
SCALABLE FOUNDATIONS FOR  
VERIFIED SYSTEMS PROGRAMMING

Derek Dreyer

Max Planck Institute for Software Systems 

(MPI-SWS)

Huawei Software Summit 
July 7, 2022

“Program testing can be used to show the presence
of bugs, but never to show their absence!”

— Dijkstra (1970)

Goal of Program Verification: 
Build tools to establish rigorously that programs

behave correctly in all executions.

Why is Verification Hard?

• Turing (1936): Halting problem 
(whether a program terminates) 
is undecidable 

• Rice (1953): All non-trivial semantic (I/O)
properties of programs are undecidable 
by reduction from the halting problem

• So there is no complete method for
automatically verifying programs in general

Why is Verification Hard?

• Turing (1936): Halting problem 
(whether a program terminates) 
is undecidable 

• Rice (1953): All non-trivial semantic (I/O)
properties of programs are undecidable 
by reduction from the halting problem

• So there is no complete method for
automatically verifying programs in general

But we can still build verification tools that are 
sound and practically useful!

Type 
systems

Program 
logics

{P} e {Q}Γ ⊢ e : τ

Two compositional approaches to program verification

Type 
systems

Program 
logics

{P} e {Q}Γ ⊢ e : τ

Two compositional approaches to program verification

Typing judgment Hoare triple

Type 
systems

Program 
logics

{P} e {Q}Γ ⊢ e : τ

Modular program component

Two compositional approaches to program verification

Type 
systems

Program 
logics

{P} e {Q}Γ ⊢ e : τ

Assumptions

Two compositional approaches to program verification

Type 
systems

Program 
logics

{P} e {Q}Γ ⊢ e : τ

Results

Two compositional approaches to program verification

Type 
systems

Program 
logics

{P} e {Q}Γ ⊢ e : τ

Two compositional approaches to program verification

More preciseLess precise

 Fully automated

 Widely used by programmers

 Shallow specs (e.g. safety)

 Restricts coding style

 Semi-automated or manual

 Mostly used by verif. experts

 Deep specs (e.g. correctness)

 Does not restrict coding style

Type 
systems

Program 
logics

{P} e {Q}Γ ⊢ e : τ

Two compositional approaches to program verification

More preciseLess precise

 Fully automated

 Widely used by programmers

 Shallow specs (e.g. safety)

 Restricts coding style

 Semi-automated or manual

 Mostly used by verif. experts

 Deep specs (e.g. correctness)

 Does not restrict coding style

Type 
systems

Program 
logics

{P} e {Q}Γ ⊢ e : τ

Two compositional approaches to program verification

How can we marry the benefits of 
type systems & program logics together?

Type 
systems

Program 
logics

Type 
systems

Program 
logics

extensibility

Type 
systems

Program 
logics

extensibility

automation

Type 
systems

Program 
logics

extensibility

automation

Type 
systems

Program 
logics

extensibility

automation

Type 
systems

Program 
logics

extensibility

automation

A Longstanding Problem
• Many core systems applications require 

low-level control over memory/resources

• Such applications are typically written in

A Longstanding Problem
• Many core systems applications require 

low-level control over memory/resources

• Such applications are typically written in

UNSAFE!

from Google Security Blog

from Microsoft Security 
Response Center

from Google Security Blog

from Microsoft Security 
Response Center

from Google Security Blog

from Microsoft Security 
Response Center

from Google Security Blog

from Microsoft Security 
Response Center

Rust:

In development since 2010, with 1.0 release in 2015

• Mozilla used Rust to build Servo, a next-gen 

 browser engine, later incorporated into Firefox

Rust is the only “systems PL” to provide…

• Low-level control à la modern C++

• Strong safety guarantees

• Industrial development and backing

Many major companies using Rust in production

• In 2021, the Rust Foundation was formed, incl. 

Amazon, Google, Huawei, Meta, Microsoft, Mozilla

The Future of Safe Systems Programming?

Rust:

In development since 2010, with 1.0 release in 2015

• Mozilla used Rust to build Servo, a next-gen 

 browser engine, later incorporated into Firefox

Rust is the only “systems PL” to provide…

• Low-level control à la modern C++

• Strong safety guarantees

• Industrial development and backing

Many major companies using Rust in production

• In 2021, the Rust Foundation was formed, incl. 

Amazon, Google, Huawei, Meta, Microsoft, Mozilla

The Future of Safe Systems Programming?

The “safety” of Rust is central to its promise. 
But how do we know Rust is safe?

Core Idea of Rust

Mutation 
+ 

Aliasing

[0]

x
y z

Core Idea of Rust

[0]

x
y z

Core Idea of Rust

[0]

[1]

[0]

x
y z

Core Idea of Rust

dangling

[0]

[1]

[0]

x
y z

Unrestricted mutation and aliasing lead to:

• use-after-free errors (dangling references)

• data races

• iterator invalidation

Core Idea of Rust

dangling

[0]

[1]

[0]

x
y z

Unrestricted mutation and aliasing lead to:

• use-after-free errors (dangling references)

• data races

• iterator invalidation

Core Idea of Rust

dangling

[0]

[1]

[0]

Rust prevents all these errors using 
a sophisticated “ownership” type system

But sometimes you need 
mutation + aliasing!

Pointer-based data structures

• e.g. Doubly-linked lists

Synchronization mechanisms:

• e.g. Locks, channels, semaphores

Memory management:

• e.g. Reference counting

The Reality of Rust
Mutex

Code written in the 
safe fragment of the language

Arc

RefCell Channel

…standard APIs…

The Reality of Rust
Mutex

Code written in the 
safe fragment of the language

Arc

RefCell Channel

…standard APIs…
...

pub fn borrow(&self) -> Ref<T> {

 match BorrowRef::new(&self.borrow) {

 Some(b) => Ref {

 _value: unsafe { &*self.value.get() },

 _borrow: b,

 }, ...

 }

}

...

The Reality of Rust
Mutex

Code written in the 
safe fragment of the language

Arc

RefCell Channel

…standard APIs…
...

pub fn borrow(&self) -> Ref<T> {

 match BorrowRef::new(&self.borrow) {

 Some(b) => Ref {

 _value: unsafe { &*self.value.get() },

 _borrow: b,

 }, ...

 }

}

...

Claim API developers want to make:

Even though these APIs are implemented
using unsafe operations, they nevertheless

constitute a safe extension to Rust.

RustBelt

Goal: Develop 1st formal foundations for Rust

• Use these foundations to verify the safety of  
the Rust core type system and std APIs

• Give Rust developers the tools they need to
safely evolve the language

Key Challenge

• Standard “syntactic safety” approach of Wright
and Felleisen (1994) will not work for Rust!

- Not applicable to programs with unsafe code

• Need to generalize to semantic safety

- An API is semantically safe if no (well-typed)

client of it will ever encounter unsafe behavior

Semantic Safety

SET 9↵1↵2.{set : [= ↵1 : ⌦],
elem : [= ↵2 : ⌦],
empty : [↵1],
add : [↵2 ⇥ ↵1 ! ↵1],
member : [↵2 ⇥ ↵1 ! bool]}

(Elem : ORD) ! (SET where type t = Elem.t)

 8↵.{t : [= ↵ : ⌦],
eq : [↵⇥ ↵ ! bool],
less : [↵⇥ ↵ ! bool]}
! 9�.{set : [= � : ⌦],

elem : [= ↵ : ⌦],
empty : [�],
add : [↵⇥ � ! �],
member : [↵⇥ � ! bool]}

Figure 9. Example: signature elaboration

denoting that S is a signature component whose definition is the
semantic signature {f : [↵ ! int]}.

Note that, by hoisting the binding for the abstract type ↵ to the
outermost scope of the signature, we have made the apparent de-
pendency between the declaration of signature S and the declara-
tion of module A—i.e., the reference in S’s declaration to the type
A.t—disappear! Moreover, whereas in the original syntactic signa-
ture the abstract type was referred to as t in one place and as A.t

in another, in the semantic signature all references to the same ab-
stract type component use the same name (here, ↵). These simplifi-
cations (1) make clear that you do not need dependent types in order
to model ML signatures, and (2) allow us to avoid any “signature
strengthening” (aka “selfification”) machinery, of the sort one finds
in all the “syntactic” type systems for modules [16, 26, 25, 41, 9].

The only semantic signature form not exhibited in the above ex-
ample is the functor signature 8↵.⌃ ! ⌅. The important point
about this signature is that the ↵ are universally quantified, which
enables them to be mentioned both in the argument signature ⌃
and the result signature ⌅. If functor signatures were instead repre-
sented as ⌅ ! ⌅0, then the result signature ⌅0 would not be able to
depend on any abstract types declared in the argument.

An example of a functor signature can be seen in Figure 9. It
gives the translations of the signature SET from the example in
Figure 3, along with the translation of the signature

(Elem : ORD) ! (SET where type t = Elem.t)

which classifies the Set functor itself.
Given our informal explanation, the formal rules in Figure 8

should now be very easy to follow. A few points of note, though.
The rule for where type employs a convenient bit of shorthand

notation defined in Figure 7, namely: ⌃.lX denotes the signature
of the lX component of ⌃. This is used to check that the type
component being refined is in fact an abstract type component (i.e.,
equivalent to one of the ↵ bound existentially by the signature).

In the rule for sequences of declarations D1;D2, note that the
side condition on the label sets lX1 and lX2 is in place because
signatures may not declare two components with the same name.
Also, note that the identifiers X1, implicitly embedded as F! vari-
ables, may shadow other bindings in �. This is one place where
it is convenient to rely on shadowing being permissible in the F!

environments.
Finally, the rule for signature paths P refers in its premise to

the path elaboration judgment (which we will discuss later) solely
in order to look up the semantic signature ⌅ that P should expand
to. As noted above in the discussion of atomic signatures, the actual
term e inhabiting the atomic signature [= ⌅] is irrelevant.

Matching � ` ⌃  ⌅ " ⌧ f

� ` ⌧ : ↵ � ` ⌃  ⌃0[⌧/↵] f
� ` ⌃  9↵.⌃0 " ⌧ f

Subtyping � ` ⌅  ⌅0 f
� ` ⌧  ⌧ 0 f

� ` [⌧]  [⌧ 0] �x:[⌧].[f(x.val)]

⌧ ⌘ ⌧ 0

� ` [= ⌧ : ]  [= ⌧ 0 : ] �x:[= ⌧ : ].x

� ` ⌅  ⌅0 f � ` ⌅0  ⌅ f 0

� ` [= ⌅]  [= ⌅0] �x:[= ⌅]. [⌅0]

� ` ⌃1  ⌃0
1 f

� ` {l1 : ⌃1, l2 : ⌃2}  {l1 : ⌃0
1}

�x:{l1 : ⌃1, l2 : ⌃2}.{l1 = f (x.l1)}

�, ↵0 ` ⌃0  9↵.⌃ " ⌧ f1 �, ↵0 ` ⌅[⌧/↵]  ⌅0 f2

� ` (8↵.⌃ ! ⌅)  (8↵0.⌃0 ! ⌅0)
�f :(8↵.⌃ ! ⌅). �↵0. �x:⌃0. f2 (f ⌧ (f1 x))

�, ↵ ` ⌃  9↵0.⌃0 " ⌧ f

� ` 9↵.⌃  9↵0.⌃0
�x:(9↵.⌃). unpack h↵, yi = x in pack h⌧ , f yi

Figure 10. Signature matching and subtyping

Signature Matching and Subtyping Signature matching (Fig-
ure 10) is a key element of the ML module system. At functor ap-
plications, we must check that the signature of the actual argument
matches the formal argument signature of the functor. For sealed
module expressions, we must check that the signature of the mod-
ule being sealed matches the sealing signature.

