SCALABLE FOUNDATIONS FOR
VERIFIED SYSTEMS PROGRAMMING

Derek Dreyer
Max Planck Institute for Software Systems
(MPI-SWS)

Huawei Software Summit
July 7, 2022

| SR

Heartbleed: Hundreds of thousands of
servers at risk from catastrophicbug |

e

EternalBlue: A retrospective on
one of the biggest Windows
exploits ever

Update now! M02|lla flxes securlty oy YR
vulnerabllltles in Flrefox 94 e T =

Ty e

‘Program testing can be used to show the presence
of bugs, but never to show their absence!”

Jkstra (1970)

lr-V.V

\V/A\VA\

Zea\N N7

1011

Goal of Program Verificat

s
qv]
—
o0
o
—
Q.
)
qv]
-
e
>
Y—
o)
-
o
—
o
o0
o i
—
e
D
—
)
<
)
)
Q
o
)
A
o
o
)
o
—
-
an

10118S.

behave correctly in all execut

Why is Verification Hard?

e Turing (1936): Halting problem
(whether a program terminates)
is undecidable

e Rice (1953): All non-trivial semantic (I/O)
properties of programs are undecidable
by reduction from the halting problem

e So there is no complete method for
automatically verifying programs in general

Why is Verification Hard?

e Turing (1936): Halting problem ﬂ

But we can still build verification tools that are
sound and practically useful!

e S0 there is no complete method for
automatically verifying programs in general

Two compositional approaches to program verification

Type | Program
systems logics

Fe:t P} e {0}

Two compositional approaches to program verification

Type % Program
systems | logics

Fe:t P} e {0}

Typing judgment Hoare triple

Two compositional approaches to program verification

Type % Program
systems | logics

Fe:t P} e {0}

N

Modular program component

Two compositional approaches to program verification

Type % Program
systems | logics

Fe:t P} e {0}

o~

Assumptions

Two compositional approaches to program verification

Type Program
systems logics

Fe:t P} e {0}

N

Results

Two compositional approaches to program verification

Type | Program
systems logics

Fe:t P} e {0}

Two compositional approaches to program verification

Less precise More precise
-—

Type | Program
systems logics
['Fe:7 {P} e {O}
+ Fully automated ¥ Semi-automated or manual

v Widely used by programmers ¥ Mostly used by verif. experts
¥ Shallow specs (e.g. safety) v Deep specs (e.g. correctness)
¥ Restricts coding style + Does not restrict coding style

Two compositional approaches to program verification

How can we marry the benefits of
type systems & program logics together?

+ Fully automated ¥ Semi-automated or manual

v Widely used by programmers ¥ Mostly used by verif. experts
¥ Shallow specs (e.g. safety) v Deep specs (e.g. correctness)
¥ Restricts coding style + Does not restrict coding style

Type Program
systems logics

m

Type Program
systems logics

m

Type Program
systems logics

W

extensibility
m
Type K Program
systems Ir (S logics

W

extensibility
m
Type K Program
systems Ir (S logics

W

extensibility
m
Type K Program
systems Ir (S logics

W

A Longstanding Problem

e Many core systems applications require
low-level control over memory/resources

e Such applications are typically written in

A Longstanding Problem

e Many core systems applications require
low-level control over memory/resources

e Such applications are typically written in

UNSAFE! &

C&C++

An update on Memory Safety in Chrome
September 21, 2021

from Google Security Blog

Last year, we showed that more than 70% of our severe security bugs are memory
safety problems. That is, mistakes with pointers in the C or C++ languages which cause

memory to be misinterpreted.

T ——— L

from Microsoft Security We need a safer systems programming language

Security Research & Defense | By MSRC Team [July 18, 2019 /| Memory Safety, Rust, Safe

Re SP Onse Center Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security

vulnerabilities that Microsoft fixes and assigns a CVE (Common Vulnerabilities and
Exposures) are due to memory safety issues. This is despite mitigations including intense

code review, training, static analysis, and more.

