediction

OPs

single
GPU

all
GPUs

Full
model

Outlook

6/43

Data generation

Benchmark fundamental operations on different GPUs
• Convolution and fully connected layers (vector-matrix multiplication)
• Random parameters
• 5 Iterations → Use mean time
• 80% - 10% - 10% split for train / test / validation

11

OPs

single
GPU

all
GPUs

Full
model

Outlook

7/43

Outline

• Predicting Deep Learning execution time
• Problem and Approach
• Predicting Execution time for individual operations
• Predicting for a full model

• Predicting SPEC 2017 performance
• Problem and Approach
• The Data
• Data preparation
• Deep Learning models
• Results

• Conclusions

8/43

Single GPU models for convolutions

A model trained on data from a
single GPU

Input features
• Batch size
• Matrix size
• Kernel size
• Input dimension
• Output dimension

• Input padding
• Kernel strides
• Optimiser (one-hot encoded)
• Activation function (one-hot

encoded)

13

OPs

single
GPU

all
GPUs

Full
model

Outlook

9/43

Predictive Model Architecture

14

Design
• 4 Layer MLP
• Dropout Layer
• Adam Optimiser

OPs

single
GPU

all
GPUs

Full
model

Outlook
10/43

Results

15

OPs

single
GPU

all
GPUs

Full
model

Outlook

Error
1.65 ms / 11.2%

Error
3.32 ms / 13.6%

Error
6.07 ms / 14.8%

Error
7.84 ms / 16.2%

Error
11.9 ms / 16.0%

Error
2.55 ms / 14.1%

Comparison with Linear model

• Separate cases for forward and
forward+backward pass with a
specific optimiser
• Number of required floating

point operations as additional
feature for linear model

1616

OPs

single
GPU

all
GPUs

Full
model

Outlook

12/43

Comparison with Linear model

• Separate cases for forward and
forward+backward pass with a
specific optimiser
• Number of required floating

point operations as additional
feature for linear model

1717

OPs

single
GPU

all
GPUs

Full
model

Outlook

•Forward pass only

Error
0.83 ms / 13.0%

Error
2.42 ms / 116.8%

DNN Linear model

12/43

Comparison with Linear model

• Separate cases for forward and
forward+backward pass with a
specific optimiser
• Number of required floating

point operations as additional
feature for linear model

1818

OPs

single
GPU

all
GPUs

Full
model

Outlook

•Forward and backward pass with SGD

Error
3.18 ms / 21.2%

Error
8.95 ms / 167.4%

DNN Linear model

12/43

Outline

• Predicting Deep Learning execution time
• Problem and Approach
• Predicting Execution time for individual operations
• Predicting for a full model

• Predicting SPEC 2017 performance
• Problem and Approach
• The Data
• Data preparation
• Deep Learning models
• Results

• Conclusions

13/43

A General Model

• A model trained on data from
multiple GPUs

Additional input features
• GPU clock frequency (MHz)
• number of GPU shader units
• GPU memory bandwidth (GB/s)

2020

OPs

single
GPU

all
GPUs

Full
model

Outlook

•Model architecture?

14/43

Can we predict performance of unseen
hardware?
Cross-validation
• Train a model on data

from five GPUs
• Predict the execution

time for the sixth GPU
• Repeat for every

combination

2121

OPs

single
GPU

all
GPUs

Full
model

Outlook

...

15/43

Can we predict performance of unseen
hardware?

2222

OPs

single
GPU

all
GPUs

Full
model

Outlook

Error
3.65 ms / 39.6%

Error
4.23 ms / 21.2%

Error
8.09 ms / 21.7%

Error
7.94 ms / 14.4%

Error
12.8 ms / 21.7%

Error
4.24 ms / 25.6%

Test for full models

2323

OPs

single
GPU

all
GPUs

Full
model

Outlook

VGG-16 for image
classification

Simonyan & Andrew Zisserman: Very Deep Convolutional Networks for
Large-Scale Image Recognition

17/43

Outline

• Predicting Deep Learning execution time
• Problem and Approach
• Predicting Execution time for individual operations
• Predicting for a full model

• Predicting SPEC 2017 performance
• Problem and Approach
• The Data
• Data preparation
• Deep Learning models
• Results

• Conclusions

18/43

SPEC CPU 2017 score

Predicting SPEC CPU 2017 scores for new computers

19/43

Predicting SPEC CPU 2017 scores for new computers

SPEC CPU 2017 score

19/43

SPEC CPU 2017 score

Predicting SPEC CPU 2017 scores for new computers

19/43

Filling in the gaps with Machine Learning

• Benchmarking systems is costly
• Time to conduct tests
• Financial (hardware + software)

• Machine Learning is promising alternative to building and testing
• Especially Deep Learning

• We demonstrate the potential of deep learning for predicting performance
• using Multi-layer Perceptrons and Convolutional Neural Networks

SPEC 2017 score

20/43

Outline

• Predicting Deep Learning execution time
• Problem and Approach
• Predicting Execution time for individual operations
• Predicting for a full model

• Predicting SPEC 2017 performance
• Problem and Approach
• The Data
• Data preparation
• Deep Learning models
• Results

• Conclusions

21/43

Features in SPEC CPU 2017 dataset

34 attributes / features

22/43

Features in SPEC CPU 2017 dataset

34 attributes / features

Best result with optimization

22/43

Features in SPEC CPU 2017 dataset

34 attributes / features

Best result with optimization
Result with no optimization

22/43

Features in SPEC CPU 2017 dataset

34 attributes / features

Best result with optimization
Result with no optimization

What we’ll
predict

22/43

SPEC CPU 2017 Data example

23/43

Outline

• Predicting Deep Learning execution time
• Problem and Approach
• Predicting Execution time for individual operations
• Predicting for a full model