What happens during signature matching is really quite sim-
ple. First of all, in all places where signature matching occurs,
the source signature—i.e., the signature of the module being
matched—is expressible as a concrete semantic signature ⌃. (To
see why, skip ahead to module elaboration.) The target signature—
i.e., the signature being matched against—on the other hand is
abstract. To match against an abstract signature 9↵.⌃0, we must
solve for the ↵. That is, we must find some ⌧ such that the source
signature matches ⌃0[⌧/↵]. (Fortunately, if such a ⌧ exists, it is
unique, and there is an easy way of finding it by inspecting ⌃—the
details are in Section 5.2.) Then, the problem of signature match-
ing reduces to the question of whether ⌃ is a subtype of ⌃0[⌧/↵],
which can be determined by a straightforward structural analysis
of the two concrete signatures.

As a simple example, consider matching

{A : {t : [= int : ⌦], u : [int], v : [int]}, S : [= {f : [int ! int]}] }

against the abstract signature

9↵.{A : {t : [= ↵ : ⌦], v : [↵]}, S : [= {f : [↵ ! int]}] }

from our signature elaboration example (above). The ⌧ returned by
the matching judgment would here be simply int, and the subtyping
check would determine that the first signature is a width/depth
subtype of the second after substituting int for ↵.

The signature matching judgment has the form � ` ⌃  ⌅ "
⌧ f . It matches a concrete ⌃ against an abstract ⌅ of the form
9↵.⌃0 as described above, synthesizing the solution ⌧ for ↵, as well
as the coercion f from ⌃ to ⌃0[⌧/↵].

5

∀Σ.

∃θ... ⊨

API Safety 
contract

API 
implementation

semantic

model

logical

satisfaction

Semantic Safety

SET 9↵1↵2.{set : [= ↵1 : ⌦],
elem : [= ↵2 : ⌦],
empty : [↵1],
add : [↵2 ⇥ ↵1 ! ↵1],
member : [↵2 ⇥ ↵1 ! bool]}

(Elem : ORD) ! (SET where type t = Elem.t)

 8↵.{t : [= ↵ : ⌦],
eq : [↵⇥ ↵ ! bool],
less : [↵⇥ ↵ ! bool]}
! 9�.{set : [= � : ⌦],

elem : [= ↵ : ⌦],
empty : [�],
add : [↵⇥ � ! �],
member : [↵⇥ � ! bool]}

Figure 9. Example: signature elaboration

denoting that S is a signature component whose definition is the
semantic signature {f : [↵ ! int]}.

Note that, by hoisting the binding for the abstract type ↵ to the
outermost scope of the signature, we have made the apparent de-
pendency between the declaration of signature S and the declara-
tion of module A—i.e., the reference in S’s declaration to the type
A.t—disappear! Moreover, whereas in the original syntactic signa-
ture the abstract type was referred to as t in one place and as A.t

in another, in the semantic signature all references to the same ab-
stract type component use the same name (here, ↵). These simplifi-
cations (1) make clear that you do not need dependent types in order
to model ML signatures, and (2) allow us to avoid any “signature
strengthening” (aka “selfification”) machinery, of the sort one finds
in all the “syntactic” type systems for modules [16, 26, 25, 41, 9].

The only semantic signature form not exhibited in the above ex-
ample is the functor signature 8↵.⌃ ! ⌅. The important point
about this signature is that the ↵ are universally quantified, which
enables them to be mentioned both in the argument signature ⌃
and the result signature ⌅. If functor signatures were instead repre-
sented as ⌅ ! ⌅0, then the result signature ⌅0 would not be able to
depend on any abstract types declared in the argument.

An example of a functor signature can be seen in Figure 9. It
gives the translations of the signature SET from the example in
Figure 3, along with the translation of the signature

(Elem : ORD) ! (SET where type t = Elem.t)

which classifies the Set functor itself.
Given our informal explanation, the formal rules in Figure 8

should now be very easy to follow. A few points of note, though.
The rule for where type employs a convenient bit of shorthand

notation defined in Figure 7, namely: ⌃.lX denotes the signature
of the lX component of ⌃. This is used to check that the type
component being refined is in fact an abstract type component (i.e.,
equivalent to one of the ↵ bound existentially by the signature).

In the rule for sequences of declarations D1;D2, note that the
side condition on the label sets lX1 and lX2 is in place because
signatures may not declare two components with the same name.
Also, note that the identifiers X1, implicitly embedded as F! vari-
ables, may shadow other bindings in �. This is one place where
it is convenient to rely on shadowing being permissible in the F!

environments.
Finally, the rule for signature paths P refers in its premise to

the path elaboration judgment (which we will discuss later) solely
in order to look up the semantic signature ⌅ that P should expand
to. As noted above in the discussion of atomic signatures, the actual
term e inhabiting the atomic signature [= ⌅] is irrelevant.

Matching � ` ⌃  ⌅ " ⌧ f

� ` ⌧ : ↵ � ` ⌃  ⌃0[⌧/↵] f
� ` ⌃  9↵.⌃0 " ⌧ f

Subtyping � ` ⌅  ⌅0 f
� ` ⌧  ⌧ 0 f

� ` [⌧]  [⌧ 0] �x:[⌧].[f(x.val)]

⌧ ⌘ ⌧ 0

� ` [= ⌧ : ]  [= ⌧ 0 : ] �x:[= ⌧ : ].x

� ` ⌅  ⌅0 f � ` ⌅0  ⌅ f 0

� ` [= ⌅]  [= ⌅0] �x:[= ⌅]. [⌅0]

� ` ⌃1  ⌃0
1 f

� ` {l1 : ⌃1, l2 : ⌃2}  {l1 : ⌃0
1}

�x:{l1 : ⌃1, l2 : ⌃2}.{l1 = f (x.l1)}

�, ↵0 ` ⌃0  9↵.⌃ " ⌧ f1 �, ↵0 ` ⌅[⌧/↵]  ⌅0 f2

� ` (8↵.⌃ ! ⌅)  (8↵0.⌃0 ! ⌅0)
�f :(8↵.⌃ ! ⌅). �↵0. �x:⌃0. f2 (f ⌧ (f1 x))

�, ↵ ` ⌃  9↵0.⌃0 " ⌧ f

� ` 9↵.⌃  9↵0.⌃0
�x:(9↵.⌃). unpack h↵, yi = x in pack h⌧ , f yi

Figure 10. Signature matching and subtyping

Signature Matching and Subtyping Signature matching (Fig-
ure 10) is a key element of the ML module system. At functor ap-
plications, we must check that the signature of the actual argument
matches the formal argument signature of the functor. For sealed
module expressions, we must check that the signature of the mod-
ule being sealed matches the sealing signature.

What happens during signature matching is really quite sim-
ple. First of all, in all places where signature matching occurs,
the source signature—i.e., the signature of the module being
matched—is expressible as a concrete semantic signature ⌃. (To
see why, skip ahead to module elaboration.) The target signature—
i.e., the signature being matched against—on the other hand is
abstract. To match against an abstract signature 9↵.⌃0, we must
solve for the ↵. That is, we must find some ⌧ such that the source
signature matches ⌃0[⌧/↵]. (Fortunately, if such a ⌧ exists, it is
unique, and there is an easy way of finding it by inspecting ⌃—the
details are in Section 5.2.) Then, the problem of signature match-
ing reduces to the question of whether ⌃ is a subtype of ⌃0[⌧/↵],
which can be determined by a straightforward structural analysis
of the two concrete signatures.

As a simple example, consider matching

{A : {t : [= int : ⌦], u : [int], v : [int]}, S : [= {f : [int ! int]}] }

against the abstract signature

9↵.{A : {t : [= ↵ : ⌦], v : [↵]}, S : [= {f : [↵ ! int]}] }

from our signature elaboration example (above). The ⌧ returned by
the matching judgment would here be simply int, and the subtyping
check would determine that the first signature is a width/depth
subtype of the second after substituting int for ↵.

The signature matching judgment has the form � ` ⌃  ⌅ "
⌧ f . It matches a concrete ⌃ against an abstract ⌅ of the form
9↵.⌃0 as described above, synthesizing the solution ⌧ for ↵, as well
as the coercion f from ⌃ to ⌃0[⌧/↵].

5

∀Σ.

∃θ... ⊨

API Safety 
contract

API 
implementation

semantic

model

logical

satisfaction

Safe 
fragment

Semantic Safety

SET 9↵1↵2.{set : [= ↵1 : ⌦],
elem : [= ↵2 : ⌦],
empty : [↵1],
add : [↵2 ⇥ ↵1 ! ↵1],
member : [↵2 ⇥ ↵1 ! bool]}

(Elem : ORD) ! (SET where type t = Elem.t)

 8↵.{t : [= ↵ : ⌦],
eq : [↵⇥ ↵ ! bool],
less : [↵⇥ ↵ ! bool]}
! 9�.{set : [= � : ⌦],

elem : [= ↵ : ⌦],
empty : [�],
add : [↵⇥ � ! �],
member : [↵⇥ � ! bool]}

Figure 9. Example: signature elaboration

denoting that S is a signature component whose definition is the
semantic signature {f : [↵ ! int]}.

Note that, by hoisting the binding for the abstract type ↵ to the
outermost scope of the signature, we have made the apparent de-
pendency between the declaration of signature S and the declara-
tion of module A—i.e., the reference in S’s declaration to the type
A.t—disappear! Moreover, whereas in the original syntactic signa-
ture the abstract type was referred to as t in one place and as A.t

in another, in the semantic signature all references to the same ab-
stract type component use the same name (here, ↵). These simplifi-
cations (1) make clear that you do not need dependent types in order
to model ML signatures, and (2) allow us to avoid any “signature
strengthening” (aka “selfification”) machinery, of the sort one finds
in all the “syntactic” type systems for modules [16, 26, 25, 41, 9].

The only semantic signature form not exhibited in the above ex-
ample is the functor signature 8↵.⌃ ! ⌅. The important point
about this signature is that the ↵ are universally quantified, which
enables them to be mentioned both in the argument signature ⌃
and the result signature ⌅. If functor signatures were instead repre-
sented as ⌅ ! ⌅0, then the result signature ⌅0 would not be able to
depend on any abstract types declared in the argument.

An example of a functor signature can be seen in Figure 9. It
gives the translations of the signature SET from the example in
Figure 3, along with the translation of the signature

(Elem : ORD) ! (SET where type t = Elem.t)

which classifies the Set functor itself.
Given our informal explanation, the formal rules in Figure 8

should now be very easy to follow. A few points of note, though.
The rule for where type employs a convenient bit of shorthand

notation defined in Figure 7, namely: ⌃.lX denotes the signature
of the lX component of ⌃. This is used to check that the type
component being refined is in fact an abstract type component (i.e.,
equivalent to one of the ↵ bound existentially by the signature).