An update on Memory Safety in Chrome
September 21, 2021

from Google Security Blog

Last year, we showed that more than 70% of our severe security bugs are memory

safety problems. That is, mistakes with pointers in the C or C++ languages which cause

memory to be misinterpreted.

from Microsoft Secur itY We need a safer systems programming language

Security Research & Defense /| By MSRC Team / July 18, 2019 /| Memory Safety, Rust, Safe

Re SP Onse Center Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security

vulnerabilities that Microsoft fixes and assigns a (Common Vulnerabilities and

Exposures) are due to memory safety issues. This is despite mitigations including intense

code review, training, static analysis, and more.

T — T

An update on Memory Safety in Chrome
September 21, 2021

from Google Security Blog

Last year, we showed that more than 70% of our severe security bugs are memory

g mistakes with pointers in the C or C++ languagesy

memory to be misinterpreted.

safety problems. That i hich cause

from Microsoft Secur itY We need a safer systems programming language

Security Research & Defense /| By MSRC Team / July 18, 2019 /| Memory Safety, Rust, Safe

Re SP Onse Center Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security

vulnerabilities that Microsoft fixes and assigns a (Common Vulnerabilities and

Exposures) are due to memory safety issues. This is despite mitigations including intense

code review, training, static analysis, and more.

T — T

An update on Memory Safety in Chrome
September 21, 2021

from Google Security Blog

Last year, we showed that more than 70% of our severe security bugs are memory

g mistakes with pointers in the C or C++ languagesy

memory to be misinterpreted.

safety problems. That i hich cause

from Microsoft Secur itY We need a safer systems programming language

Security Research & Defense [By MSRC Team [July 18, 2019 [Memory Safety, Rust, Safe

Re SP Onse Center Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security

vulnerabilities that Microsoft fixes and assigns a (Common Vulnerabilities and

Exposures) are due to memory safety issues. This is despite mitigations including intense

code review, training, static analysis, and more.

T — =

Rust:

The Future of Safe Systems Programming?

In development since 2010, with 1.0 release in 2015

e Mozilla used Rust to build Servo, a next-gen
browser engine, later incorporated into Firefox

Rust is the only “systems PL’ to provide...
e Low-level control a la modern C++
e Strong safety guarantees

e Industrial development and backing

Many major companies using Rust in production

Rust
ALl e In 2021, the Rust Foundation was formed, incl.

Amazon, Google, Huawei, Meta, Microsoft, Mozilla

Rust:

The Future of Safe Systems Programming?

| In development since 2010, with 1.0 release in 2015
/ e Mozilla used Rust to build Servo, a next-gen

browser engine, later incorporated into Firefox

The “safety” of Rust is central to its promise.
But how do we know Rust is safe?

Rust

R e In 2021, the Rust Foundation was formed, incl.

Amazon, Google, Huawei, Meta, Microsoft, Mozilla

Core Idea of Rust

Core Idea of Rust

“\ L

Core Idea of Rust

Core Idea of Rust

Core Idea of Rust

y Z

X \ \

Unrestricted mutation and aliasing lead to:

e use-after-free errors (dangling references)
e data races

@ iterator invalidation

Core Idea of Rust

y Z

X \ \

Rust prevents all these errors using

a sophisticated “ownership” type system

But sometimes you need
mutation + aliasing!

Pointer-based data structures
e c.g. Doubly-linked lists

Synchronization mechanisms:
e c.g. Locks, channels, semaphores

Memory management:
e c.g. Reference counting

The Reality of Rust

Arc ...standard APIs... Mutex
‘

Code written in the
safe fragment of the language

RefCell Channel

The Reality of Rust

...standard APlIs...

pub fn borrow(&self) —> Ref<T> {
match BorrowRef::new(&self.borrow) {
Some(b) => Ref {
_value: unsafe { &kself.value.get() },
_borrow: b,

The Reality of Rust
Arc //K\\‘ ...standard APIs... é;: Mutex

Claim API developers want to make:

Even though these APIs are implemented
using unsafe operations, they nevertheless
constitute a safe extension to Rust.

Goal: Develop 1st formal foundations for Rust

e Use these foundations to verify the safety of
the Rust core type system and std APIs

e Give Rust developers the tools they need to
safely evolve the language

Key Challenge

e Standard “syntactic safety” approach of Wright
and Felleisen (1994) will not work for Rust!

