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* Predicting Deep Learning execution time
* Problem and Approach
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Problem in Predicting

* Inference time

@? * Epoch training time
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 Just Linear operations right?
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* Matrix x Vector = O(n?)
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Problem in Predicting

* Inference time
? * Epoch training time

ar operations right?
Matrix = O(n3)
Vector = O(n?)

e Jus
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* [gnores non-linearity of hardware

* |ssues between hardware versions
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Approach: Benchmark and predict

Characterize hardware
and network (layer)

Why Deep Learning?

Analytical approaches based on the number of FLOPs and data size often neglect nonlinearities from model or hardware
features

Data transfer

backpropagation with different optimisers

suboptimal hardware utilisation (especially of GPUs) 4/43



Factors influencing the execution time

Model features

* Required number floating/fixed
point operations

» temporal sequence of operations
(serial/parallel)

* Amount of data
* Optimiser Ful
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e Amount of data
* Optimiser

* Available memory bandwidth
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An ML model to predict execution time

Model features: matrix size, input

... dimensions, optimiser, ...

Hardware features: clock frequency,

number of cores, memory bandwidth, ...

Hidden layers

Full
LOOQQQOOOOOOC model

Execution time prediction

Outlook
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Data generation

Benchmark fundamental operations on different GPUs
e Convolution and fully connected layers (vector-matrix multiplication) » Ex
* Random parameters

* 5 [terations - Use mean time

* 80% - 10% - 10% split for train / test / validation @

Full
model

@

Outlook
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Outline

* Predicting Execution time for individual operations
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Single GPU models for convolutions

A model trained on data from a
single GPU

Input features * Input padding

* Batch size e Kernel strides

* Matrix size * Optimiser (one-hot encoded)

* Kernel size e Activation function (one-hot

* Input dimension encoded)

e Output dimension
9/43
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Predictive Model Architecture

OPs

6
Design 5 $-
* 4 Layer MLP 44
* Dropout Layer ~ |$ aPUs
e Adam Optimiser %3'
g U

Full
model

@

2 3 Outlook
10/43 # layers




Results
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Comparison with Linear model

* Separate cases for forward and
forward+backward pass with a

specific optimiser $-

OPs

* Number of required floating $ N
point operations as additional o
feature for linear model \}

Full
model

@
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Comparison with Linear model
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Comparison with Linear model

* Separate cases for forward and
forward+backward pass with a
specific optimiser

* Number of required floating
point operations as additional
feature for linear model
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Outline

* Predicting for a full model
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A General Model

* A model trained on data from

multiple GPUs o

Model architecture? |$ s(iaanLIJe

20
Additional input features

* GPU clock frequency (MHz)
* number of GPU shader units
 GPU memory bandwidth (GB/s)
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Can we predict performance of unseen
hardware?

Cross-validation

OPs

single
GPU

 Train a model on data |
from five GPUs ~_ $

time for the sixth GPU

* Predict the execution Q20 |$-
* Repeat for every W @

combination o

model

@

Outlook
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Can we predict performance of unseen

hardware?
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Test for full models

Adam (Actual)

VGG-16 for image B Adam (Predicted)
Forward Pass (Actual)

== 1=

Time (ms)

Large-Scale Image Recognition 4
0 Outlook

classification B Forward Pass (Predicted)
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Outline

* Predicting SPEC 2017 performance
* Problem and Approach

18/43



Predicting SPEC CPU 2017 scores for new computers

BEEE)  SPECCPU 2017 score
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Filling in the gaps with Machine Learning

 Benchmarking systems is costly
e Time to conduct tests
* Financial (hardware + software)

* Machine Learning is promising alternative to building and testing
e Especially Deep Learning

 We demonstrate the potential of deep learning for predicting performance
* using Multi-layer Perceptrons and Convolutional Neural Networks

% SPEC 2017 score
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Outline

* Predicting Deep Learning execution time
* Problem and Approach
* Predicting Execution time for individual operations
* Predicting for a full model

* Predicting SPEC 2017 performance
* Problem and Approach
* The Data
* Data preparation
* Deep Learning models
* Results

* Conclusions
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Features in SPEC CPU 2017 dataset

Data Type  Column

String Benchmark, Hardware Vendor, System, 34 attributes / features
Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor

Numerical = Peak Result, Base Result, Energy Peak Result,

Energy Base Result, # Cores, # Chips, Memory,
# Enabled Threads Per Core, Processor MHz

Binary Parallel

Ternary Base Pointer Size

Quaternary Peak Pointer Size

Date HW Avail, SW Avail, Test Date, Published,
(mon-yyyy) Updated

Text Disclosures 22/43
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SPEC CPU 2017 Data example

