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‘Program testing can be used to show the presence
of bugs, but never to show their absence!”

Jkstra (1970)
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Goal of Program Verificat
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Why is Verification Hard?

e Turing (1936): Halting problem
(whether a program terminates)
is undecidable

e Rice (1953): All non-trivial semantic (I/O)
properties of programs are undecidable
by reduction from the halting problem

e So there is no complete method for
automatically verifying programs in general



Why is Verification Hard?

e Turing (1936): Halting problem ﬂ

But we can still build verification tools that are
sound and practically useful!

e S0 there is no complete method for
automatically verifying programs in general



Two compositional approaches to program verification

Type | Program
systems logics
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Two compositional approaches to program verification

Less precise More precise
-—

Type | Program
systems logics
['Fe:7 {P} e {O}
+ Fully automated ¥ Semi-automated or manual

v Widely used by programmers ¥ Mostly used by verif. experts
¥ Shallow specs (e.g. safety) v Deep specs (e.g. correctness)
¥ Restricts coding style + Does not restrict coding style



Two compositional approaches to program verification

How can we marry the benefits of
type systems & program logics together?

+ Fully automated ¥ Semi-automated or manual

v Widely used by programmers ¥ Mostly used by verif. experts
¥ Shallow specs (e.g. safety) v Deep specs (e.g. correctness)
¥ Restricts coding style + Does not restrict coding style
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A Longstanding Problem

e Many core systems applications require
low-level control over memory/resources

e Such applications are typically written in




A Longstanding Problem

e Many core systems applications require
low-level control over memory/resources

e Such applications are typically written in

UNSAFE! &

C&C++




An update on Memory Safety in Chrome
September 21, 2021

from Google Security Blog

Last year, we showed that more than 70% of our severe security bugs are memory
safety problems. That is, mistakes with pointers in the C or C++ languages which cause

memory to be misinterpreted.

T ——— L

from Microsoft Security We need a safer systems programming language

Security Research & Defense | By MSRC Team [ July 18, 2019 /| Memory Safety, Rust, Safe

Re SP Onse Center Systems Programming Languages, Secure Development

As was pointed out in our previous post, the root cause of approximately 70% of security

vulnerabilities that Microsoft fixes and assigns a CVE (Common Vulnerabilities and
Exposures) are due to memory safety issues. This is despite mitigations including intense

code review, training, static analysis, and more.
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Rust:

The Future of Safe Systems Programming?

In development since 2010, with 1.0 release in 2015

e Mozilla used Rust to build Servo, a next-gen
browser engine, later incorporated into Firefox

Rust is the only “systems PL’ to provide...
e Low-level control a la modern C++
e Strong safety guarantees

e Industrial development and backing

Many major companies using Rust in production

Rust
ALl e In 2021, the Rust Foundation was formed, incl.

Amazon, Google, Huawei, Meta, Microsoft, Mozilla




Rust:

The Future of Safe Systems Programming?

| In development since 2010, with 1.0 release in 2015
/ e Mozilla used Rust to build Servo, a next-gen

browser engine, later incorporated into Firefox

The “safety” of Rust is central to its promise.
But how do we know Rust is safe?

Rust

R e In 2021, the Rust Foundation was formed, incl.

Amazon, Google, Huawei, Meta, Microsoft, Mozilla
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Unrestricted mutation and aliasing lead to:

e use-after-free errors (dangling references)
e data races

@ iterator invalidation



Core Idea of Rust
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Rust prevents all these errors using

a sophisticated “ownership” type system




But sometimes you need
mutation + aliasing!

Pointer-based data structures
e c.g. Doubly-linked lists

Synchronization mechanisms:
e c.g. Locks, channels, semaphores

Memory management:
e c.g. Reference counting



The Reality of Rust

Arc ...standard APIs... Mutex
‘

Code written in the
safe fragment of the language

RefCell Channel



The Reality of Rust

...standard APlIs...

pub fn borrow(&self) —> Ref<T> {
match BorrowRef::new(&self.borrow) {
Some(b) => Ref {
_value: unsafe { &kself.value.get() },
_borrow: b,




The Reality of Rust
Arc //K\\‘ ...standard APIs... é;: Mutex

Claim API developers want to make:

Even though these APIs are implemented
using unsafe operations, they nevertheless
constitute a safe extension to Rust.