In the rule for sequences of declarations D1;D2, note that the
side condition on the label sets lX1 and lX2 is in place because
signatures may not declare two components with the same name.
Also, note that the identifiers X1, implicitly embedded as F! vari-
ables, may shadow other bindings in �. This is one place where
it is convenient to rely on shadowing being permissible in the F!

environments.
Finally, the rule for signature paths P refers in its premise to

the path elaboration judgment (which we will discuss later) solely
in order to look up the semantic signature ⌅ that P should expand
to. As noted above in the discussion of atomic signatures, the actual
term e inhabiting the atomic signature [= ⌅] is irrelevant.

Matching � ` ⌃  ⌅ " ⌧ f

� ` ⌧ : ↵ � ` ⌃  ⌃0[⌧/↵] f
� ` ⌃  9↵.⌃0 " ⌧ f

Subtyping � ` ⌅  ⌅0 f
� ` ⌧  ⌧ 0 f

� ` [⌧]  [⌧ 0] �x:[⌧].[f(x.val)]

⌧ ⌘ ⌧ 0

� ` [= ⌧ : ]  [= ⌧ 0 : ] �x:[= ⌧ : ].x

� ` ⌅  ⌅0 f � ` ⌅0  ⌅ f 0

� ` [= ⌅]  [= ⌅0] �x:[= ⌅]. [⌅0]

� ` ⌃1  ⌃0
1 f

� ` {l1 : ⌃1, l2 : ⌃2}  {l1 : ⌃0
1}

�x:{l1 : ⌃1, l2 : ⌃2}.{l1 = f (x.l1)}

�, ↵0 ` ⌃0  9↵.⌃ " ⌧ f1 �, ↵0 ` ⌅[⌧/↵]  ⌅0 f2

� ` (8↵.⌃ ! ⌅)  (8↵0.⌃0 ! ⌅0)
�f :(8↵.⌃ ! ⌅). �↵0. �x:⌃0. f2 (f ⌧ (f1 x))

�, ↵ ` ⌃  9↵0.⌃0 " ⌧ f

� ` 9↵.⌃  9↵0.⌃0
�x:(9↵.⌃). unpack h↵, yi = x in pack h⌧ , f yi

Figure 10. Signature matching and subtyping

Signature Matching and Subtyping Signature matching (Fig-
ure 10) is a key element of the ML module system. At functor ap-
plications, we must check that the signature of the actual argument
matches the formal argument signature of the functor. For sealed
module expressions, we must check that the signature of the mod-
ule being sealed matches the sealing signature.

What happens during signature matching is really quite sim-
ple. First of all, in all places where signature matching occurs,
the source signature—i.e., the signature of the module being
matched—is expressible as a concrete semantic signature ⌃. (To
see why, skip ahead to module elaboration.) The target signature—
i.e., the signature being matched against—on the other hand is
abstract. To match against an abstract signature 9↵.⌃0, we must
solve for the ↵. That is, we must find some ⌧ such that the source
signature matches ⌃0[⌧/↵]. (Fortunately, if such a ⌧ exists, it is
unique, and there is an easy way of finding it by inspecting ⌃—the
details are in Section 5.2.) Then, the problem of signature match-
ing reduces to the question of whether ⌃ is a subtype of ⌃0[⌧/↵],
which can be determined by a straightforward structural analysis
of the two concrete signatures.

As a simple example, consider matching

{A : {t : [= int : ⌦], u : [int], v : [int]}, S : [= {f : [int ! int]}] }

against the abstract signature

9↵.{A : {t : [= ↵ : ⌦], v : [↵]}, S : [= {f : [↵ ! int]}] }

from our signature elaboration example (above). The ⌧ returned by
the matching judgment would here be simply int, and the subtyping
check would determine that the first signature is a width/depth
subtype of the second after substituting int for ↵.

The signature matching judgment has the form � ` ⌃  ⌅ "
⌧ f . It matches a concrete ⌃ against an abstract ⌅ of the form
9↵.⌃0 as described above, synthesizing the solution ⌧ for ↵, as well
as the coercion f from ⌃ to ⌃0[⌧/↵].

5

∀Σ.

∃θ... ⊨

API Safety 
contract

API 
implementation

semantic

model

logical

satisfaction

?

Semantic Safety
Mutex

Code written in the 
safe fragment of the language

Arc

RefCell Channel

…standard APIs…

Semantic Safety
Mutex

Code written in the 
safe fragment of the language

Arc

RefCell Channel

…standard APIs…

Safe by
construction!

Manually
 verified!

Manually
 verified!Manually verified!

Manually verified!

Semantic Safety

SET 9↵1↵2.{set : [= ↵1 : ⌦],
elem : [= ↵2 : ⌦],
empty : [↵1],
add : [↵2 ⇥ ↵1 ! ↵1],
member : [↵2 ⇥ ↵1 ! bool]}

(Elem : ORD) ! (SET where type t = Elem.t)

 8↵.{t : [= ↵ : ⌦],
eq : [↵⇥ ↵ ! bool],
less : [↵⇥ ↵ ! bool]}
! 9�.{set : [= � : ⌦],

elem : [= ↵ : ⌦],
empty : [�],
add : [↵⇥ � ! �],
member : [↵⇥ � ! bool]}

Figure 9. Example: signature elaboration

denoting that S is a signature component whose definition is the
semantic signature {f : [↵ ! int]}.

Note that, by hoisting the binding for the abstract type ↵ to the
outermost scope of the signature, we have made the apparent de-
pendency between the declaration of signature S and the declara-
tion of module A—i.e., the reference in S’s declaration to the type
A.t—disappear! Moreover, whereas in the original syntactic signa-
ture the abstract type was referred to as t in one place and as A.t

in another, in the semantic signature all references to the same ab-
stract type component use the same name (here, ↵). These simplifi-
cations (1) make clear that you do not need dependent types in order
to model ML signatures, and (2) allow us to avoid any “signature
strengthening” (aka “selfification”) machinery, of the sort one finds
in all the “syntactic” type systems for modules [16, 26, 25, 41, 9].

The only semantic signature form not exhibited in the above ex-
ample is the functor signature 8↵.⌃ ! ⌅. The important point
about this signature is that the ↵ are universally quantified, which
enables them to be mentioned both in the argument signature ⌃
and the result signature ⌅. If functor signatures were instead repre-
sented as ⌅ ! ⌅0, then the result signature ⌅0 would not be able to
depend on any abstract types declared in the argument.

An example of a functor signature can be seen in Figure 9. It
gives the translations of the signature SET from the example in
Figure 3, along with the translation of the signature

(Elem : ORD) ! (SET where type t = Elem.t)

which classifies the Set functor itself.
Given our informal explanation, the formal rules in Figure 8

should now be very easy to follow. A few points of note, though.
The rule for where type employs a convenient bit of shorthand

notation defined in Figure 7, namely: ⌃.lX denotes the signature
of the lX component of ⌃. This is used to check that the type
component being refined is in fact an abstract type component (i.e.,
equivalent to one of the ↵ bound existentially by the signature).

In the rule for sequences of declarations D1;D2, note that the
side condition on the label sets lX1 and lX2 is in place because
signatures may not declare two components with the same name.
Also, note that the identifiers X1, implicitly embedded as F! vari-
ables, may shadow other bindings in �. This is one place where
it is convenient to rely on shadowing being permissible in the F!

environments.
Finally, the rule for signature paths P refers in its premise to

the path elaboration judgment (which we will discuss later) solely
in order to look up the semantic signature ⌅ that P should expand
to. As noted above in the discussion of atomic signatures, the actual
term e inhabiting the atomic signature [= ⌅] is irrelevant.

Matching � ` ⌃  ⌅ " ⌧ f

� ` ⌧ : ↵ � ` ⌃  ⌃0[⌧/↵] f
� ` ⌃  9↵.⌃0 " ⌧ f

Subtyping � ` ⌅  ⌅0 f
� ` ⌧  ⌧ 0 f

� ` [⌧]  [⌧ 0] �x:[⌧].[f(x.val)]

⌧ ⌘ ⌧ 0

� ` [= ⌧ : ]  [= ⌧ 0 : ] �x:[= ⌧ : ].x

� ` ⌅  ⌅0 f � ` ⌅0  ⌅ f 0

� ` [= ⌅]  [= ⌅0] �x:[= ⌅]. [⌅0]

� ` ⌃1  ⌃0
1 f

� ` {l1 : ⌃1, l2 : ⌃2}  {l1 : ⌃0
1}

�x:{l1 : ⌃1, l2 : ⌃2}.{l1 = f (x.l1)}

�, ↵0 ` ⌃0  9↵.⌃ " ⌧ f1 �, ↵0 ` ⌅[⌧/↵]  ⌅0 f2

� ` (8↵.⌃ ! ⌅)  (8↵0.⌃0 ! ⌅0)
�f :(8↵.⌃ ! ⌅). �↵0. �x:⌃0. f2 (f ⌧ (f1 x))

�, ↵ ` ⌃  9↵0.⌃0 " ⌧ f

� ` 9↵.⌃  9↵0.⌃0
�x:(9↵.⌃). unpack h↵, yi = x in pack h⌧ , f yi

Figure 10. Signature matching and subtyping

Signature Matching and Subtyping Signature matching (Fig-
ure 10) is a key element of the ML module system. At functor ap-
plications, we must check that the signature of the actual argument
matches the formal argument signature of the functor. For sealed
module expressions, we must check that the signature of the mod-
ule being sealed matches the sealing signature.

What happens during signature matching is really quite sim-
ple. First of all, in all places where signature matching occurs,
the source signature—i.e., the signature of the module being
matched—is expressible as a concrete semantic signature ⌃. (To
see why, skip ahead to module elaboration.) The target signature—
i.e., the signature being matched against—on the other hand is
abstract. To match against an abstract signature 9↵.⌃0, we must
solve for the ↵. That is, we must find some ⌧ such that the source
signature matches ⌃0[⌧/↵]. (Fortunately, if such a ⌧ exists, it is
unique, and there is an easy way of finding it by inspecting ⌃—the
details are in Section 5.2.) Then, the problem of signature match-
ing reduces to the question of whether ⌃ is a subtype of ⌃0[⌧/↵],
which can be determined by a straightforward structural analysis
of the two concrete signatures.

As a simple example, consider matching

{A : {t : [= int : ⌦], u : [int], v : [int]}, S : [= {f : [int ! int]}] }

against the abstract signature

9↵.{A : {t : [= ↵ : ⌦], v : [↵]}, S : [= {f : [↵ ! int]}] }

from our signature elaboration example (above). The ⌧ returned by
the matching judgment would here be simply int, and the subtyping
check would determine that the first signature is a width/depth
subtype of the second after substituting int for ↵.

The signature matching judgment has the form � ` ⌃  ⌅ "
⌧ f . It matches a concrete ⌃ against an abstract ⌅ of the form
9↵.⌃0 as described above, synthesizing the solution ⌧ for ↵, as well
as the coercion f from ⌃ to ⌃0[⌧/↵].

5

∀Σ.

∃θ... ⊨

API Safety 
contract

API 
implementation

semantic

model

logical

satisfaction

RustBelt [POPL’18, POPL’20]:

 Verifying semantic safety for

Heart of the Problem

∀Σ.

∃θ...

How do we define our 
semantic model of Rust?