2nd Level Cache ='512 KB |1+D on chip per core’,
3rd Level Cache =256 MB 1+D on chip per chip, 16 MB shared / 4 cores’,

Benchmark = 'CINT2017',

Hardware Vendor = 'ASUSTeK Computer Inc.,
Other Cache = 'None,

Memory ='512 GB (8 x 64 GB 2Rx4 PC4-3200AA-R)',

System = 'ASUS ESC4000A-E10(KRPG-U8) Server System 2.60 GHz, AMD EPYC 7H12,,

Peak Result = 9.09,

Base Result = 8.87,

Energy Peak Result = 0.0,
Energy Base Result = 0.0,

# Cores = 64,

# Chips =1,

# Enabled Threads Per Core = 2,
Processor = 'AMD EPYC 7H12'
Processor MHz = 2600

CPU(s) Orderable ='1 chip’,
Parallel = 'Yes',

Base Pointer Size = '64-bit’,
Peak Pointer Size = '32/64-bit’,
1st Level Cache ='32 KB | + 32 KB D on chip per core',

Storage ='1 x 480 GB SATA SSD;,

Operating System = 'Ubuntu 19.04 (x86_64), Kernel 5.0.0-20-generic’,

File System = 'ext4’,

Compiler = 'C/C++/Fortran: Version 2.0.0 of AOCC/,
HW Avail = "Jul-2020',

SW Avail = 'Jun-2019,

License = 9016,

Tested By = 'ASUSTeK Computer Inc!,

Test Sponsor = 'ASUSTeK Computer Inc.,

Test Date = 'Jun-2020,

Published = 'Jul-2020",

Updated = "Jul-2020',

23/43 .
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* Data preparation
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Cleaning the data

* Data needs to be very ‘clean’

e 1024MPB’, “1GB’ — convert to same units

* ‘1 CPU’, ‘1 cpu’ — convert to same case

* Base result = ‘0’ — removal of outliers

e “1GB’, 1 GB’, ‘1 GB’ — removal of spurious spaces
* "1GB’, ‘2GB’, ‘4GB’ — make categorical

* Our reproducibility package contributes code to clean the SPEC CPU
2017 data to support further analyses.
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Removal of highly correlated features

* Highly correlated features don’t help with producing better results
* And sometimes make things worse

* Kendall’s rank correlation used to identify those features > 70%
corelated with others

e 7 features removed

Pearson and Spearman gave very similar results 26/43
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* Deep Learning models
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Challenges

* Choosing the best Neural Network isn’t trivial

* Shape of the network
* Layers and width

* Types of ‘neurons’

* Activation functions
* Loss function

* Optimizers

e Stride size
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Challenges

* Choosing the best Neural Network isn’t trivial

* Shape of the network
* Layers and width

* Types of ‘neurons’

e Activation functions |

* Loss function

* Optimizers

e Stride size

Neural architecture search space

- Hyperparameter search space

* Epochs
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Searching for Neural Network (MLP)

* Fully-Connected Networks: trapezium shaped

e Number of neurons: From 2" to 2"m
 Range =n€ [4, ..., 11], me [1], ..., 10]

INPUT

2" Neurons

"Neurons

2”

2™ 2 Neurons

29/43
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Searching for Neural Network cont. (CNN)

* CNN design: trapezium shaped
* Number of convolutional layers: From 2" to 2™
* Range=n€|[7,..,11], me [4, ..., 7]
* Kernel € [1, 3]
* Number of neurons: From 2P to 2P
 Range =p€|[7, ..., 11], €[5, ..., 7]

FLATTEN
>

S

INRRRRIRRRIRRRRRRRNENENY




Searching for Neural Network cont.

(ResNet Inspired)

e |[dentity block

 Convolutional block

O
~
)
Conv3

—

* Super block /
; Convolutional
Block Identity Block g Identlty Block

(2P, 2P, 2P*2) (2P, 2P, 2P*2) (2P, 2P, 2P*2)

* Final architecture

R

Kemel =3

SUPER BLOCK
(2D| 2P 20*2)

SUPER BLOCK
(29"1. 2pf1. 29'3)

SUPER BLOCK

(zpvm' zpvm' 2pfm+2)

FLATTEN




Hyperparameter search

e Optimizers: SGD, Adam, Rmsprop

* Loss functions: MAE and MSE
 Activation functions: sigmoid, tanh, RelLU
e Stride size € [1], ..., 4]

* Training epochs [50, 100, 150, 200, 250, 300, 350, 400}
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Outline