- Not applicable to programs with unsafe code

e Need to generalize to semantic safety

- An API is semantically safe if no (well-typed)
client of it will ever encounter unsafe behavior

Semantic Safety

W #
semantic logical
model satisfaction
Safety API

API . .
contract implementation

Semantic Safety

v

Safe
W
semantic logical f]_’ agment
model satisfaction
Safety API

API . .
contract implementation

Semantic Safety

W #
semantic logical
model satisfaction
Safety API

API . .
contract implementation

Semantic Safety

...standard APIs... Mutex
‘

Code written in the
safe fragment of the language

Channel

Semantic Safety

Semantic Safety

A :|
semantic logical
model satisfaction -
Safet API
API y | |
contract implementation

RustBelt [POPIL’18, POPL20]:
Veritying semantic safety for @

Heart of the Problem

How do we define our
semantic model of Rust?

Key Prior Work on
Semantic Models

e Milner (1978). Used a “logical-relations™
model based on denotational semantics.
But didn't scale to richer type systems.

e Appel-McAllester (2001). Introduced a
“step-indexed” logical-relations model of
recursive types using operational semantics.

e Ahmed (2004). Scaled step-indexed model

to handle higher-order state using recursive
Kripke structures. Landmark PhD dissertation.

Key Prior Work on
Semantic Models

5

Ahmed’s work was a major inspiration for me,
but there was a scalability problem...

recursive types using operational semantics.

e Ahmed (2004). Scaled step-indexed model
to handle higher-order state using recursive
Kripke structures. Landmark PhD dissertation.

Theorem 3.21 (Application)
If T is a type environment, ey and es are (possibly open) terms, and 71 and 1o are
types such that I'Epreq i1 — 1 and U Eypeg - 11 then T'Eyy (e1e2) @ To.

PROOF: We must prove that under the premises of the theorem, for any k& > 0,
we have I’ |=]’\“4 (e1e3) : 2. More specifically, for any o and ¥ such that o ¢ I
we must show o(ejes) o To. From the premise I' Fy e; : 71 — 7» we have
o(er1) gw 1 — To. To show o(ejes) :kw T2, suppose S : ¥ for some store S.
Then, from o(ey) :xw 71 — 7 it follows that (S, 0(e1)) is safe for k steps. Either
(5, 0(ey)) reduces for k steps without reaching a state (S’ v1) where v is a value —
in which case (S5, 0(ej e5)) does not generate a value in less than k steps and hence
o(e1es) ipw T2 (for any 75) — or the value v; is a lambda expression Ax.e. In the
latter case, since o(e1) o 71 — 72 and (S, 0(ey)) —7, (S, Ax.e), where j < k and
irred(S’, A\z.e), it follows that there exists a W' such that (k, V) C (k — 5, V') and
S" k—; U and (k — 5,V Ax.e) € 11 — .

From o iy I' it follows that o(x) ¢ I'(x) for all variables x € dom(I'). A
type environment I' is a mapping from variables to types. Hence, since (k, V) C
(k —7,¥), it follows that o(x) x—;w I'(x) for all x+ € dom(I') — that is, we have
o p—ju I'. Now, from premise I' Fy; e : 7, since k —j > 0, §" _; ¥', and
o k—ju L', we have o(eq) —ju 71. It follows that (S’ o(eq)) is safe for k — j
steps, i.e., either (5, 0(es)) does not generate a value in fewer than k — j steps —
in which case, (5,0(e;e3)) does not generate a value in fewer than k steps so we
have o(ejez) pu T2 (for any 75) — or (', 0(es)) —4, (S”,v) where i < k — j.
In the latter case, (S,0(ejes)) —4r" (S”, (Az.e)v) where j + i < k. Also, since
o(ez) :k_jur 11 and (S, o(ez)) —4, (5", v) for i < k — j and irred(S”,v), it follows
that there exists a " such that (k — j,¥') C (k —j — 4, V"), 8" _;_; ¥”, and
<]€ —] — ’i,\IJ//,U> € T1.