Key Prior Work on 
Semantic Models

• Milner (1978). Used a “logical-relations”
model based on denotational semantics. 
But didn’t scale to richer type systems.

• Appel-McAllester (2001). Introduced a 
“step-indexed” logical-relations model of  
recursive types using operational semantics.

• Ahmed (2004). Scaled step-indexed model 
to handle higher-order state using recursive 
Kripke structures. Landmark PhD dissertation.

Key Prior Work on 
Semantic Models

• Milner (1978). Used a “logical-relations”
model based on denotational semantics. 
But didn’t scale to richer type systems.

• Appel-McAllester (2001). Introduced a 
“step-indexed” logical-relations model of  
recursive types using operational semantics.

• Ahmed (2004). Scaled step-indexed model 
to handle higher-order state using recursive 
Kripke structures. Landmark PhD dissertation.

Ahmed’s work was a major inspiration for me, 
but there was a scalability problem…

Since F is a function from types to types and !τ"j is a type, F (!τ"j) is a type. It
follows that !F (!τ"j)"j is a type (by Definition 3.2 (Approx)). Since F is non-
expansive, we have that !F (!τ"j)"j = !F (τ)"j. Hence !F (τ)"j is a type. Now,
since 〈i, !Ψ"i, v′〉 ∈ F (τ) and i < j, it follows that 〈i, !Ψ"i, v′〉 ∈ !F (τ)"j. Fur-
thermore, since (k, Ψ) & (j, Ψ′), i < j, and i < k, by Lemma 3.18 we may
conclude that (i, !Ψ"i) & (i, !Ψ′"i). Since types are closed under state extension,
from 〈i, !Ψ"i, v′〉 ∈ !F (τ)"j and type(!F (τ)"j) we may conclude that 〈i, !Ψ′"i, v′〉 ∈
!F (τ)"j. But since i < j it follows that 〈i, !Ψ′"i, v′〉 ∈ F (τ). !

3.5 Validity of Typing Rules

I shall now prove each of the typing rules in Figure 3.7 as lemmas. The lemma for
variables, stating that Γ |=

M x : Γ(x), follows immediately from the definition of |=
M .

The lemma for M-unit is immediate from the definition of unit.

3.5.1 Lambda Abstraction and Application

Theorem 3.20 (Abstraction)
Let Γ be a type environment, let τ1 and τ2 be types, and let Γ[x := τ1] be the type
environment that is identical to Γ except that it maps x to τ1. If Γ[x := τ1] |=M e : τ2

then Γ |=
M λx.e : τ1 → τ2.

Proof: We must show that under the premises of the theorem for any k ≥ 0 we
have Γ |= k

M λx.e : τ1 → τ2. More specifically, for any σ and Ψ such that σ :k,Ψ Γ we
must show that σ(λx.e) :k,Ψ τ1 → τ2. Suppose σ :k,Ψ Γ. Let j < k and v, Ψ′, be
such that (k, Ψ) & (j, Ψ′) and 〈j, Ψ′, v〉 ∈ τ1. By definition of → it now suffices to
show that σ(e[v/x]) :j,Ψ′ τ2. Let σ [x)→ v] be the substitution identical to σ except
that it maps x to v. Since the codomain of Γ contains types (which are closed under
state extension), and since v :j,Ψ′ τ1, we now have that σ [x)→ v] :j,Ψ′ Γ [x)→ τ1].
To show σ(e[v/x]) :j,Ψ′ τ2, suppose S ′ :j Ψ′. By the premise Γ [x)→ τ1] |=

M e : τ2,
together with S ′ :j Ψ′ and σ [x)→ v] :j,Ψ′ Γ [x)→ τ1] we have σ [x)→ v](e) :j,Ψ′ τ2.
But this implies σ(e[v/x]) :j,Ψ′ τ2. !

Theorem 3.21 (Application)
If Γ is a type environment, e1 and e2 are (possibly open) terms, and τ1 and τ2 are
types such that Γ |=

M e1 : τ1 → τ2 and Γ |=
M e2 : τ1 then Γ |=

M (e1 e2) : τ2.

Proof: We must prove that under the premises of the theorem, for any k ≥ 0,
we have Γ |= k

M (e1 e2) : τ2. More specifically, for any σ and Ψ such that σ :k,Ψ Γ
we must show σ(e1 e2) :k,Ψ τ2. From the premise Γ |=

M e1 : τ1 → τ2 we have

66

σ(e1) :k,Ψ τ1 → τ2. To show σ(e1 e2) :k,Ψ τ2, suppose S :k Ψ for some store S .
Then, from σ(e1) :k,Ψ τ1 → τ2 it follows that (S ,σ(e1)) is safe for k steps. Either
(S ,σ(e1)) reduces for k steps without reaching a state (S ′, v1) where v1 is a value —
in which case (S ,σ(e1 e2)) does not generate a value in less than k steps and hence
σ(e1 e2) :k,Ψ τ2 (for any τ2) — or the value v1 is a lambda expression λx.e. In the
latter case, since σ(e1) :k,Ψ τ1 → τ2 and (S ,σ(e1)) "−→

j
M

(S ′,λx.e), where j < k and
irred(S ′,λx.e), it follows that there exists a Ψ′ such that (k, Ψ) $ (k − j, Ψ′) and
S ′ :k−j Ψ′ and 〈k − j, Ψ′,λx.e〉 ∈ τ1 → τ2.

From σ :k,Ψ Γ it follows that σ(x) :k,Ψ Γ(x) for all variables x ∈ dom(Γ). A
type environment Γ is a mapping from variables to types. Hence, since (k, Ψ) $
(k − j, Ψ′), it follows that σ(x) :k−j,Ψ′ Γ(x) for all x ∈ dom(Γ) — that is, we have
σ :k−j,Ψ′ Γ. Now, from premise Γ |=

M e2 : τ1, since k − j ≥ 0, S ′ :k−j Ψ′, and
σ :k−j,Ψ′ Γ, we have σ(e2) :k−j,Ψ′ τ1. It follows that (S ′,σ(e2)) is safe for k − j
steps, i.e., either (S ′,σ(e2)) does not generate a value in fewer than k − j steps —
in which case, (S ,σ(e1 e2)) does not generate a value in fewer than k steps so we
have σ(e1 e2) :k,Ψ τ2 (for any τ2) — or (S ′,σ(e2)) "−→i

M (S ′′, v) where i < k − j.
In the latter case, (S ,σ(e1 e2)) "−→

j+i
M

(S ′′, (λx.e)v) where j + i < k. Also, since
σ(e2) :k−j,Ψ′ τ1 and (S ′,σ(e2)) "−→i

M (S ′′, v) for i < k− j and irred(S ′′, v), it follows
that there exists a Ψ′′ such that (k − j, Ψ′) $ (k − j − i, Ψ′′), S ′′ :k−j−i Ψ′′, and
〈k − j − i, Ψ′′, v〉 ∈ τ1.

Pick memory typing Ψ∗ =)Ψ′′*k−j−i−1. Let k∗ = k− j− i− 1. Then the follow-
ing information-forgetting state extension holds: (k − j − i, Ψ′′) $ (k∗, Ψ∗). Since
〈k − j − i, Ψ′′, v〉 ∈ τ1 and τ1 is a type, we have 〈k∗, Ψ∗, v〉 ∈ τ1. The definition
of → then implies that e[v/x] :k∗,Ψ∗ τ2. But we now have (S ,σ(e1 e2)) "−→

j+i+1
M

(S ′′, e[v/x]), (k, Ψ) $ (k∗, Ψ∗), S ′′ :k∗ Ψ∗, and e[v/x] :k∗,Ψ∗ τ2. By Definition 3.6
(Expr : Type), this means that if (S ′′, e[v/x]) generates a value in fewer than k∗ steps
then that value will be of type τ2. Hence, we may conclude that σ(e1 e2) :k,Ψ τ2 as
we wanted to show. !

3.5.2 Allocation, Assignment, Dereferencing

I use the notation aprx-extend(k, Ψ, $, τ) to denote a store typing that extends)Ψ*k
by mapping $ to)τ*k. aprx-extend serves as a useful abbreviation in the proof of
the M-new typing rule.

Definition 3.22 (Approximately Extend Store Typing)
The approximate extension of a store typing Ψ with location $ mapped to type τ is
defined as follows:

aprx-extend(k, Ψ, $, τ) =)Ψ*k ∪ ($ "→)τ*k)

67

σ(e1) :k,Ψ τ1 → τ2. To show σ(e1 e2) :k,Ψ τ2, suppose S :k Ψ for some store S .
Then, from σ(e1) :k,Ψ τ1 → τ2 it follows that (S ,σ(e1)) is safe for k steps. Either
(S ,σ(e1)) reduces for k steps without reaching a state (S ′, v1) where v1 is a value —
in which case (S ,σ(e1 e2)) does not generate a value in less than k steps and hence
σ(e1 e2) :k,Ψ τ2 (for any τ2) — or the value v1 is a lambda expression λx.e. In the
latter case, since σ(e1) :k,Ψ τ1 → τ2 and (S ,σ(e1)) "−→

j
M

(S ′,λx.e), where j < k and
irred(S ′,λx.e), it follows that there exists a Ψ′ such that (k, Ψ) $ (k − j, Ψ′) and
S ′ :k−j Ψ′ and 〈k − j, Ψ′,λx.e〉 ∈ τ1 → τ2.

From σ :k,Ψ Γ it follows that σ(x) :k,Ψ Γ(x) for all variables x ∈ dom(Γ). A
type environment Γ is a mapping from variables to types. Hence, since (k, Ψ) $
(k − j, Ψ′), it follows that σ(x) :k−j,Ψ′ Γ(x) for all x ∈ dom(Γ) — that is, we have
σ :k−j,Ψ′ Γ. Now, from premise Γ |=

M e2 : τ1, since k − j ≥ 0, S ′ :k−j Ψ′, and
σ :k−j,Ψ′ Γ, we have σ(e2) :k−j,Ψ′ τ1. It follows that (S ′,σ(e2)) is safe for k − j
steps, i.e., either (S ′,σ(e2)) does not generate a value in fewer than k − j steps —
in which case, (S ,σ(e1 e2)) does not generate a value in fewer than k steps so we
have σ(e1 e2) :k,Ψ τ2 (for any τ2) — or (S ′,σ(e2)) "−→i

M (S ′′, v) where i < k − j.
In the latter case, (S ,σ(e1 e2)) "−→

j+i
M

(S ′′, (λx.e)v) where j + i < k. Also, since
σ(e2) :k−j,Ψ′ τ1 and (S ′,σ(e2)) "−→i

M (S ′′, v) for i < k− j and irred(S ′′, v), it follows
that there exists a Ψ′′ such that (k − j, Ψ′) $ (k − j − i, Ψ′′), S ′′ :k−j−i Ψ′′, and
〈k − j − i, Ψ′′, v〉 ∈ τ1.