* Predicting Deep Learning execution time
* Problem and Approach
* Predicting Execution time for individual operations
* Predicting for a full model

* Predicting SPEC 2017 performance
* Problem and Approach
* The Data
* Data preparation
* Deep Learning models
* Results

* Conclusions
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Metrics

* R2: strength of the relationship between predictions and actual
* Closer to 1is better

* MAE: how big error is between predicted and actual
* Closer to O is better

 MSE: Similar to MAE but more impact from large differences
* Closer to O is better

?:1 (yi — yg)z

RE=1-

N N
_ 1 / . 1 / 2
MAE = ;\yi y| MSE = N;wi—yl)

y; is the true value, y; is the predicted value and y; is the mean of all true values



Baseline comparison methods

* Linear Regression

* Support Vector Regression

 Random Forest Regression




Comparison of approaches

Wil e

Trapezium CNN 0.9864
Random Forest Regression 0.9830
Fully Connected MLP 0.9735
Residual Neural Network 0.9501
Linear Regression 0.5260
Support Vector Regression -0.0040
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Overall Comparison — sorter by R?

#  Architecture Loss Fn Kernel Sizes Stride Sizes Number of Filters (m, n) Neurons in Layers (p, q) Optimizer Epochs R2 MAE MSE
1 TriCNN MAE 3 1 (9,7) L] Adam 250 0.98638701 5.67389728 465.3285655
2 TriCNN MAE 3 2 (9,7,6,5,4) [9,...,4] Adam 250 0.98590661 5.83946465 476.0394343
3 TriCNN MAE 3 2 (9,7) 19; .0 5) Adam 300 0.98579341 5.76197731  494.124225
1 TriCNN MAE 3 1 9,7) LIS Adam 150 0.98529142 6.25318407 513.9629513
5 TriCNN MAE 3 2 (9,7,6,5,4) 19, i) RmsProp 150 0.98282719 7.14056732 620.2982421
6 TriCNN MAE 3 2 (9,7,6,5,4) 19, ....d] Adam 200 0.98280914 6.03564805 582.3068145
7 TriCNN MAE 3 2 (9,7,6,5,4) [9,...,4] Adam 300 0.98278342 5.61076184 582.0247239
8 TriCNN MAE 3 1 (9,7) 19 .50 Adam 300 0.98107176 5.78137347 645.4129883
9 TriCNN MAE 3 2 9,7) 19, a5 RmsProp 250 0.98095925 6.72097815 669.8856237
10 TriCNN MAE 3 1 9,7) 19,0 Adam 200 0.98089907 6.32291809 665.1641919
11 TriCNN MAE 3 2 (9,7) [9....,5] Adam 150 0.98047251 6.71537772 663.7030719
12 TriCNN MAE 3 1 (7. 6,5, 4) LR RmsProp 300 0.98038864  6.9974749  653.5821786
~ RF 0.9803076  4.76701531 688.0001262
13 TriCNN MAE 3 1 (7.6,5,4) 195 <38 RmsProp 200 0.98002879 7.62788323 684.7595471
14 TriCNN MAE 2 1 (9,7) |38, :556]) Adam 150 0.9793459 6.519971 703.0615545
15 TriCNN MAE 3 2 (9,7) 195 080 Adam 100 0.97782539 8.23651529 754.5381605
16 TriCNN MAE 3 2 (9,7,6,5,4) [9....,4] Adam 100 0.97748578 7.30871799 757.4994833
17 TriCNN MAE 3 2 (9,7,6,5,4) [9....,4] Adam 150 0.97726148 6.65855022 772.0747562
18 TriCNN MAE 3 1 (7.6,5,4) LR | RmsProp 250 0.97665471 7.86703389 775.8960386
19 TriCNN MAE 3 2 (9,7,6,5,4) 19,54 RmsProp 250 0.97650919 7.97325412 852.3545636
20 TriCNN MAE 3 2 9,7) 195 . RmsProp 300 0.97636563 6.91501173 816.7881606
45 TriMLP MAE [11,...,6] Adam 250 0.97347275 9.12443258 906.1439402
159 Residual MAE  Number of Superblocks = (2, 5,5, 2) ((6, 6, 8), (7,7, 9), (8, 8, 10), (9, 9, 11)) 1 RmsProp 250 0.95007233  10.595069 1006.134564
~ LR 0.52639158 82.4596122 15761.16107
~ SVR -0.0045634 113.749207 33448.30886

* TriCNN = Trapezium-shaped CNN, RF = Random Forest Regression, TriMLP = Trapezium-shaped MPL, LR = Linear Regression, SVR = Support Vector Regression