Pick memory typing ¥* = |U"|;_,;_;_1. Let k* =k —j —i—1. Then the follow-
ing information-forgetting state extension holds: (k — j — ¢, ¥”) C (k*, U*). Since
(k—j—14,¥" v) € 7, and 11 is a type, we have (k*, U* v) € 7. The definition
of — then implies that e[v/z] ;4 y- To. But we now have (3,0 (e ep)) —%
(8" elv/z]), (k,¥) C (k*,¥*), §" :» U* and elv/z] 1+ g+ T2. By Definition 3.6
(Expr: Type), this means that if (5", e|v/x]|) generates a value in fewer than k* steps
then that value will be of type 7. Hence, we may conclude that o(ej e2) :xw T2 as
we wanted to show. []

-\~ /)) S oo B o - I R S Jg

1 €2)) does not generate a Value in fewer than & steps s

(for any) — or (8,0(ez)) —,; (S”,v) where 7 < k
,o(erey)) — JH (S”, (Ax.e)v) Wherej i < k. Also,
' o(es)) — (S” v) for ¢ < k — j and irred(S”, v), it fo

" such that (k‘ — 5,9 (k—7—1,U"), S oy U
ng W' = |U" |, ;1. Let &* =k —7—1—1. Then the fc
ting state extension holds: (kK —j — ¢, ¥") C (k*, ¥*).
. and 7 is a type, we have (k*, U*, > € 7,. The defir
at elv/x] px g+ To. But we now have (S,0(eje3)) —

(k*,0*), 8" 1« U* and elv/z| g+ g T2. By Definitio
ans that if (S”, elv/z]) generates a value in fewer than k*
e of type 7o. Hence, we may conclude that o(e; e2) ik w

-\~ /)) S oo B o - S R S Jg

1 €2)) does not generate a va,lue in fewer than & steps s

(for any) — or (8,0(ez)) —,; (S”,v) where 7 < k
Jo(eres)) —2 (8", (\x.e)v) Wherej i < k. Also,
: ' ' ared(S”,v), it fo

'/ : e
ik o (6}21))th Extraneous low-level details anr N
SUC & that obscure the proof idea!) ko T

ng U = |07)i, 1 Letk*—k 7 —1—1.)Then the fo

'ting state extension holds: (kK —j — 1, V") C (k*,U*). |
. and 71 is g type, we have <k*,\IJ*, > € 7. The defir
at elv/x| gt e- . But we now have (5,0(ejey)) —

(k*,\IJ*), and e[v/z] g« g+ T2. By Definitio
ans that if (S”, e[v/z]) generates a value in fewer than k*
e of type 1. Hence, we may conclude that o(e; e2) v

-\~ /)) S B o - S S S J

1 €2)) does not generate o value in fewer than & steps S
(for any) — or (5", 0(e2)) =" (S",v) where 1 < k

,o(e \Iso,
' o(e it fo
" suc C 0
ng W he fc
ting U*).
| anc defir
at 6[) —

(k*, nitio
ans t n k*

e of type T2. Hence, we may conclude that o(e; e2) ik v

Theorem 3.21 (Application)
If T is a type environment, ey and es are (possibly open) terms, and 71 and 1o are
types such that I'Epreq i1 — 1 and U Eypeg - 11 then T'Eyy (e1e2) @ To.

PROOF: We must prove that under the premises of the theorem, for any k& > 0,
we have I’ |=]’\“4 (e1e3) : 2. More specifically, for any o and ¥ such that o ¢ I
we must show o(ejes) o To. From the premise I' Fy e; : 71 — 7» we have
o(er1) gw 1 — To. To show o(ejes) :kw T2, suppose S : ¥ for some store S.
Then, from o(ey) :xw 71 — 7 it follows that (S, 0(e1)) is safe for k steps. Either
(5, 0(ey)) reduces for k steps without reaching a state (S’ v1) where v is a value —
in which case (S5, 0(ej e5)) does not generate a value in less than k steps and hence
o(e1es) ipw T2 (for any 75) — or the value v; is a lambda expression Ax.e. In the
latter case, since o(e1) o 71 — 72 and (S, 0(ey)) —7, (S, Ax.e), where j < k and
irred(S’, A\z.e), it follows that there exists a W' such that (k, V) C (k — 5, V') and
S" k—; U and (k — 5,V Ax.e) € 11 — .