Pick memory typing Ψ∗ =)Ψ′′*k−j−i−1. Let k∗ = k− j− i− 1. Then the follow-
ing information-forgetting state extension holds: (k − j − i, Ψ′′) $ (k∗, Ψ∗). Since
〈k − j − i, Ψ′′, v〉 ∈ τ1 and τ1 is a type, we have 〈k∗, Ψ∗, v〉 ∈ τ1. The definition
of → then implies that e[v/x] :k∗,Ψ∗ τ2. But we now have (S ,σ(e1 e2)) "−→

j+i+1
M

(S ′′, e[v/x]), (k, Ψ) $ (k∗, Ψ∗), S ′′ :k∗ Ψ∗, and e[v/x] :k∗,Ψ∗ τ2. By Definition 3.6
(Expr : Type), this means that if (S ′′, e[v/x]) generates a value in fewer than k∗ steps
then that value will be of type τ2. Hence, we may conclude that σ(e1 e2) :k,Ψ τ2 as
we wanted to show. !

3.5.2 Allocation, Assignment, Dereferencing

I use the notation aprx-extend(k, Ψ, $, τ) to denote a store typing that extends)Ψ*k
by mapping $ to)τ*k. aprx-extend serves as a useful abbreviation in the proof of
the M-new typing rule.

Definition 3.22 (Approximately Extend Store Typing)
The approximate extension of a store typing Ψ with location $ mapped to type τ is
defined as follows:

aprx-extend(k, Ψ, $, τ) =)Ψ*k ∪ ($ "→)τ*k)

67

σ(e1) :k,Ψ τ1 → τ2. To show σ(e1 e2) :k,Ψ τ2, suppose S :k Ψ for some store S .
Then, from σ(e1) :k,Ψ τ1 → τ2 it follows that (S ,σ(e1)) is safe for k steps. Either
(S ,σ(e1)) reduces for k steps without reaching a state (S ′, v1) where v1 is a value —
in which case (S ,σ(e1 e2)) does not generate a value in less than k steps and hence
σ(e1 e2) :k,Ψ τ2 (for any τ2) — or the value v1 is a lambda expression λx.e. In the
latter case, since σ(e1) :k,Ψ τ1 → τ2 and (S ,σ(e1)) "−→

j
M

(S ′,λx.e), where j < k and
irred(S ′,λx.e), it follows that there exists a Ψ′ such that (k, Ψ) $ (k − j, Ψ′) and
S ′ :k−j Ψ′ and 〈k − j, Ψ′,λx.e〉 ∈ τ1 → τ2.

From σ :k,Ψ Γ it follows that σ(x) :k,Ψ Γ(x) for all variables x ∈ dom(Γ). A
type environment Γ is a mapping from variables to types. Hence, since (k, Ψ) $
(k − j, Ψ′), it follows that σ(x) :k−j,Ψ′ Γ(x) for all x ∈ dom(Γ) — that is, we have
σ :k−j,Ψ′ Γ. Now, from premise Γ |=

M e2 : τ1, since k − j ≥ 0, S ′ :k−j Ψ′, and
σ :k−j,Ψ′ Γ, we have σ(e2) :k−j,Ψ′ τ1. It follows that (S ′,σ(e2)) is safe for k − j
steps, i.e., either (S ′,σ(e2)) does not generate a value in fewer than k − j steps —
in which case, (S ,σ(e1 e2)) does not generate a value in fewer than k steps so we
have σ(e1 e2) :k,Ψ τ2 (for any τ2) — or (S ′,σ(e2)) "−→i

M (S ′′, v) where i < k − j.
In the latter case, (S ,σ(e1 e2)) "−→

j+i
M

(S ′′, (λx.e)v) where j + i < k. Also, since
σ(e2) :k−j,Ψ′ τ1 and (S ′,σ(e2)) "−→i

M (S ′′, v) for i < k− j and irred(S ′′, v), it follows
that there exists a Ψ′′ such that (k − j, Ψ′) $ (k − j − i, Ψ′′), S ′′ :k−j−i Ψ′′, and
〈k − j − i, Ψ′′, v〉 ∈ τ1.

Pick memory typing Ψ∗ =)Ψ′′*k−j−i−1. Let k∗ = k− j− i− 1. Then the follow-
ing information-forgetting state extension holds: (k − j − i, Ψ′′) $ (k∗, Ψ∗). Since
〈k − j − i, Ψ′′, v〉 ∈ τ1 and τ1 is a type, we have 〈k∗, Ψ∗, v〉 ∈ τ1. The definition
of → then implies that e[v/x] :k∗,Ψ∗ τ2. But we now have (S ,σ(e1 e2)) "−→

j+i+1
M

(S ′′, e[v/x]), (k, Ψ) $ (k∗, Ψ∗), S ′′ :k∗ Ψ∗, and e[v/x] :k∗,Ψ∗ τ2. By Definition 3.6
(Expr : Type), this means that if (S ′′, e[v/x]) generates a value in fewer than k∗ steps
then that value will be of type τ2. Hence, we may conclude that σ(e1 e2) :k,Ψ τ2 as
we wanted to show. !

3.5.2 Allocation, Assignment, Dereferencing

I use the notation aprx-extend(k, Ψ, $, τ) to denote a store typing that extends)Ψ*k
by mapping $ to)τ*k. aprx-extend serves as a useful abbreviation in the proof of
the M-new typing rule.

Definition 3.22 (Approximately Extend Store Typing)
The approximate extension of a store typing Ψ with location $ mapped to type τ is
defined as follows:

aprx-extend(k, Ψ, $, τ) =)Ψ*k ∪ ($ "→)τ*k)

67

Extraneous low-level details 
that obscure the proof idea!

σ(e1) :k,Ψ τ1 → τ2. To show σ(e1 e2) :k,Ψ τ2, suppose S :k Ψ for some store S .
Then, from σ(e1) :k,Ψ τ1 → τ2 it follows that (S ,σ(e1)) is safe for k steps. Either
(S ,σ(e1)) reduces for k steps without reaching a state (S ′, v1) where v1 is a value —
in which case (S ,σ(e1 e2)) does not generate a value in less than k steps and hence
σ(e1 e2) :k,Ψ τ2 (for any τ2) — or the value v1 is a lambda expression λx.e. In the
latter case, since σ(e1) :k,Ψ τ1 → τ2 and (S ,σ(e1)) "−→

j
M

(S ′,λx.e), where j < k and
irred(S ′,λx.e), it follows that there exists a Ψ′ such that (k, Ψ) $ (k − j, Ψ′) and
S ′ :k−j Ψ′ and 〈k − j, Ψ′,λx.e〉 ∈ τ1 → τ2.

From σ :k,Ψ Γ it follows that σ(x) :k,Ψ Γ(x) for all variables x ∈ dom(Γ). A
type environment Γ is a mapping from variables to types. Hence, since (k, Ψ) $
(k − j, Ψ′), it follows that σ(x) :k−j,Ψ′ Γ(x) for all x ∈ dom(Γ) — that is, we have
σ :k−j,Ψ′ Γ. Now, from premise Γ |=

M e2 : τ1, since k − j ≥ 0, S ′ :k−j Ψ′, and
σ :k−j,Ψ′ Γ, we have σ(e2) :k−j,Ψ′ τ1. It follows that (S ′,σ(e2)) is safe for k − j
steps, i.e., either (S ′,σ(e2)) does not generate a value in fewer than k − j steps —
in which case, (S ,σ(e1 e2)) does not generate a value in fewer than k steps so we
have σ(e1 e2) :k,Ψ τ2 (for any τ2) — or (S ′,σ(e2)) "−→i

M (S ′′, v) where i < k − j.
In the latter case, (S ,σ(e1 e2)) "−→

j+i
M

(S ′′, (λx.e)v) where j + i < k. Also, since
σ(e2) :k−j,Ψ′ τ1 and (S ′,σ(e2)) "−→i

M (S ′′, v) for i < k− j and irred(S ′′, v), it follows
that there exists a Ψ′′ such that (k − j, Ψ′) $ (k − j − i, Ψ′′), S ′′ :k−j−i Ψ′′, and
〈k − j − i, Ψ′′, v〉 ∈ τ1.

Pick memory typing Ψ∗ =)Ψ′′*k−j−i−1. Let k∗ = k− j− i− 1. Then the follow-
ing information-forgetting state extension holds: (k − j − i, Ψ′′) $ (k∗, Ψ∗). Since
〈k − j − i, Ψ′′, v〉 ∈ τ1 and τ1 is a type, we have 〈k∗, Ψ∗, v〉 ∈ τ1. The definition
of → then implies that e[v/x] :k∗,Ψ∗ τ2. But we now have (S ,σ(e1 e2)) "−→

j+i+1
M

(S ′′, e[v/x]), (k, Ψ) $ (k∗, Ψ∗), S ′′ :k∗ Ψ∗, and e[v/x] :k∗,Ψ∗ τ2. By Definition 3.6
(Expr : Type), this means that if (S ′′, e[v/x]) generates a value in fewer than k∗ steps
then that value will be of type τ2. Hence, we may conclude that σ(e1 e2) :k,Ψ τ2 as
we wanted to show. !

3.5.2 Allocation, Assignment, Dereferencing

I use the notation aprx-extend(k, Ψ, $, τ) to denote a store typing that extends)Ψ*k
by mapping $ to)τ*k. aprx-extend serves as a useful abbreviation in the proof of
the M-new typing rule.

Definition 3.22 (Approximately Extend Store Typing)
The approximate extension of a store typing Ψ with location $ mapped to type τ is
defined as follows:

aprx-extend(k, Ψ, $, τ) =)Ψ*k ∪ ($ "→)τ*k)

67

Extraneous low-level details 
that obscure the proof idea!

Since F is a function from types to types and !τ"j is a type, F (!τ"j) is a type. It
follows that !F (!τ"j)"j is a type (by Definition 3.2 (Approx)). Since F is non-
expansive, we have that !F (!τ"j)"j = !F (τ)"j. Hence !F (τ)"j is a type. Now,
since 〈i, !Ψ"i, v′〉 ∈ F (τ) and i < j, it follows that 〈i, !Ψ"i, v′〉 ∈ !F (τ)"j. Fur-
thermore, since (k, Ψ) & (j, Ψ′), i < j, and i < k, by Lemma 3.18 we may
conclude that (i, !Ψ"i) & (i, !Ψ′"i). Since types are closed under state extension,
from 〈i, !Ψ"i, v′〉 ∈ !F (τ)"j and type(!F (τ)"j) we may conclude that 〈i, !Ψ′"i, v′〉 ∈
!F (τ)"j. But since i < j it follows that 〈i, !Ψ′"i, v′〉 ∈ F (τ). !

3.5 Validity of Typing Rules

I shall now prove each of the typing rules in Figure 3.7 as lemmas. The lemma for
variables, stating that Γ |=

M x : Γ(x), follows immediately from the definition of |=
M .

The lemma for M-unit is immediate from the definition of unit.

3.5.1 Lambda Abstraction and Application

Theorem 3.20 (Abstraction)
Let Γ be a type environment, let τ1 and τ2 be types, and let Γ[x := τ1] be the type
environment that is identical to Γ except that it maps x to τ1. If Γ[x := τ1] |=M e : τ2

then Γ |=
M λx.e : τ1 → τ2.