Goal: Develop 1st formal foundations for Rust

e Use these foundations to verify the safety of
the Rust core type system and std APIs

e Give Rust developers the tools they need to
safely evolve the language



Key Challenge

e Standard “syntactic safety” approach of Wright
and Felleisen (1994) will not work for Rust!

- Not applicable to programs with unsafe code

e Need to generalize to semantic safety

- An API is semantically safe if no (well-typed)
client of it will ever encounter unsafe behavior




Semantic Safety
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Semantic Safety

...standard APIs... Mutex
‘

Code written in the
safe fragment of the language

Channel



Semantic Safety




Semantic Safety

A :|
semantic logical
model satisfaction -
Safet API
API y | |
contract implementation

RustBelt [POPIL’18, POPL20]:
Veritying semantic safety for @




Heart of the Problem

How do we define our
semantic model of Rust?



Key Prior Work on
Semantic Models

e Milner (1978). Used a “logical-relations™
model based on denotational semantics.
But didn't scale to richer type systems.

e Appel-McAllester (2001). Introduced a
“step-indexed” logical-relations model of
recursive types using operational semantics.

e Ahmed (2004). Scaled step-indexed model

to handle higher-order state using recursive
Kripke structures. Landmark PhD dissertation.




Key Prior Work on
Semantic Models

5

Ahmed’s work was a major inspiration for me,
but there was a scalability problem...

recursive types using operational semantics.

e Ahmed (2004). Scaled step-indexed model
to handle higher-order state using recursive
Kripke structures. Landmark PhD dissertation.




Theorem 3.21 (Application)
If T is a type environment, ey and es are (possibly open) terms, and 71 and 1o are
types such that I'Epreq i1 — 1 and U Eypeg - 11 then T'Eyy (e1e2) @ To.

PROOF: We must prove that under the premises of the theorem, for any k& > 0,
we have I’ |=]’\“4 (e1e3) : 2. More specifically, for any o and ¥ such that o ¢ I
we must show o(ejes) o To. From the premise I' Fy e; : 71 — 7» we have
o(er1) gw 1 — To. To show o(ejes) :kw T2, suppose S : ¥ for some store S.
Then, from o(ey) :xw 71 — 7 it follows that (S, 0(e1)) is safe for k steps. Either
(5, 0(ey)) reduces for k steps without reaching a state (S’ v1) where v is a value —
in which case (S5, 0(ej e5)) does not generate a value in less than k steps and hence
o(e1es) ipw T2 (for any 75) — or the value v; is a lambda expression Ax.e. In the
latter case, since o(e1) o 71 — 72 and (S, 0(ey)) —7, (S, Ax.e), where j < k and
irred(S’, A\z.e), it follows that there exists a W' such that (k, V) C (k — 5, V') and
S" k—; U and (k — 5,V Ax.e) € 11 — .

From o iy I' it follows that o(x) ¢ I'(x) for all variables x € dom(I'). A
type environment I' is a mapping from variables to types. Hence, since (k, V) C
(k —7,¥), it follows that o(x) x—;w I'(x) for all x+ € dom(I') — that is, we have
o p—ju I'. Now, from premise I' Fy; e : 7, since k —j > 0, §" _; ¥', and
o k—ju L', we have o(eq) —ju 71. It follows that (S’ o(eq)) is safe for k — j
steps, i.e., either (5, 0(es)) does not generate a value in fewer than k — j steps —
in which case, (5,0(e;e3)) does not generate a value in fewer than k steps so we
have o(ejez) pu T2 (for any 75) — or (', 0(es)) —4, (S”,v) where i < k — j.
In the latter case, (S,0(ejes)) —4r" (S”, (Az.e)v) where j + i < k. Also, since
o(ez) :k_jur 11 and (S, o(ez)) —4, (5", v) for i < k — j and irred(S”,v), it follows
that there exists a " such that (k — j,¥') C (k —j — 4, V"), 8" _;_; ¥”, and
<]€ —] — ’i,\IJ//,U> € T1.

