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Introduction

HPC and BigData convergence towards machine learning and Al : new scientific frontiers, and challenges

Computational science : the “classical” quite predict evolution.

In a 2005 interview, Moore himself
admitted that "...the fact that materials are made of atoms is the fundamental
* End of the Moore law N " , . . :
. , . limitation and it's not that far away...We're pushing up against some fairly
* Network on chip : all cores of one processor don’t share memories fundamental limits so one of these days we're going to have to stop making

¢ More acellerators (gpu, amd, matrix2000, ....) things smaller."

* High hierachical architecture Probably on the 2020s
* Cluster-Cloud for HPC

* More complex pogramming paradigms, resilience (fault tolerence), energy consumption

* CSR, ELLPACK compressed format, C++, 64IEEE bit-arithmetic, Ax for iterative methods.

BigData (Data science)

* Data centers and clouds are deployed worldwide and become more importants than supercomputer centers
* Data are so larges that we may do science without any modelization, for some applications

* MapReduce is also used by linear scientific methods: matrices, mesches and others, saw as sets of data

* Energy consumption, security

* COO, Python, Spark, HDFS, Integers, pixels, other data, 16-32 bit-arithmetic, AB for linear algebra

Machine-Learning, Al

fence/6 October 207

nature _

* Tensors (multi-dimensional arrays), Graphs

* Pyhton, Pytorch, TensorFlow, API, 16-32 bit-arithmetic.

* Result of the convergence of computational and data worlds
* Ecosystem still to be defined

* New hardware for Al (Tensor Processing Unit (TPU),....)

* Scientific problems saw as a “game” or an “learning process”.
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An Exascale Heterogenous World?

TOP500
"June 2023”
list,
LINPACK-LU

64 bits
arithmetic.

Rank

1

2

3

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

DOE/SC/0Oak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku,
AbLFX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

X approx. 4
LUMI - HPE Cray EX235a, AMD Optirnized 3rd

Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

EuroHPC/CSC X approx. 5
Finland

Leonardo - BullSequana XH2000, Xeon Platinum 8358
32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA
HDR100 Infiniband, Atos

EuroHPC/CINECA

Italy

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0Oak Ridge National Laboratory

United States

Sierra - IBM Power System AC922, IBM POWER9 22C
3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010
260C 1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi

China

Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C
2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE
DOE/SC/LBNL/NERSC

Ilnitad Gtatac
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Cores [PFlop/s) [PFlop/s) (kW)

8,699,904 1,194.00 1,679.82 22,703

AMD accelerator

7,630,848 442.01 537.21 29,899

ARM SVE, no accelerators
6D hypercube network

2,220,288 309.10 428.70 6,016

1,824,768 238.70 304.47 7,404

Nvidia accelerator

2,414,592 148.60 200.79 10,096
1,572,480 94.64 125.71 7,438
10,649,600 93.01 125.44 15,371

China, former #1,
“old” data

761,856 70.87 93.75 2,589

Frontier Remains As Sole Exaflop Machine And Retains Top Spot,

Improving Upon Its Previous HPL Score

May 22, 2023

The 61st edition of the TOP500 reveals that the Frontier system out of Oak Ridge National Laboratory (ORNL)
remains the only true exascale machine on the list.

On the list as China don’t give anymore
information, but they probably have at least 2
exscale machines.

Cerebras propose an exascale machine (but
wihout 64 bit arithmetic, not TOP500-LU

benchmarck).

Up to approximatly 9 millions of cores,
distributed along many racks :
distributed and paralel programming,
graph of tasks to be scheduled (with 1/0
and communciation optilization)



HPCG Benchmark Technical Specification

HPCG, “June” 2023

Michael A. Heroux
Scalable Algorithm Department
Sandia National Laboratories

2013 P.0. Box 5800
Albuquerque, New Mexico 87185-MS 1320

First list: 2017 Jack Dongarrs

Piotr Luszczek

Electrical Engineering and Computer Science Department
1122 Volunteer Blvd University of Tennessee

Vnnverilla TN 27004 2450

Iterative méthod. Preconditionned Conjugate Gradient

64 bit arithmetic. R

27 Band matrices 71 T'ﬁ-“L G
&

1
i
L& | I
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:_.77 "