Proof: We must show that under the premises of the theorem for any k ≥ 0 we
have Γ |= k

M λx.e : τ1 → τ2. More specifically, for any σ and Ψ such that σ :k,Ψ Γ we
must show that σ(λx.e) :k,Ψ τ1 → τ2. Suppose σ :k,Ψ Γ. Let j < k and v, Ψ′, be
such that (k, Ψ) & (j, Ψ′) and 〈j, Ψ′, v〉 ∈ τ1. By definition of → it now suffices to
show that σ(e[v/x]) :j,Ψ′ τ2. Let σ [x)→ v] be the substitution identical to σ except
that it maps x to v. Since the codomain of Γ contains types (which are closed under
state extension), and since v :j,Ψ′ τ1, we now have that σ [x)→ v] :j,Ψ′ Γ [x)→ τ1].
To show σ(e[v/x]) :j,Ψ′ τ2, suppose S ′ :j Ψ′. By the premise Γ [x)→ τ1] |=

M e : τ2,
together with S ′ :j Ψ′ and σ [x)→ v] :j,Ψ′ Γ [x)→ τ1] we have σ [x)→ v](e) :j,Ψ′ τ2.
But this implies σ(e[v/x]) :j,Ψ′ τ2. !

Theorem 3.21 (Application)
If Γ is a type environment, e1 and e2 are (possibly open) terms, and τ1 and τ2 are
types such that Γ |=

M e1 : τ1 → τ2 and Γ |=
M e2 : τ1 then Γ |=

M (e1 e2) : τ2.

Proof: We must prove that under the premises of the theorem, for any k ≥ 0,
we have Γ |= k

M (e1 e2) : τ2. More specifically, for any σ and Ψ such that σ :k,Ψ Γ
we must show σ(e1 e2) :k,Ψ τ2. From the premise Γ |=

M e1 : τ1 → τ2 we have

66

σ(e1) :k,Ψ τ1 → τ2. To show σ(e1 e2) :k,Ψ τ2, suppose S :k Ψ for some store S .
Then, from σ(e1) :k,Ψ τ1 → τ2 it follows that (S ,σ(e1)) is safe for k steps. Either
(S ,σ(e1)) reduces for k steps without reaching a state (S ′, v1) where v1 is a value —
in which case (S ,σ(e1 e2)) does not generate a value in less than k steps and hence
σ(e1 e2) :k,Ψ τ2 (for any τ2) — or the value v1 is a lambda expression λx.e. In the
latter case, since σ(e1) :k,Ψ τ1 → τ2 and (S ,σ(e1)) "−→

j
M

(S ′,λx.e), where j < k and
irred(S ′,λx.e), it follows that there exists a Ψ′ such that (k, Ψ) $ (k − j, Ψ′) and
S ′ :k−j Ψ′ and 〈k − j, Ψ′,λx.e〉 ∈ τ1 → τ2.

From σ :k,Ψ Γ it follows that σ(x) :k,Ψ Γ(x) for all variables x ∈ dom(Γ). A
type environment Γ is a mapping from variables to types. Hence, since (k, Ψ) $
(k − j, Ψ′), it follows that σ(x) :k−j,Ψ′ Γ(x) for all x ∈ dom(Γ) — that is, we have
σ :k−j,Ψ′ Γ. Now, from premise Γ |=

M e2 : τ1, since k − j ≥ 0, S ′ :k−j Ψ′, and
σ :k−j,Ψ′ Γ, we have σ(e2) :k−j,Ψ′ τ1. It follows that (S ′,σ(e2)) is safe for k − j
steps, i.e., either (S ′,σ(e2)) does not generate a value in fewer than k − j steps —
in which case, (S ,σ(e1 e2)) does not generate a value in fewer than k steps so we
have σ(e1 e2) :k,Ψ τ2 (for any τ2) — or (S ′,σ(e2)) "−→i

M (S ′′, v) where i < k − j.
In the latter case, (S ,σ(e1 e2)) "−→

j+i
M

(S ′′, (λx.e)v) where j + i < k. Also, since
σ(e2) :k−j,Ψ′ τ1 and (S ′,σ(e2)) "−→i

M (S ′′, v) for i < k− j and irred(S ′′, v), it follows
that there exists a Ψ′′ such that (k − j, Ψ′) $ (k − j − i, Ψ′′), S ′′ :k−j−i Ψ′′, and
〈k − j − i, Ψ′′, v〉 ∈ τ1.

Pick memory typing Ψ∗ =)Ψ′′*k−j−i−1. Let k∗ = k− j− i− 1. Then the follow-
ing information-forgetting state extension holds: (k − j − i, Ψ′′) $ (k∗, Ψ∗). Since
〈k − j − i, Ψ′′, v〉 ∈ τ1 and τ1 is a type, we have 〈k∗, Ψ∗, v〉 ∈ τ1. The definition
of → then implies that e[v/x] :k∗,Ψ∗ τ2. But we now have (S ,σ(e1 e2)) "−→

j+i+1
M

(S ′′, e[v/x]), (k, Ψ) $ (k∗, Ψ∗), S ′′ :k∗ Ψ∗, and e[v/x] :k∗,Ψ∗ τ2. By Definition 3.6
(Expr : Type), this means that if (S ′′, e[v/x]) generates a value in fewer than k∗ steps
then that value will be of type τ2. Hence, we may conclude that σ(e1 e2) :k,Ψ τ2 as
we wanted to show. !

3.5.2 Allocation, Assignment, Dereferencing

I use the notation aprx-extend(k, Ψ, $, τ) to denote a store typing that extends)Ψ*k
by mapping $ to)τ*k. aprx-extend serves as a useful abbreviation in the proof of
the M-new typing rule.

Definition 3.22 (Approximately Extend Store Typing)
The approximate extension of a store typing Ψ with location $ mapped to type τ is
defined as follows:

aprx-extend(k, Ψ, $, τ) =)Ψ*k ∪ ($ "→)τ*k)

67

Theorem 3.21 (Application)
If Γ is a type environment, e1 and e2 are (possibly open) terms, and τ1 and τ2 are
types such that Γ |=

M e1 : τ1 → τ2 and Γ |=
M e2 : τ1 then Γ |=

M (e1 e2) : τ2.

Proof: We must prove that under the premises of the theorem, for any k ≥ 0,
we have Γ |= k

M (e1 e2) : τ2. More specifically, for any σ and Ψ such that σ :k,Ψ Γ
we must show σ(e1 e2) :k,Ψ τ2. From the premise Γ |=

M e1 : τ1 → τ2 we have
σ(e1) :k,Ψ τ1 → τ2. To show σ(e1 e2) :k,Ψ τ2, suppose S :k Ψ for some store S .
Then, from σ(e1) :k,Ψ τ1 → τ2 it follows that (S ,σ(e1)) is safe for k steps. Either
(S ,σ(e1)) reduces for k steps without reaching a state (S ′, v1) where v1 is a value —
in which case (S ,σ(e1 e2)) does not generate a value in less than k steps and hence
σ(e1 e2) :k,Ψ τ2 (for any τ2) — or the value v1 is a lambda expression λx.e. In the
latter case, since σ(e1) :k,Ψ τ1 → τ2 and (S ,σ(e1)) "−→

j
M

(S ′,λx.e), where j < k and
irred(S ′,λx.e), it follows that there exists a Ψ′ such that (k, Ψ) $ (k − j, Ψ′) and
S ′ :k−j Ψ′ and 〈k − j, Ψ′,λx.e〉 ∈ τ1 → τ2.

From σ :k,Ψ Γ it follows that σ(x) :k,Ψ Γ(x) for all variables x ∈ dom(Γ). A
type environment Γ is a mapping from variables to types. Hence, since (k, Ψ) $
(k − j, Ψ′), it follows that σ(x) :k−j,Ψ′ Γ(x) for all x ∈ dom(Γ) — that is, we have
σ :k−j,Ψ′ Γ. Now, from premise Γ |=

M e2 : τ1, since k − j ≥ 0, S ′ :k−j Ψ′, and
σ :k−j,Ψ′ Γ, we have σ(e2) :k−j,Ψ′ τ1. It follows that (S ′,σ(e2)) is safe for k − j
steps, i.e., either (S ′,σ(e2)) does not generate a value in fewer than k − j steps —
in which case, (S ,σ(e1 e2)) does not generate a value in fewer than k steps so we
have σ(e1 e2) :k,Ψ τ2 (for any τ2) — or (S ′,σ(e2)) "−→i

M (S ′′, v) where i < k − j.
In the latter case, (S ,σ(e1 e2)) "−→

j+i
M

(S ′′, (λx.e)v) where j + i < k. Also, since
σ(e2) :k−j,Ψ′ τ1 and (S ′,σ(e2)) "−→i

M (S ′′, v) for i < k− j and irred(S ′′, v), it follows
that there exists a Ψ′′ such that (k − j, Ψ′) $ (k − j − i, Ψ′′), S ′′ :k−j−i Ψ′′, and
〈k − j − i, Ψ′′, v〉 ∈ τ1.

Pick memory typing Ψ∗ =)Ψ′′*k−j−i−1. Let k∗ = k− j− i− 1. Then the follow-
ing information-forgetting state extension holds: (k − j − i, Ψ′′) $ (k∗, Ψ∗). Since
〈k − j − i, Ψ′′, v〉 ∈ τ1 and τ1 is a type, we have 〈k∗, Ψ∗, v〉 ∈ τ1. The definition
of → then implies that e[v/x] :k∗,Ψ∗ τ2. But we now have (S ,σ(e1 e2)) "−→

j+i+1
M

(S ′′, e[v/x]), (k, Ψ) $ (k∗, Ψ∗), S ′′ :k∗ Ψ∗, and e[v/x] :k∗,Ψ∗ τ2. By Definition 3.6
(Expr : Type), this means that if (S ′′, e[v/x]) generates a value in fewer than k∗ steps
then that value will be of type τ2. Hence, we may conclude that σ(e1 e2) :k,Ψ τ2 as
we wanted to show. !

 Theorem compat_app Γ e1 e2 A B :
 Γ ⊨ e1 : TArrow A B " Γ ⊨ e2 : A " Γ ⊨ App e1 e2 : B.
 Proof.
 iIntros (e1Typed e2Typed ? ? ?) "#HΓ".
 use_bind (AppLCtx _) v1 "#Hv1" e1Typed.
 use_bind (AppRCtx _) v2 "#Hv2" e2Typed.
 by iApply "Hv1".
 Qed. Proof in Iris (in Coq)

Theorem 3.21 (Application)
If Γ is a type environment, e1 and e2 are (possibly open) terms, and τ1 and τ2 are
types such that Γ |=

M e1 : τ1 → τ2 and Γ |=
M e2 : τ1 then Γ |=

M (e1 e2) : τ2.

Proof: We must prove that under the premises of the theorem, for any k ≥ 0,
we have Γ |= k

M (e1 e2) : τ2. More specifically, for any σ and Ψ such that σ :k,Ψ Γ
we must show σ(e1 e2) :k,Ψ τ2. From the premise Γ |=

M e1 : τ1 → τ2 we have
σ(e1) :k,Ψ τ1 → τ2. To show σ(e1 e2) :k,Ψ τ2, suppose S :k Ψ for some store S .
Then, from σ(e1) :k,Ψ τ1 → τ2 it follows that (S ,σ(e1)) is safe for k steps. Either
(S ,σ(e1)) reduces for k steps without reaching a state (S ′, v1) where v1 is a value —
in which case (S ,σ(e1 e2)) does not generate a value in less than k steps and hence
σ(e1 e2) :k,Ψ τ2 (for any τ2) — or the value v1 is a lambda expression λx.e. In the
latter case, since σ(e1) :k,Ψ τ1 → τ2 and (S ,σ(e1)) "−→

j
M

(S ′,λx.e), where j < k and
irred(S ′,λx.e), it follows that there exists a Ψ′ such that (k, Ψ) $ (k − j, Ψ′) and
S ′ :k−j Ψ′ and 〈k − j, Ψ′,λx.e〉 ∈ τ1 → τ2.