Pick memory typing ¥* = |U"|;_,;_;_1. Let k* =k —j —i—1. Then the follow-
ing information-forgetting state extension holds: (k — j — ¢, ¥”) C (k*, U*). Since
(k—j—14,¥" v) € 7, and 11 is a type, we have (k*, U* v) € 7. The definition
of — then implies that e[v/z] ;4 y- To. But we now have (3,0 (e ep)) —%
(8" elv/z]), (k,¥) C (k*,¥*), §" :» U* and elv/z] 1+ g+ T2. By Definition 3.6
(Expr: Type), this means that if (5", e|v/x]|) generates a value in fewer than k* steps
then that value will be of type 7. Hence, we may conclude that o(ej e2) :xw T2 as
we wanted to show. []
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Theorem compat_app I' el eZ2 A B :

[ el : TArrow AB > T =e2 : A>T = App el e2 :
Proof.

1Intros (elTyped el2Typed ? ? 7)) "#HI".

use_bind (AppLCtx _) vl "#Hv1l" elTyped.
use_bind (AppRCtx _) v2 "#HvZ2" elTyped.

by 1Apply "Hv1". . —
Qed. Proof in Iris (in Coq)




Iris dramatically simplifies
the development of step-indexed models,
while also being machine-checked!

[ el e2 A B :
[ el : TArrow AB s T =e2 : A>T = App el e2 : B.
Proof.

1Intros (elTyped el2Typed ? ? 7)) "#HI".
use_bind (AppLCtx _) vl "#Hv1l" elTyped.
use_bind (AppRCtx _) v2 "#HvZ2" elTyped.

by 1Apply "Hv1". . —
Qed. Proof in Iris (in Coq)







Starting B Separation

Point:  VASEN Logic

Extension of Hoare logic (O’Hearn-Reynolds-..., 1999)
e For reasoning about pointer-manipulating programs

Major influence on many verification & analysis tools
e c.g. Infer, VeriFast, Viper, Bedrock, jStar, ...

Separation logic = Ownership logic
e Perfect fit for modeling Rust’s ownership types!

. 4



Owicki-Gries (1976)

Rely-Guarantee (1983) CSL (2004)

SAGL (2007) Bornat-al (2005) RGSep (2007)

Deny-Guarantee (2009) Gotsman-al (2007)
LRG (2009) RSL (2013)
CAP (2010) |
Jacobs-Piessens (201 1)
HLRG (2010)
RGSim (2012) HOCAP (2013)

SCSL (2013)

Liang-Feng (201 3) TaDA (2014)

CAP (2014)
CaReSL (2013)

GPS (2014) Iris (2015) ColoSL (2015) FCSL (2014)
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Key Idea of Iris

e Unify the field of separation logic using a
single powerful mechanism:

Higher-order ghost state

Enables encoding of Enables users to define
step-indexed models custom resources

(see “Iris from the Ground Up’, JFP 18, for details)



Key Idea of Iris

e Unify the field of separation logic using a
single powerful mechanism:

With higher-order ghost state,
Iris lets you derive and compose advanced
proof rules within one unifying framework.

(see “Iris from the Ground Up’, JFP’18, for details)



Impact of Iris & RustBelt

Iris
e 60 papers (28 in POPL/PLDI), 7 PhD theses

e Adopted as core tech. by systems verification
researchers at MI'T, BedRock, Meta

RustBelt

e Most-cited POPL/PLDI paper of 2018
e Pioneering effort in Rust verification & using
program logics to prove extensible type safety
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RefinedC

First verification tool for C programs that is
e Automated: user gives only specs/annotations

e Foundational: generates proofs in Coq

How?

e Refinement type system to encode functional
invariants on C data types

e Semantic model of RefinedC types in Iris

e RefinedC typing rules formulated in Lithium,
a restricted, automatable fragment of Iris



void append(list_t %1, list_t k) {
if(x1 == NULL) {

(:. *L = K;
y } else {
append (&(*1)->next, k);

}
}

iIntros (p) "[Hxs Hys] H".

iLob as "IH" forall (1 xs 1’ ys p).

destruct xs as [| x xs’]; iSimplifyEq.