From o iy I' it follows that o(x) ¢ I'(x) for all variables x € dom(I'). A
type environment I' is a mapping from variables to types. Hence, since (k, V) C
(k —7,¥), it follows that o(x) x—;w I'(x) for all x+ € dom(I') — that is, we have
o p—ju I'. Now, from premise I' Fy; e : 7, since k —j > 0, §" _; ¥', and
o k—ju L', we have o(eq) —ju 71. It follows that (S’ o(eq)) is safe for k — j
steps, i.e., either (5, 0(es)) does not generate a value in fewer than k — j steps —
in which case, (5,0(e;e3)) does not generate a value in fewer than k steps so we
have o(ejez) pu T2 (for any 75) — or (', 0(es)) —4, (S”,v) where i < k — j.
In the latter case, (S,0(ejes)) —4r" (S”, (Az.e)v) where j + i < k. Also, since
o(ez) :k_jur 11 and (S, o(ez)) —4, (5", v) for i < k — j and irred(S”,v), it follows
that there exists a " such that (k — j,¥') C (k —j — 4, V"), 8" _;_; ¥”, and
<]€ —] — ’i,\IJ//,U> € T1.

Pick memory typing ¥* = |U"|;_,;_;_1. Let k* =k —j —i—1. Then the follow-
ing information-forgetting state extension holds: (k — j — ¢, ¥”) C (k*, U*). Since
(k—j—14,¥" v) € 7, and 11 is a type, we have (k*, U* v) € 7. The definition
of — then implies that e[v/z] ;4 y- To. But we now have (3,0 (e ep)) —%
(8" elv/z]), (k,¥) C (k*,¥*), §" :» U* and elv/z] 1+ g+ T2. By Definition 3.6
(Expr: Type), this means that if (5", e|v/x]|) generates a value in fewer than k* steps
then that value will be of type 7. Hence, we may conclude that o(ej e2) :xw T2 as
we wanted to show. []

Theorem compat_app I' el eZ2 A B :

[el : TArrow AB > T =e2 : A>T = App el e2 :
Proof.

1Intros (elTyped el2Typed ? ? 7)) "#HI".

use_bind (AppLCtx _) vl "#Hv1l" elTyped.
use_bind (AppRCtx _) v2 "#HvZ2" elTyped.

by 1Apply "Hv1". . —
Qed. Proof in Iris (in Coq)

Iris dramatically simplifies
the development of step-indexed models,
while also being machine-checked!

[el e2 A B :
[el : TArrow AB s T =e2 : A>T = App el e2 : B.
Proof.

1Intros (elTyped el2Typed ? ? 7)) "#HI".
use_bind (AppLCtx _) vl "#Hv1l" elTyped.
use_bind (AppRCtx _) v2 "#HvZ2" elTyped.

by 1Apply "Hv1". . —
Qed. Proof in Iris (in Coq)

Starting B Separation

Point: VASEN Logic

Extension of Hoare logic (O’Hearn-Reynolds-..., 1999)
e For reasoning about pointer-manipulating programs

Major influence on many verification & analysis tools
e c.g. Infer, VeriFast, Viper, Bedrock, jStar, ...

Separation logic = Ownership logic
e Perfect fit for modeling Rust’s ownership types!

. 4

Owicki-Gries (1976)

Rely-Guarantee (1983) CSL (2004)

SAGL (2007) Bornat-al (2005) RGSep (2007)

Deny-Guarantee (2009) Gotsman-al (2007)
LRG (2009) RSL (2013)
CAP (2010) |
Jacobs-Piessens (201 1)
HLRG (2010)
RGSim (2012) HOCAP (2013)

SCSL (2013)

Liang-Feng (201 3) TaDA (2014)

CAP (2014)
CaReSL (2013)

GPS (2014) Iris (2015) ColoSL (2015) FCSL (2014)

rely

Ca ReSL CF Vb g bg. (m[b] * P) i =1 a (z. 3V g:_lllirr b, x[6'] * Q)

UpDISL
CI—{ bo :*DP} i a {m.EIb’. b 2*Q}

['A| ®F stable(P) A | @+ Vy. stable(Q(y))
IA|OPFneC TA|dFYzeX. (z,f(x)eT(A)V f(z) ==z
. | ®FVee X. (AP ®acale]? o *>1(2)) ¢ (Qz)* oI(f(x))) M)
ICAP: L

' @+ (A). (P ®acalaly, * region(X, T, I,n))

07)

