
Autonomous

Zheng Wang

Towards

School of Computing

University of Leeds

Compiler Design Using

Machine Learning

Chris Cummins

Pavlos Petoumenos

Hugh Leather

Work in collaboration with

William OgilvieHuanting Wang

Guixin Ye

Zhanyong Tang

Better compiler = happier
users

•Faster binary = better user experience

•Lower hardware requirement or power = saved

Writing compiler optimisation heuristics by hand is time-
consuming and hard

•Machine learning promises:

Better compilers

Less development cost

• A model is really just a way of fitting a curve to data

Learn to search the optimisation space

Search algorithm

Choose a (valid) transformation

Iterate

a[1] = b[1] +c[1]
a[2] = b[2] +c[2]
a[3] = b[3] +c[3]
a[4] = b[4] +c[4]
a[5] = b[5] *c[5]

{a[1], a[2]}, {a[32],a[43]}, {a[3], a[4]}

{a[1],a[2]}, {a[32],a[43]}, {a[3],a[4]}

a[1:2] = b[1:2] +c[1:2]
a[3] =b[3]+c[3]
a[4] =b[4]+c[4]
a[5] =b[5]*c[5]

New State
State

Evaluate the Reward

(Speedup or code size)

ML algorithm

Slides adapted from Saman Amarasinghe @ MIT

ML design space

Reward

Functions

State

Functions

Transition

Functions

Hyperparame

ters

ML Search

Algorithms

Measurement

Environment

programs

ML components for compiler search

5

6

• A model is really just a way of fitting a curve to data

Supersonic: AutoML for compiler
optimisation

Developers describes the compiler

problem

Automatically selected

and Tuned ML

components

Python library

H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather, Z. Wang,

Automating Reinforcement Learning Architecture Design for Code Optimization, CC 2022

Lowering the barrier of integrating ML into compilers

• A model is really just a way of fitting a curve to data

User defines the search space

import Supersonic as ss

actions=[“-O3", ...]

class task(ss.PolicyInt):

def __init__(self, benchmarks, *arg):

#Initialise an environment

def run(self):

#How to execute the compiled code

def step(self, code, action):

#take an action to transform/compile the code

Transformation options

Benchmarks for tuning

Measurement interface

How to apply an action

Automatically find and tune the ML
architecture

Task

definition

Multi-armed bandit based

algorithm

ML architecture search

Chosen ML components

(e.g., search algorithm,

reward function, state

representation, etc.)

Hyper-parameter

tuning

Python API

ready to use

Supersonic

Optimizing Image

Pipelines

Case studies

Neural Network

Code Generation

Code Size

Reduction
Superoptimization

 3 prior methods 4x prior methods  7x prior methods  4 prior methods

9

(Halide)
(TVM)

Compare to hand-tuned ML approaches

Even better than hand-crafted ML

0,5

1

1,5

2

2,5

3

3,5

Image pipeline

(Halide)

DNN code

generation (TVM)

Code size reduction Superoptimisation

S
p

e
e

d
u

p
/I

m
p

ro
ve

m
e

n
t

(X
)

Use a GPU

Use a CPU

Target decision

boundary

ML for predictive modelling

Which

processor is

faster?

Use a GPU

Use a CPU

We actually have:

Use a GPU

Use a CPU

Learned decision

boundary

This would give us a model like:

Insufficient training data give an inaccurate model

Use a GPU

Use a CPU

Target decision

boundary

Learned decision

boundary

from this to this

What we need

model source distr.

71 benchmarks, 1,000 synthetic benchmarks

0

1

2

3

4

5

6

AMD NVIDIA

State-of-the-art

CLGenS
p

e
e

d
u

p

1.26x

3.56x

2.5x

5.04x

C Cummins, P Petoumenos, Z Wang, H

Leather, Synthesizing Benchmarks for

Predictive Modeling, CGO 2017

Language agnostic

• Generate JavaScript (JS) programs to test JS

compilers

• Uncovered 170+ unique bugs from
Chrome V8 , Safari JavaScriptCore, MS edge ChakraCore,

Firefox SpiderMonkey, etc.

142 bugs have been verified, 120+ have been fixed.

G. Ye, Z. Tang, S. Tan, X. Sun, Z. Wang, Automated Conformance Testing

for JavaScript Engines via Deep Compiler Fuzzing, PLDI 2021

ML for predictive modelling– Recap

Use a GPU

Use a CPU

Target decision

boundary

Labelling

training

programs can

be very

expensive

Well, we actually only to

profile these.

feature 1

Use a GPU

Use a CPU

Target decision

boundary

So these were a complete

waste of time!

feature 1

Random profiling inevitably leads to redundancy

Use a GPU

Use a CPU

What do we do about it?

• We cannot know where the informative examples lie

• But, we can let the algorithm make an educated

guess – active learning

Use a GPU

Use a CPU

Target decision
boundary

We start with a few random

examples

feature 1

Use a GPU

Use a CPU

We form multiple

intermediate models

feature 1

Use a GPU

Use a CPU

Each with a distinct algorithm

feature 1

Use a GPU

Use a CPU

A “committee” of different

models

feature 1

Use a GPU

Use a CPU

So what example do we learn

from next?

feature 1

Broadly the “Committee” will

agree…

feature 1

Use a GPU

Use a CPU

Sometimes, they

disagree…

feature 1

Disagreement regions hold the greatest potential to

improve the collective knowledge — learn from there!

Use a GPU

Use a CPU

We select one of these examples

to label properly

feature 1

Use a GPU

Use a CPU

Then rebuild the intermediate

models

feature 1

Notice the region of disagreement has shrunk

Eventually the distinct models will converge

Use a GPU

Use a CPU

4x faster on average

SPAPT Benchmarks

Optimisation space : 5x108 to 1x1027

We reduce the profiling time for labelling by 4x.

Minimizing the cost of iterative compilation with active learning, CGO 2017

Challenges ahead

12/07/2022 33

Representation matters

12/07/2022 34

Images Convolutional Neural

Networks (CNN)

Social

Networks

Graph Convolutional Networks (GCN)

Gated Graph Neural Networks (GGNN)

Graph Transformer Networks (GTN)
Text Transformer based Models

Slides adapted from Saman Amarasinghe @ MIT

void memset(void* mem_d, len_t val...)

Program Control and Data Graph

Graph Neural Network

Embeddings

(code representation)

Heuristic Network

G. Ye, Z. Tang, H. Wang, J. Fang, S. Huang, Z. Wang, Deep Program Structure

Modeling Through Multi-Relational Graph-based Learning, PACT 2020.

How to best represent programs?

void memset(void* mem_d, len_t val...)

Program Control and Data Graph

Graph Neural Network

Embeddings

(code representation)

Heuristic Network

How to best represent programs?

Small changes in the program graph (e.g., the loop trip count)

can lead to a significant change in the program behaviour.

Semantic properties?

Cloud-based compilation

• Use cloud servers for large-scale
compiler analysis and optimisation
– E.g., pointer alias analysis on large program graphs

Build LLVM in 90 seconds

From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of
Transient Functional Containers, ATC 2019

12/07/2022 37

Conclusions

•AutoML to lower entry barriers for ML in
compilers

•General-purpose benchmark synthesis

•Low-cost profiling with active learning

•Many interesting problems ahead

Machine learning in compilers (papers, tools and datasets):
https://github.com/zwang4/awesome-machine-learning-in-compilers