From σ :k,Ψ Γ it follows that σ(x) :k,Ψ Γ(x) for all variables x ∈ dom(Γ). A
type environment Γ is a mapping from variables to types. Hence, since (k, Ψ) $
(k − j, Ψ′), it follows that σ(x) :k−j,Ψ′ Γ(x) for all x ∈ dom(Γ) — that is, we have
σ :k−j,Ψ′ Γ. Now, from premise Γ |=

M e2 : τ1, since k − j ≥ 0, S ′ :k−j Ψ′, and
σ :k−j,Ψ′ Γ, we have σ(e2) :k−j,Ψ′ τ1. It follows that (S ′,σ(e2)) is safe for k − j
steps, i.e., either (S ′,σ(e2)) does not generate a value in fewer than k − j steps —
in which case, (S ,σ(e1 e2)) does not generate a value in fewer than k steps so we
have σ(e1 e2) :k,Ψ τ2 (for any τ2) — or (S ′,σ(e2)) "−→i

M (S ′′, v) where i < k − j.
In the latter case, (S ,σ(e1 e2)) "−→

j+i
M

(S ′′, (λx.e)v) where j + i < k. Also, since
σ(e2) :k−j,Ψ′ τ1 and (S ′,σ(e2)) "−→i

M (S ′′, v) for i < k− j and irred(S ′′, v), it follows
that there exists a Ψ′′ such that (k − j, Ψ′) $ (k − j − i, Ψ′′), S ′′ :k−j−i Ψ′′, and
〈k − j − i, Ψ′′, v〉 ∈ τ1.

Pick memory typing Ψ∗ =)Ψ′′*k−j−i−1. Let k∗ = k− j− i− 1. Then the follow-
ing information-forgetting state extension holds: (k − j − i, Ψ′′) $ (k∗, Ψ∗). Since
〈k − j − i, Ψ′′, v〉 ∈ τ1 and τ1 is a type, we have 〈k∗, Ψ∗, v〉 ∈ τ1. The definition
of → then implies that e[v/x] :k∗,Ψ∗ τ2. But we now have (S ,σ(e1 e2)) "−→

j+i+1
M

(S ′′, e[v/x]), (k, Ψ) $ (k∗, Ψ∗), S ′′ :k∗ Ψ∗, and e[v/x] :k∗,Ψ∗ τ2. By Definition 3.6
(Expr : Type), this means that if (S ′′, e[v/x]) generates a value in fewer than k∗ steps
then that value will be of type τ2. Hence, we may conclude that σ(e1 e2) :k,Ψ τ2 as
we wanted to show. !

 Theorem compat_app Γ e1 e2 A B :
 Γ ⊨ e1 : TArrow A B " Γ ⊨ e2 : A " Γ ⊨ App e1 e2 : B.
 Proof.
 iIntros (e1Typed e2Typed ? ? ?) "#HΓ".
 use_bind (AppLCtx _) v1 "#Hv1" e1Typed.
 use_bind (AppRCtx _) v2 "#Hv2" e2Typed.
 by iApply "Hv1".
 Qed. Proof in Iris (in Coq)

Iris dramatically simplifies 
the development of step-indexed models, 

while also being machine-checked!

Starting 
Point:

Separation 
Logic

Starting 
Point:

Separation 
Logic

Extension of Hoare logic (O’Hearn-Reynolds-…, 1999)

• For reasoning about pointer-manipulating programs

Major influence on many verification & analysis tools

• e.g. Infer, VeriFast, Viper, Bedrock, jStar, …

Separation logic = Ownership logic

• Perfect fit for modeling Rust’s ownership types!

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007) RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)
Jacobs-Piessens (2011)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)
HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)

RSL (2013)

Program logics for concurrency

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007) RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)
Jacobs-Piessens (2011)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)
HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)

RSL (2013)

Program logics for concurrency

7

Complex rules built-in as primitives

CaReSL:

iCAP:

TaDA:

Jung, Swasey, Sieczkowski, Svendsen, Turon, Birkedal, Dreyer Iris: Monoids and Invariants for Concurrent Reasoning

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007) RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)
Jacobs-Piessens (2011)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)
HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)

RSL (2013)

Program logics for concurrency

7

Complex rules built-in as primitives

CaReSL:

iCAP:

TaDA:

Jung, Swasey, Sieczkowski, Svendsen, Turon, Birkedal, Dreyer Iris: Monoids and Invariants for Concurrent Reasoning

No way to compose proofs from

different separation logics!

Key Idea of Iris
• Unify the field of separation logic using a

single powerful mechanism:

Higher-order ghost state

Enables encoding of 
step-indexed models

Enables users to define 
custom resources

(see “Iris from the Ground Up”, JFP’18, for details)

Key Idea of Iris
• Unify the field of separation logic using a

single powerful mechanism:

Higher-order ghost state

Enables encoding of 
step-indexed models

Enables users to define 
custom resources

(see “Iris from the Ground Up”, JFP’18, for details)

With higher-order ghost state, 
Iris lets you derive and compose advanced
proof rules within one unifying framework.

Impact of Iris & RustBelt
Iris

• 60 papers (28 in POPL/PLDI), 7 PhD theses

• Adopted as core tech. by systems verification

researchers at MIT, BedRock, Meta

RustBelt

• Most-cited POPL/PLDI paper of 2018

• Pioneering effort in Rust verification & using 

program logics to prove extensible type safety

Type 
systems

Program 
logics

extensibility

automation

RefinedC
First verification tool for C programs that is

• Automated: user gives only specs/annotations

• Foundational: generates proofs in Coq

 
How?

• Refinement type system to encode functional

invariants on C data types

• Semantic model of RefinedC types in Iris

• RefinedC typing rules formulated in Lithium, 

a restricted, automatable fragment of Iris

Iris vs. RefinedC

Iris:
iIntros (p) "[Hxs Hys] H".

iLob as "IH" forall (l xs l’ ys p).

destruct xs as [| x xs’]; iSimplifyEq.

- wp_rec. wp_let. wp_match. by iApply "H".

- iDestruct "Hxs" as (l0 hd0) "(% & Hx & Hxs)".

iSimplifyEq. wp_rec. wp_let. wp_match. wp_load.

wp_let. wp_proj. wp_bind (app _ _)%E.

iApply ("IH" with "Hxs Hys"). iNext. iIntros.

wp_let. wp_proj. wp_store. iSimplifyEq. iApply "H".

iExists l0, v. iFrame. done.

RefinedC:
repeat liRStep; liShow.

�

Iris:

C:

C:Iris vs. RefinedC

Iris:
iIntros (p) "[Hxs Hys] H".

iLob as "IH" forall (l xs l’ ys p).

destruct xs as [| x xs’]; iSimplifyEq.

- wp_rec. wp_let. wp_match. by iApply "H".

- iDestruct "Hxs" as (l0 hd0) "(% & Hx & Hxs)".

iSimplifyEq. wp_rec. wp_let. wp_match. wp_load.

wp_let. wp_proj. wp_bind (app _ _)%E.

iApply ("IH" with "Hxs Hys"). iNext. iIntros.

wp_let. wp_proj. wp_store. iSimplifyEq. iApply "H".

iExists l0, v. iFrame. done.

RefinedC:
repeat liRStep; liShow.

�

RefinedC:

C:Iris vs. RefinedC

Iris:
iIntros (p) "[Hxs Hys] H".

iLob as "IH" forall (l xs l’ ys p).

destruct xs as [| x xs’]; iSimplifyEq.

- wp_rec. wp_let. wp_match. by iApply "H".

- iDestruct "Hxs" as (l0 hd0) "(% & Hx & Hxs)".

iSimplifyEq. wp_rec. wp_let. wp_match. wp_load.

wp_let. wp_proj. wp_bind (app _ _)%E.

iApply ("IH" with "Hxs Hys"). iNext. iIntros.

wp_let. wp_proj. wp_store. iSimplifyEq. iApply "H".

iExists l0, v. iFrame. done.

RefinedC:
repeat liRStep; liShow.

�

RefinedC:

Distinguished paper and artifact awards 
at PLDI’21

Type 
systems

Program 
logics

extensibility

automation

Type 
systems

Program 
logics

extensibility

automation

Simuliris 
[POPL’22]

iGPS 
[ECOOP’17]

Cosmo 
[ICFP’20,’21]

Perennial 
[SOSP’19]

Transfinite 
Iris [PLDI’21] gDOT 

[ICFP’20]

Actris 
[POPL’20]

ReLoC 
[LICS’18]

GoJournal 
[OSDI’21]

iRC11 
[POPL’20]

Research Vision

Integrating Verification 

into Real-World Systems

Impressive sys. verif. projects in past 15 years:

Systems Verification

Impressive sys. verif. projects in past 15 years:

Systems Verification

Some key limitations to their scope:

• Centered exclusively around the C language

• Idealized code/semantics to simplify verif.

• Huge manual proof effort by experts

Impressive sys. verif. projects in past 15 years:

Systems Verification

Some key limitations to their scope:

• Centered exclusively around the C language

• Idealized code/semantics to simplify verif.

• Huge manual proof effort by experts

Goal: Develop systems verification tools 
that overcome these limitations!

Direction #1: 
Rust Verification

 Safe + unsafe code

 Verif. is manual

 Verif. is automated

 Only safe code

(from ETH)

Direction #1: 
Rust Verification

 Safe + unsafe code

 Verif. is manual

 Verif. is automated

 Only safe code

(from ETH)

Goal: Tool that’s automated & handles unsafe code

• In development: RustHornBelt, RefinedRust

• Possible verification goal: Redox microkernel

Direction #2: Realism
Prior work employs idealized coding/semantics

• Restricts coding patterns (e.g. allocate all data in one

big array, prohibit taking address of local variables)

• Assumes strong concurrency semantics (e.g. SC)

• Uses idealized model of low-level system features 

(e.g. virtual memory, interrupts, exceptions, TLB)

Ongoing: Verifying Linux pKVM hypervisor

• To be deployed on billions of Android devices

• Goal: Use RefinedC to verify Armv8 machine code

against authoritative Armv8 semantics

• Joint with Sewell, Hur, et al., funded by Google

Direction #2: Realism
Prior work employs idealized coding/semantics

• Restricts coding patterns (e.g. allocate all data in one

big array, prohibit taking address of local variables)

• Assumes strong concurrency semantics (e.g. SC)

• Uses idealized model of low-level system features 

(e.g. virtual memory, interrupts, exceptions, TLB)

Ongoing: Verifying Linux pKVM hypervisor

• To be deployed on billions of Android devices

• Goal: Use RefinedC to verify Armv8 machine code

against authoritative Armv8 semantics

• Joint with Sewell, Hur, et al., funded by Google

Direction #3: Usability
Problem: Even automated 
tools like RefinedC involve 
some annotation burden