• Predicting SPEC 2017 performance
• Problem and Approach
• The Data
• Data preparation
• Deep Learning models
• Results

• Conclusions

24/43

Cleaning the data

• Data needs to be very ‘clean’
• ‘1024MB’, ‘1GB’ – convert to same units
• ‘1 CPU’, ‘1 cpu’ – convert to same case
• Base result = ‘0’ – removal of outliers
• ‘1GB’, ‘ 1 GB’, ‘1 GB’ – removal of spurious spaces
• ’1GB’, ‘2GB’, ‘4GB’ – make categorical

• Our reproducibility package contributes code to clean the SPEC CPU
2017 data to support further analyses.

25/43

Removal of highly correlated features

• Highly correlated features don’t help with producing better results
• And sometimes make things worse
• Kendall’s rank correlation used to identify those features > 70%

corelated with others
• 7 features removed

Pearson and Spearman gave very similar results 26/43

Outline

• Predicting Deep Learning execution time
• Problem and Approach
• Predicting Execution time for individual operations
• Predicting for a full model

• Predicting SPEC 2017 performance
• Problem and Approach
• The Data
• Data preparation
• Deep Learning models
• Results

• Conclusions

27/43

Challenges

• Choosing the best Neural Network isn’t trivial
• Shape of the network
• Layers and width

• Types of ‘neurons’
• Activation functions
• Loss function
• Optimizers
• Stride size

28/43

Challenges

• Choosing the best Neural Network isn’t trivial
• Shape of the network
• Layers and width

• Types of ‘neurons’
• Activation functions
• Loss function
• Optimizers
• Stride size
• Epochs

Neural architecture search space

Hyperparameter search space

28/43

Searching for Neural Network (MLP)

• Fully-Connected Networks: trapezium shaped
• Number of neurons: From 2n to 2n-m

• Range = n∈ [4, …, 11], m∈ [1, …, 10]

29/43

Searching for Neural Network cont. (CNN)

• CNN design: trapezium shaped
• Number of convolutional layers: From 2n to 2n-m

• Range = n∈ [7, …, 11], m∈ [4, …, 7]
• Kernel ∈ [1, 3]

• Number of neurons: From 2p to 2p-q

• Range = p∈ [7, ..., 11], q∈ [5, ..., 7]

Searching for Neural Network cont.
(ResNet Inspired)
• Identity block

• Convolutional block

• Super block

• Final architecture

Hyperparameter search

• Optimizers: SGD, Adam, Rmsprop

• Loss functions: MAE and MSE

• Activation functions: sigmoid, tanh, ReLU

• Stride size ∈ [1, …, 4]

• Training epochs [50, 100, 150, 200, 250, 300, 350, 400]

32/43

Outline

• Predicting Deep Learning execution time
• Problem and Approach
• Predicting Execution time for individual operations
• Predicting for a full model

• Predicting SPEC 2017 performance
• Problem and Approach
• The Data
• Data preparation
• Deep Learning models
• Results

• Conclusions

33/43

Metrics

• R2: strength of the relationship between predictions and actual
• Closer to 1 is better

• MAE: how big error is between predicted and actual
• Closer to 0 is better

• MSE: Similar to MAE but more impact from large differences
• Closer to 0 is better

𝑦! is the true value, 𝑦!" is the predicted value and #𝑦! is the mean of all true values

Baseline comparison methods

• Linear Regression

• Support Vector Regression

• Random Forest Regression

𝜀

35/43

Comparison of approaches

Model Best R2

Trapezium CNN 0.9864

Random Forest Regression 0.9830

Fully Connected MLP 0.9735

Residual Neural Network 0.9501

Linear Regression 0.5260

Support Vector Regression -0.0040

36/43

Overall Comparison – sorter by R2

Overall Comparison – sorted by MAE

How do we do across the range?

39/43

Hyperparameters

• Optimizer: Adam though RMSprop close
• Loss function: MAE, even when metric was MSE
• Activation function: Sigmoid
• Stride: 1 or 2
• Kernel size: normally 3
• Training epochs: Normally 250, though some exceptions

- Though model dependent
40/43

Residuals of different models

41/43

Outline

• Predicting Deep Learning execution time
• Problem and Approach
• Predicting Execution time for individual operations
• Predicting for a full model

• Predicting SPEC 2017 performance
• Problem and Approach
• The Data
• Data preparation
• Deep Learning models
• Results

• Conclusions

42/43

Conclusions

• Demonstrated we can accurately predict the performance of systems
by using Deep Learning models – both DL models and SPEC2017
• DL outperforms Linear approaches – often by a lot
• (1D) CNNs work the best, ResNet doesn’t work well here
• A Neural Architecture Search reveals improvements in results
• More searching could improve, but diminishing returns

• Random Forest is a reasonable alternative – for main cases
• More features would improve performance – break down differences

With thanks to: Mehmet Cengiz, Matthew Forshaw, Amir Atapour-Abarghouei, Stephen Bonner, Daniel Justus and John Brennan

https://github.com/CDECatapult/ml-performance-prediction https://github.com/cengizmehmet/BenchmarkNets

stephen.mcgough@newcastle.ac.uk

https://github.com/CDECatapult/ml-performance-prediction
https://github.com/cengizmehmet/BenchmarkNets
mailto:stephen.mcgough@newcastle.ac.uk