Overall Comparison — sorted by MAE

#  Architecture Loss Fn Kernel Sizes Stride Sizes Number of Filters (m, n) Neurons in Layers (p, q) Optimizer Epochs R2 MAE MSE
1 TriCNN MAE 3 1 9,7) [9,...,5] Adam 250 0.98638701 5.67389728 465.3285655
2 TriCNN MAE 3 2 (9,7,6,5,4) [9,...,4] Adam 250 0.98590661 5.83946465 476.0394343
3 TriCNN MAE 3 2 9,7) [9,...,5] Adam 300 0.98579341 5.76197731  494.124225
4 TriCNN MAE 3 1 ©,7) [9, ..., 5] Adam 150  0.98529142 6.25318407 513.9629513
5 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 300 0.98278342 5.61076184 582.0247239
6 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 200 0.98280914 6.03564805 582.3068145
7 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] RmsProp 150 0.98282719 7.14056732 620.2982421
8 TriCNN MAE 3 1 9,7) [9,...,5] Adam 300 0.98107176  5.78137347 645.4129883
9 TriCNN MAE 3 1 (7, 6,5, 4) [9,...,5] RmsProp 300 0.98038864 6.9974749  653.5821786
10 TriCNN MAE 3 2 9,7) [9,...,5] Adam 150 0.98047251 6.71537772  663.7030719
11 TriCNN MAE 3 1 9,7) [9,..., 5] Adam 200 0.98089907 6.32291809 665.1641919
12 TriCNN MAE 3 2 9,7) [9,...,5] RmsProp 250 0.98095925 6.72097815 669.8856237
13 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 200 0.98002879 7.62788323 684.7595471
~ RF 0.9803076  4.76701531 688.0001262
14 TriCNN MAE 2 1 9,7 [11,..., 6] Adam 150 0.9793459 6.519971 703.0615545
15 TriCNN MAE 3 2 9,7) [9,...,5] Adam 100 0.97782539 8.23651529 754.5381605
16 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 100 0.97748578 7.30871799 757.4994833
17 TriCNN MAE 3 2 (9,7,6,5,4) [9,..., 4] Adam 150 0.97726148 6.65855022 772.0747562
18 TriCNN MAE 3 1 (7,6,5,4) [9,...,5] RmsProp 250 0.97665471 7.86703389 775.8960386
19 TriCNN MAE 3 2 9,7) [9,...,5] RmsProp 200 0.97613855 7.72461632 807.1294185
20 TriCNN MAE 3 2 9,7) [9,...,5] RmsProp 300 0.97636563 6.91501173 816.7881606
48 TriMLP MAE [11,..., 6] Adam 250 0.97347275 9.12443258 906.1439402
135 Residual MAE  Number of Superblocks = (2, 5,5,2) ((6, 6, 8), (7, 7, 9), (8, 8, 10), (9, 9, 11)) 1 RmsProp 250 0.95007233  10.595069  1006.134564
LR 0.52639158 82.4596122 15761.16107
SVR -0.0045634 113.749207 33448.30886

* TriCNN = Trapezium-shaped CNN, RF = Random Forest Regression, TriMLP = Trapezium-shaped MPL, LR = Linear Regression, SVR = Support Vector Regression



How do we do across the range?

Model - CNN - Linear Regression - RF - SVR

CNN Linear Regression RF SVR

6000 A
%)
Q
£ 40001
S
o 2000- o . .
?
E 0 FL. .
m <
8 -2000- ! -
O ®

4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4-4 -2 0

Theoretical quantiles
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Hyperparameters

* Optimizer: Adam though RMSprop close

* Loss function: MAE, even when metric was MSE

* Activation function: Sigmoid

 Stride: 1 or 2

e Kernel size: normally 3

* Training epochs: Normally 250, though some exceptions

- Though model dependent
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Residuals of different models

SVR-

Model

CNN-

Model =/ CNN E2 Linear Regression =2 RF - SVR

RF-

Linear Regression -

~2000

0
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* Conclusions
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Conclusions

 Demonstrated we can accurately predict the performance of systems
by using Deep Learning models — both DL models and SPEC2017

* DL outperforms Linear approaches — often by a lot
* (1D) CNNs work the best, ResNet doesn’t work well here

* A Neural Architecture Search reveals improvements in results
* More searching could improve, but diminishing returns

 Random Forest is a reasonable alternative — for main cases
* More features would improve performance — break down differences

stephen.mcgough@newcastle.ac.uk

https://github.com/CDECatapult/ml-performance-prediction https://github.com/cengizmehmet/BenchmarkNets
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