• e.g. users must write 

tricky specs manually

PLDI ’21, June 20–25, 2021, Virtual, Canada M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg

seL4 [51], embed expressive frameworks for verifying C code
within a pre-existing logical foundation, typically a general-
purpose theorem prover such as Coq or Isabelle/HOL. Foun-
dational tools have the key advantage of a smaller trusted
computing base: one need only trust the proof checker of
the host theorem prover and the encoding of the operational
semantics of C, but not the particular logic or implementa-
tion of the tool itself. However, the use of foundational tools
typically requires signi!cant manual proof e"ort: although
these frameworks provide tactical support for hiding tedious
proof steps, the user must still guide the proof process—
e.g., manipulating the proof context, applying lemmas, per-
forming case distinctions, unfolding de!nitions, instantiating
quanti!ers—by hand. One exception is Bedrock [13–15, 64],
which provides much more powerful tactic-based automa-
tion. However, Bedrock does not handle many complexities
of C, instead targeting a custom assembly-like language with
a simpli!ed memory model that prohibits many of the opti-
mizations performed by modern C compilers [14].
In this paper, we present RefinedC, a new approach to

verifying C code that is both automated and foundational,
while at the same time handling a range of low-level pro-
gramming idioms including pointer arithmetic, uninitialized
memory, and concurrency with data races.
To support automated veri!cation, RefinedC employs a

novel type system combining re!nement types and ownership
types. Re!nement types let us express precise invariants on
C data types and strong Hoare-style speci!cations for C
functions. Ownership types let us reason modularly about
shared state and concurrency by controlling ownership of
memory à la Rust [93]. Moreover, RefinedC’s type-based
approach has the bene!t of o"ering a predictable, syntax-
directed approach to automated veri!cation.
To support foundational veri!cation, RefinedC follows

the semantic typing approach of RustBelt [42, 43]: we give
meaning to RefinedC’s types by interpreting them in Iris,
a higher-order concurrent separation logic embedded in
Coq [44, 45, 47, 55]. The typing rules of RefinedC thus simply
become lemmas about our separation-logic model of types,
whose soundness we establish (using Iris) in Coq. Separation
logic is a natural !t for modeling RefinedC types because
(a) it provides a built-in account of ownership-based reason-
ing, and (b) Iris provides features like invariants and ghost
state, which are useful for justifying more sophisticated typ-
ing rules concerning shared state and concurrency.

Motivating example. Figure 1 shows a concrete example
of RefinedC in action. The type struct mem_t represents the
state of a memory allocator: a block of memory pointed to by
buffer, whose size is len. The alloc function tries to allocate sz
bytes of memory from a struct mem_t. It !rst checks, using len,
that enough memory is available, and returns NULL otherwise.
If buffer is large enough, then its last sz bytes are allocated
using pointer arithmetic, and len is updated accordingly.

1 struct [[rc::refined_by("a: nat")]] mem_t {

2 [[rc::field("a @ int<size_t>")]] size_t len;

3 [[rc::field("&own<uninit<a>>")]] unsigned char* buffer;

4 };

5

6 [[rc::parameters("a: nat", "n: nat", "p: loc")]]

7 [[rc::args ("p @ &own<a @ mem_t>", "n @ int<size_t>")]]

8 [[rc::returns("{n≤a} @ optional<&own<uninit<n>>, null>")]]

9 [[rc::ensures("own p : {n ≤ a ? a - n : a} @ mem_t")]]

10 void* alloc(struct mem_t* d, size_t sz) {

11 if(sz > d->len) return NULL;

12 d->len -= sz;

13 return d->buffer + d->len;

14 }

Figure 1. Memory allocator example in RefinedC.

The [[rc::...]] blocks in Figure 1 represent RefinedC an-
notations,1 which express a re!ned version of mem_t and a
behavioral speci!cation of alloc for RefinedC to verify au-
tomatically. Here, the re!ned mem_t is indexed by a natural
number a, the number of bytes available from the alloca-
tor. This number must match the value stored in the len

!eld as enforced using a @ int<size_t>, the singleton type
of the size_t integer a.2 The buffer !eld is given the type
&own<uninit<a>>, indicating that it is a pointer to an owned
block of memory of size a. Taken as a whole, the re!ned mem_t

encodes the invariant that the len !eld contains the length
of the owned block pointed to by the buffer !eld.

The speci!cation for alloc assumes (in its rc::args clause)
that the argument d points to a struct mem_t with a available
bytes, and that the argument sz is equal to some integer value
n. The rc::returns clause speci!es the re!ned type of the
value that alloc returns: in this case, an optional value, which
points to an uninitialized block of length n if the re!nement
n ≤ a is true, and is NULL otherwise. Finally, the rc::ensures

clause speci!es that, upon returning, alloc gives back the
ownership of p (the pointer passed in as the argument d),
now pointing to a mem_t of the appropriately reduced size.

Key idea. One may wonder how the checking of richly-
typed speci!cations like the one for alloc can be performed
automatically. The key idea is that, even though RefinedC’s
re!nement types encode deep (undecidable) speci!cations,
their syntactic structure serves to judiciously and predictably
guide the proof search in a syntax-directed manner. A con-
crete example of this is the type b @ optional<T1,T2> (as seen
in the rc::returns clause in line 8 of Figure 1). Semantically,
in our Iris model of RefinedC types, this type corresponds to
a disjunction (untagged union) between the cases where b is
true or false; and in general, searching for proofs of disjunc-
tions is di#cult because one may make incorrect choices,
leading to backtracking. However, as we explain in §6, the

1Annotations use C2x attributes syntax supported by recent C compilers.
2The unre!ned version int<size_t> is inhabited by all size_t integers.

159

Direction #3: Usability
Problem: Even automated 
tools like RefinedC involve 
some annotation burden

• e.g. users must write 

tricky specs manually

PLDI ’21, June 20–25, 2021, Virtual, Canada M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg

seL4 [51], embed expressive frameworks for verifying C code
within a pre-existing logical foundation, typically a general-
purpose theorem prover such as Coq or Isabelle/HOL. Foun-
dational tools have the key advantage of a smaller trusted
computing base: one need only trust the proof checker of
the host theorem prover and the encoding of the operational
semantics of C, but not the particular logic or implementa-
tion of the tool itself. However, the use of foundational tools
typically requires signi!cant manual proof e"ort: although
these frameworks provide tactical support for hiding tedious
proof steps, the user must still guide the proof process—
e.g., manipulating the proof context, applying lemmas, per-
forming case distinctions, unfolding de!nitions, instantiating
quanti!ers—by hand. One exception is Bedrock [13–15, 64],
which provides much more powerful tactic-based automa-
tion. However, Bedrock does not handle many complexities
of C, instead targeting a custom assembly-like language with
a simpli!ed memory model that prohibits many of the opti-
mizations performed by modern C compilers [14].
In this paper, we present RefinedC, a new approach to

verifying C code that is both automated and foundational,
while at the same time handling a range of low-level pro-
gramming idioms including pointer arithmetic, uninitialized
memory, and concurrency with data races.
To support automated veri!cation, RefinedC employs a

novel type system combining re!nement types and ownership
types. Re!nement types let us express precise invariants on
C data types and strong Hoare-style speci!cations for C
functions. Ownership types let us reason modularly about
shared state and concurrency by controlling ownership of
memory à la Rust [93]. Moreover, RefinedC’s type-based
approach has the bene!t of o"ering a predictable, syntax-
directed approach to automated veri!cation.
To support foundational veri!cation, RefinedC follows

the semantic typing approach of RustBelt [42, 43]: we give
meaning to RefinedC’s types by interpreting them in Iris,
a higher-order concurrent separation logic embedded in
Coq [44, 45, 47, 55]. The typing rules of RefinedC thus simply
become lemmas about our separation-logic model of types,
whose soundness we establish (using Iris) in Coq. Separation
logic is a natural !t for modeling RefinedC types because
(a) it provides a built-in account of ownership-based reason-
ing, and (b) Iris provides features like invariants and ghost
state, which are useful for justifying more sophisticated typ-
ing rules concerning shared state and concurrency.

Motivating example. Figure 1 shows a concrete example
of RefinedC in action. The type struct mem_t represents the
state of a memory allocator: a block of memory pointed to by
buffer, whose size is len. The alloc function tries to allocate sz
bytes of memory from a struct mem_t. It !rst checks, using len,
that enough memory is available, and returns NULL otherwise.
If buffer is large enough, then its last sz bytes are allocated
using pointer arithmetic, and len is updated accordingly.

1 struct [[rc::refined_by("a: nat")]] mem_t {

2 [[rc::field("a @ int<size_t>")]] size_t len;

3 [[rc::field("&own<uninit<a>>")]] unsigned char* buffer;

4 };

5

6 [[rc::parameters("a: nat", "n: nat", "p: loc")]]

7 [[rc::args ("p @ &own<a @ mem_t>", "n @ int<size_t>")]]

8 [[rc::returns("{n≤a} @ optional<&own<uninit<n>>, null>")]]

9 [[rc::ensures("own p : {n ≤ a ? a - n : a} @ mem_t")]]

10 void* alloc(struct mem_t* d, size_t sz) {

11 if(sz > d->len) return NULL;

12 d->len -= sz;

13 return d->buffer + d->len;

14 }

Figure 1. Memory allocator example in RefinedC.

The [[rc::...]] blocks in Figure 1 represent RefinedC an-
notations,1 which express a re!ned version of mem_t and a
behavioral speci!cation of alloc for RefinedC to verify au-
tomatically. Here, the re!ned mem_t is indexed by a natural
number a, the number of bytes available from the alloca-
tor. This number must match the value stored in the len

!eld as enforced using a @ int<size_t>, the singleton type
of the size_t integer a.2 The buffer !eld is given the type
&own<uninit<a>>, indicating that it is a pointer to an owned
block of memory of size a. Taken as a whole, the re!ned mem_t

encodes the invariant that the len !eld contains the length
of the owned block pointed to by the buffer !eld.

The speci!cation for alloc assumes (in its rc::args clause)
that the argument d points to a struct mem_t with a available
bytes, and that the argument sz is equal to some integer value
n. The rc::returns clause speci!es the re!ned type of the
value that alloc returns: in this case, an optional value, which
points to an uninitialized block of length n if the re!nement
n ≤ a is true, and is NULL otherwise. Finally, the rc::ensures

clause speci!es that, upon returning, alloc gives back the
ownership of p (the pointer passed in as the argument d),
now pointing to a mem_t of the appropriately reduced size.

Key idea. One may wonder how the checking of richly-
typed speci!cations like the one for alloc can be performed
automatically. The key idea is that, even though RefinedC’s
re!nement types encode deep (undecidable) speci!cations,
their syntactic structure serves to judiciously and predictably
guide the proof search in a syntax-directed manner. A con-
crete example of this is the type b @ optional<T1,T2> (as seen
in the rc::returns clause in line 8 of Figure 1). Semantically,
in our Iris model of RefinedC types, this type corresponds to
a disjunction (untagged union) between the cases where b is
true or false; and in general, searching for proofs of disjunc-
tions is di#cult because one may make incorrect choices,
leading to backtracking. However, as we explain in §6, the

1Annotations use C2x attributes syntax supported by recent C compilers.
2The unre!ned version int<size_t> is inhabited by all size_t integers.

159

Idea: Infer specs using biabduction (POPL’09)

• Inferring full functional correctness specs is

likely impractical, but precision can be improved
by allowing user to “sketch” specs

Thank you!

iris-project.org