ATOMIC

C

z. Q(x) * region x n))“
(3. Q) » region({/()}, T, I,m)) 01 1)

HLRG

Use atomic rule
ad A Vre X (z f(x)) € Te(G)”
TaDA: NAEVWzeX. (p, | I(ts(x) *p(x) * [Cla) C AyeY.(gp(z,y) | I(t3(f(2))) * a(x,y))

A+ 1 AR Wz e X.(py | t2(2) * p(z) * [Gla) C Ny € Y. {qp(z,y) | t2(f(z)) * q(z,y))

2013)

Liang-Fe¢

GPS (2014) (2014)

rely guar
CF Vb, by. (n[b] * P) i =y a (z. 3" I b. 7] * Q)
CaReSL: :

UPDISL
cr{[bo]t +oP} i a {m.EIb’. b 2*Q}

A | ®F stable(P)
FA|dFned j

(CAP- "2

)01 1
HLRG

Use atomic rule
ad A Vre X (z f(x)) € Te(G)”
CAEVzeX. (p, | I(t3(z)) *p(z) * [Gla) C AyeY.(gp(z.y) | I(t2(f(x))) * q(z,y))

A+ 1 AR Wz e X.(py | t2(2) * p(z) * [Gla) C Ny € Y. {qp(z,y) | t2(f(z)) * q(z,y))

2013)

Liang-F¢

GPS (2014))

Key Idea of Iris

e Unify the field of separation logic using a
single powerful mechanism:

Higher-order ghost state

Enables encoding of Enables users to define
step-indexed models custom resources

(see “Iris from the Ground Up’, JFP 18, for details)

Key Idea of Iris

e Unify the field of separation logic using a
single powerful mechanism:

With higher-order ghost state,
Iris lets you derive and compose advanced
proof rules within one unifying framework.

(see “Iris from the Ground Up’, JFP’18, for details)

Impact of Iris & RustBelt

Iris
e 60 papers (28 in POPL/PLDI), 7 PhD theses

e Adopted as core tech. by systems verification
researchers at MI'T, BedRock, Meta

RustBelt

e Most-cited POPL/PLDI paper of 2018
e Pioneering effort in Rust verification & using
program logics to prove extensible type safety

extensibility
m
Type K Program
systems Ir (S logics
'

W

RefinedC

First verification tool for C programs that is
e Automated: user gives only specs/annotations

e Foundational: generates proofs in Coq

How?

e Refinement type system to encode functional
invariants on C data types

e Semantic model of RefinedC types in Iris

e RefinedC typing rules formulated in Lithium,
a restricted, automatable fragment of Iris

void append(list_t %1, list_t k) {
if(x1 == NULL) {

(:. *L = K;
y } else {
append (&(*1)->next, k);

}
}

iIntros (p) "[Hxs Hys] H".

iLob as "IH" forall (1 xs 1’ ys p).

destruct xs as [| x xs’]; iSimplifyEq.

- wp_rec. wp_let. wp_match. by iApply "H".

- iDestruct "Hxs" as (10 hdO) "(% & Hx & Hxs)".
iSimplifyEq. wp_rec. wp_let. wp_match. wp_load.
wp_let. wp_proj. wp_bind (app _ _)I%E.
iApply ("IH" with "Hxs Hys"). iNext. ilntros.
wp_let. wp_proj. wp_store. iSimplifyEq. iApply "H".
iExists 10, v. iFrame. done.

Iris:

void append(list_t x1, list_t k) {
if(x1 == NULL) {

(:. *L = K;
. } else {
append (&(*x1)=->next, k);

}
}

RefinedC: repeat 1iRStep; liShow.

void append(list_t %1, list_t k) {
if(*x1 == NULL) {

(:. *L = K;
. } else {
append (&(*1)->next, k);

}
}

Distinguished paper and artifact awards
at PLDI’21

extensibility
m
Type K Program
systems Ir (S logics
'

W

Simuliris
[POPL:22]

Cosmo
[ICFP’20,21]

iGPS
[ECOOP’17]

Type

systems

Perennial
[SOSP’19]

Transfinite
Iris [PLDI’21]

GoJournal
[OSDI'21]

iRCI11
[POPL20]

XtensTibility

Program

K
Iris) e

Rel.oC
[LICS 18]

automation

Actris

[POPL20]
¢eDOT

[ICFP’20]

Research Vision
Integrating Verification
into Real-World Systems

Systems Verification

Impressive sys. verif. projects in past 15 years:

compce
spec

Security. Performance. Proof.