- wp_rec. wp_let. wp_match. by iApply "H".

- iDestruct "Hxs" as (10 hdO) "(% & Hx & Hxs)".
iSimplifyEq. wp_rec. wp_let. wp_match. wp_load.
wp_let. wp_proj. wp_bind (app _ _)I%E.
iApply ("IH" with "Hxs Hys"). iNext. ilntros.
wp_let. wp_proj. wp_store. iSimplifyEq. iApply "H".
iExists 10, v. iFrame. done.

Iris:



void append(list_t x1, list_t k) {
if(x1 == NULL) {

(:. *L = K;
. } else {
append (&(*x1)=->next, k);

}
}

RefinedC: repeat 1iRStep; liShow.



void append(list_t %1, list_t k) {
if(*x1 == NULL) {

(:. *L = K;
. } else {
append (&(*1)->next, k);

}
}

Distinguished paper and artifact awards
at PLDI’21
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Simuliris
[POPL:22]

Cosmo
[ICFP’20,21]

iGPS
[ECOOP’17]

Type

systems

Perennial
[SOSP’19]

Transfinite
Iris [PLDI’21]

GoJournal
[OSDI'21]

iRCI11
[POPL20]

XtensTibility

Program

K
Iris) e

Rel.oC
[LICS 18]

automation

Actris

[POPL20]
¢eDOT

[ICFP’20]



Research Vision
Integrating Verification
into Real-World Systems



Systems Verification

Impressive sys. verif. projects in past 15 years:

compce
spec

Security. Performance. Proof.

CERTIKOS



Systems Verification

Impressive sys. verif. projects in past 15 years:

compce
spec

Some key limitations to their scope:

Security. Performance. Proof.

CERTIKOS

e Centered exclusively around the C language
e Idealized code/semantics to simplify verif.

e Huge manual proof effort by experts



Systems Verification

Impressive sys. verif. projects in past 15 years:

Goal: Develop systems verification tools

that overcome these limitations!

e Idealized code/semantics to simplify verif.

e Huge manual proof effort by experts
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% Verif. is manual ¥ Only safe code
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Goal: Tool that’s automated & handles unsafe code

e In development: RustHornBelt, RefinedRust

e Possible verification goal: Redox microkernel



Direction #2: Realism

Prior work employs idealized coding/semantics

e Restricts coding patterns (e.g. allocate all data in one
big array, prohibit taking address of local variables)

e Assumes strong concurrency semantics (e.g. SC)

e Uses idealized model of low-level system features
(e.g. virtual memory, interrupts, exceptions, TLB)
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Ongoing: Verifying Linux pKVM hypervisor
e To be deployed on billions of Android devices

e Goal: Use RefinedC to verifty Armv8 machine code
against authoritative Armv8 semantics

e Joint with Sewell, Hur, et al., funded by Google



Direction #3: Usability

1 struct [[rc::refined_by("a: nat")]] mem_t {

Problem: Fven automated i, fiolden & inoesioe 1)) steet Ten:

3 [[rc::field("&own<uninit<a>>")]1] unsigned char* buffer;

tools like RefinedC involve  :”

6 [[rc:

some annotation burden  ore.

8 [[rc:
9 [[rc::

:parameters("a: nat", "n: nat", "p: loc")]]
-args ("p @ &wn<a @ mem_t>", "n @ int<size_t>")]1]
:returns("{n<a} @ optional<&own<uninit<n>>, null>")]]

ensures("own p : {n <a?a-n:a} @mem_t")]]

1 10 void* alloc(struct mem_t* d, size_t sz) {
‘ e‘g' users muSt erte 11 if(sz > d->len) return NULL;
12 d->len -= sz;

triCky SPeCS manually 13 return d->buffer + d->len;

14 }
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Idea: Infer specs using biabduction (POPL09)

e Inferring full functional correctness specs is
likely impractical, but precision can be improved
by allowing user to “sketch” specs



Thank you!

Lris-project.org



