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Better compiler = happier 
users

•Faster binary = better user experience

•Lower hardware requirement or power =       saved 

Writing compiler optimisation heuristics by hand is time-
consuming and hard

•Machine learning promises:

Better compilers

Less development cost



• A model is really just a way of fitting a curve to data

Learn to search the optimisation space

Search algorithm

Choose a (valid) transformation

Iterate

a[1] = b[1] +c[1]
a[2] = b[2] +c[2]
a[3] = b[3] +c[3]
a[4] = b[4] +c[4]
a[5] = b[5] *c[5]

{a[1], a[2]}, {a[32],a[43]}, {a[3], a[4]}

{a[1],a[2]}, {a[32],a[43]}, {a[3],a[4]}

a[1:2] = b[1:2] +c[1:2]
a[3] =b[3]+c[3]
a[4] =b[4]+c[4]
a[5] =b[5]*c[5]

New State
State

Evaluate the Reward 

(Speedup or code size)

ML algorithm

Slides adapted from Saman Amarasinghe @ MIT
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Environment

programs

ML components for compiler search
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• A model is really just a way of fitting a curve to data

Supersonic: AutoML for compiler 
optimisation

Developers describes the compiler 

problem

Automatically selected 

and Tuned ML 

components

Python library

H. Wang, Z. Tang, C. Zhang, J. Zhao,  C. Cummins, H. Leather, Z. Wang, 

Automating Reinforcement Learning Architecture Design for Code Optimization, CC 2022

Lowering the barrier of integrating ML into compilers



• A model is really just a way of fitting a curve to data

User defines the search space

import Supersonic as ss

actions=[“-O3",  ... ]

class task(ss.PolicyInt):

def __init__(self, benchmarks,  *arg):

#Initialise an environment

def run(self):

#How to execute the compiled code

def step(self, code, action):

#take an action to transform/compile the code

Transformation options

Benchmarks for tuning

Measurement interface

How to apply an action



Automatically find and tune the ML 
architecture

Task 

definition

Multi-armed bandit based 

algorithm

ML architecture search

Chosen ML components

(e.g., search algorithm, 

reward function, state 

representation, etc.)

Hyper-parameter 

tuning

Python API 

ready to use

Supersonic



Optimizing Image 

Pipelines

Case studies

Neural Network 

Code Generation

Code Size 

Reduction
Superoptimization

 3 prior methods 4x prior methods  7x prior methods  4 prior methods
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(Halide)
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Compare to hand-tuned ML approaches



Even better than hand-crafted ML 
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Use a GPU

Use a CPU

Target decision 

boundary

ML for predictive modelling

Which 

processor is 

faster?



Use a GPU

Use a CPU

We actually have:



Use a GPU

Use a CPU

Learned decision 

boundary

This would give us a model like:



Insufficient training data give an inaccurate model

Use a GPU

Use a CPU

Target decision 

boundary

Learned decision 

boundary



from this to this

What we need



model source distr.



71 benchmarks, 1,000 synthetic benchmarks
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AMD NVIDIA

State-of-the-art

CLGenS
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1.26x

3.56x

2.5x

5.04x

C Cummins, P Petoumenos, Z Wang, H 

Leather, Synthesizing Benchmarks for 

Predictive Modeling, CGO 2017



Language agnostic

• Generate JavaScript (JS) programs to test JS 

compilers

• Uncovered 170+ unique bugs from
Chrome V8 , Safari JavaScriptCore, MS edge ChakraCore,    

Firefox SpiderMonkey, etc.

142 bugs have been verified, 120+ have been fixed. 

G. Ye, Z. Tang, S. Tan, X. Sun, Z. Wang,  Automated Conformance Testing 

for JavaScript Engines via Deep Compiler Fuzzing, PLDI 2021



ML for predictive modelling– Recap

Use a GPU

Use a CPU

Target decision 

boundary

Labelling 

training 

programs can 

be very 

expensive



Well, we actually only to 

profile these.

feature 1

Use a GPU

Use a CPU

Target decision 

boundary



So these were a complete 

waste of time!

feature 1

Random profiling inevitably leads to redundancy

Use a GPU

Use a CPU



What do we do about it?

• We cannot know where the informative examples lie

• But, we can let the algorithm make an educated 

guess – active learning

Use a GPU

Use a CPU

Target decision 
boundary



We start with a few random 

examples

feature 1

Use a GPU

Use a CPU



We form multiple 

intermediate models

feature 1

Use a GPU

Use a CPU



Each with a distinct algorithm

feature 1

Use a GPU

Use a CPU



A “committee” of different 

models

feature 1

Use a GPU

Use a CPU



So what example do we learn 

from next?

feature 1



Broadly the “Committee” will 

agree…

feature 1

Use a GPU

Use a CPU



Sometimes, they 

disagree…

feature 1

Disagreement regions hold the greatest potential to 

improve the collective knowledge — learn from there!

Use a GPU

Use a CPU



We select one of these examples

to label properly

feature 1

Use a GPU

Use a CPU



Then rebuild the intermediate 

models

feature 1

Notice the region of  disagreement has shrunk

Eventually the distinct models will converge

Use a GPU

Use a CPU



4x faster on average

SPAPT Benchmarks 

Optimisation space : 5x108 to 1x1027

We reduce the profiling time for labelling by 4x.

Minimizing the cost of iterative compilation with active learning, CGO 2017



Challenges ahead

12/07/2022 33



Representation matters

12/07/2022 34

Images Convolutional Neural  

Networks (CNN)

Social  

Networks

Graph Convolutional Networks (GCN)  

Gated Graph Neural Networks (GGNN)  

Graph Transformer Networks (GTN)
Text Transformer based Models

Slides adapted from Saman Amarasinghe @ MIT



void memset(void* mem_d, len_t val...)

Program Control and Data Graph

Graph Neural Network

Embeddings 

(code representation)

Heuristic Network

G. Ye, Z. Tang, H. Wang, J. Fang, S. Huang, Z. Wang, Deep Program Structure 

Modeling Through Multi-Relational Graph-based Learning, PACT 2020.

How to best represent programs?



void memset(void* mem_d, len_t val...)

Program Control and Data Graph

Graph Neural Network

Embeddings 

(code representation)

Heuristic Network

How to best represent programs?

Small changes in the program graph (e.g., the loop trip count) 

can lead to a significant change in the program behaviour.

Semantic properties?



Cloud-based compilation

• Use cloud servers for large-scale 
compiler analysis and optimisation
– E.g., pointer alias analysis on large program graphs

Build LLVM in 90 seconds

From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of 
Transient Functional Containers, ATC 2019

12/07/2022 37



Conclusions

•AutoML to lower entry barriers for ML in 
compilers

•General-purpose benchmark synthesis

•Low-cost profiling with active learning

•Many interesting problems ahead

Machine learning in compilers (papers, tools and datasets):  
https://github.com/zwang4/awesome-machine-learning-in-compilers