CERTIKOS

Systems Verification

Impressive sys. verif. projects in past 15 years:

compce
spec

Some key limitations to their scope:

Security. Performance. Proof.

CERTIKOS

e Centered exclusively around the C language
e Idealized code/semantics to simplify verif.

e Huge manual proof effort by experts

Systems Verification

Impressive sys. verif. projects in past 15 years:

Goal: Develop systems verification tools

that overcome these limitations!

e Idealized code/semantics to simplify verif.

e Huge manual proof effort by experts

Direction #1:
Rust Verification

Pxrust—xi
(from ETH)

 Safe + unsafe code Verif. is automated
% Verif. is manual ¥ Only safe code

Direction #1:
Rust Verification

Pxrust—xi
(from ETH)

 Safe + unsafe code Verif. is automated
% Verif. is manual ¥ Only safe code

Goal: Tool that’s automated & handles unsafe code

e In development: RustHornBelt, RefinedRust

e Possible verification goal: Redox microkernel

Direction #2: Realism

Prior work employs idealized coding/semantics

e Restricts coding patterns (e.g. allocate all data in one
big array, prohibit taking address of local variables)

e Assumes strong concurrency semantics (e.g. SC)

e Uses idealized model of low-level system features
(e.g. virtual memory, interrupts, exceptions, TLB)

Direction #2: Realism

Prior work employs idealized coding/semantics

e Restricts coding patterns (e.g. allocate all data in one
big array, prohibit taking address of local variables)

e Assumes strong concurrency semantics (e.g. SC)

e Uses idealized model of low-level system features
(e.g. virtual memory, interrupts, exceptions, TLB)

Ongoing: Verifying Linux pKVM hypervisor
e To be deployed on billions of Android devices

e Goal: Use RefinedC to verifty Armv8 machine code
against authoritative Armv8 semantics

e Joint with Sewell, Hur, et al., funded by Google

Direction #3: Usability

1 struct [[rc::refined_by("a: nat")]] mem_t {

Problem: Fven automated i, fiolden & inoesioe 1)) steet Ten:

3 [[rc::field("&own<uninit<a>>")]1] unsigned char* buffer;

tools like RefinedC involve :”

6 [[rc:

some annotation burden ore.

8 [[rc:
9 [[rc::

:parameters("a: nat", "n: nat", "p: loc")]]
-args ("p @ &wn<a @ mem_t>", "n @ int<size_t>")]1]
:returns("{n<a} @ optional<&own<uninit<n>>, null>")]]

ensures("own p : {n <a?a-n:a} @mem_t")]]

1 10 void* alloc(struct mem_t* d, size_t sz) {
‘ e‘g' users muSt erte 11 if(sz > d->len) return NULL;
12 d->len -= sz;

triCky SPeCS manually 13 return d->buffer + d->len;

14 }

Direction #3: Usability

1 struct [[rc::refined_by("a: nat")]] mem_t {

PrOblem: Even aUtomated 2 [[rc::field("a @ int<size_t>")]] size_t len;

3 [[rc::field("&own<uninit<a>>")]] unsigned char* buffer;

tools like RefinedC involve >

6 [[rc::parameters("a: nat", "n: nat", "p: loc")]]

b d 7 [[rc::args ("p @ &own<a @ mem_t>", "n @ int<size_t>")]]

Some annOtatlon ur en 8 LLrc::returns("{n<a} @ optional<&own<uninit<n>>, null>")]]
9 [[rc::ensures("own p : {n <a?a-n: a} @mem_t")]1]

1 10 void* alloc(struct mem_t* d, size_t sz) {
® c.g. users must write t if(sz > d->len) return NULL;
. 12 d->len -= sz;
trICky SPeCS manually 13 return d->buffer + d->len;

14 }

Idea: Infer specs using biabduction (POPL09)

e Inferring full functional correctness specs is
likely impractical, but precision can be improved
by allowing user to “sketch” specs

Thank you!

Lris-project.org