Stil structured

27-point stencil operator

It is a more realistic benchmark, with “sparse-regular” matrices
Having reduction operation (scalar products)

#1 : Fugaku, since several semesters. “Just” 16 Petaflops

If we have sparse matrices with irregular patterns, the
performance would be around 1 Petaflops (1000 time less that
the top500 #1), reaching just 1 Petaflop (see slides on experients
on Fugaku)

Thianhe would have simular performance than Fugaku,

Rank

8

but sunway would have smaller efficiencies (extrapolated from

former experiments).
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1UP5UU
Rank

System

Supercomputer Fugaku - Supercomputer Fugaku,
AbLFX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI1250X,
Slingshot-11, HPE

DOE/SC/0Oak Ridge National Laboratory

United States

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Leonardo - BullSequana XH2000, Xeon Platinum 8358
32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA
HDR100 Infiniband, Atos

EuroHPC/CINECA

Italy

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/Oak Ridge National Laboratory

United States

Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C
2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE
DOE/SC/LBNL/NERSC

United States

Sierra - IBM Power System AC922, IBM POWER9 22C
3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL

United States

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C
2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia
NVIDIA Corporation

Cores

7,630,848

8,699,904

2,220,288

1,824,768

2,414,592

761,856

1,572,480

555,520

RKmax HPLCU
(PFlop/s) (TFlop/s)
442.01 16004.50

0,016 Exa
1,194.00 14054.00

0,014 Exa
309.10 3408.47

0,003 Exa
238.70 3113.94
148.60 2925.75
70.87 1905.44
94.64 1795.67
63.46 1622.51
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TOP500 over the years

We have another level

of programming, inside the
ship. As Network on chip
lead to distributed and
parallel programming.

Example : hybrid
programming MPI and
OpenMP for several
interconnected sets of cores
wihout unique shared
memories.

Performance

The slope of the curb was higher than

the Moore law one, because the

parallelism added an extra speedup.

Now we have ”just” this acceleration
as the processor frequencies don’t

increase anymore.
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10 EFlop/s

1 EFlop/s

100 PFlop/s

10 PFlop/s
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Performance Development

1990 1995

AA AA A
A“
AAA
YV
2000 2005
® Sum

Lists

A

#1

2010

2015

#500

AA A
Ad AL
AAAA
ok Ak
Asymptote?
Not enough
efficient parallel
progamming?
?
2020 2025




Exascale supercomputers are now availables
*  Frontiers,...

* Sunway,...

* Cerebras,...

Nevertheless, the target applications used different arithmetics and programming paradigms, and
only a few aplications reach the exascale (HPCG : 16 Pflops, Fugaku)

Machine learning and Al applications are now requiring exascale machines, which were not first
designed for them. A priori, new machines and processors (and the next generation of post-
exascale machines) are (would) be targeting “mainly” these applications.

The requiered arithmetic, data structures, linear algebra are often diferents.
The most expensive (time, energy) are the data migrations and communications, especially the I/O :

Distributed and Parallel computing where the data are stored (HPC on Cloud or on DataCenter), or
generation of the data in Parallel.

Back to
*  “true” data parallelism (history : Connection Machines): Cerebras
* data flow programing (history : the Arwind MIT data flow machine): SambaNova

We have to experiments on "new” methods and propose the generation of “brain-scale” data
sets (graphs-matrices) for computational science and machine learning applications.

New programming paradigms have to be proposed and evaluated

June 1st, 2023 7
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. PCle Tofu
1 - Network on Chip 4x 12 cores Contoer | | intrface
g
and irregular “local” communications PELL Gl k oo LL) g
= Beion ,l N |1 e <
Lar‘ger number‘ Of nOdeS /:::::::::::::\ (g ’:'_'___'_:'_'_:'_'_'_:
. Al ! : <J(e](c]
(task programming) PR oo LL[E
i e &
Network on chip : Nl S— = ..
Distributed and data parallelism 4 CMGs, SVE
High hiearachy of execution models, which lead to several T e T CGZ\

programming paradims for a given method : graph of tasks,
PGAS, data parallel

Experiments on Fugaku : / """""""""""""" P

« 1 MPI “task” per chip (1 openMP per chip + SVE) /QD. | | 1§ ! o Hg
e 4 MPI “tasks” per chip (1 openMP per CMG + SVE) | 5 : 1

For sparse matrices S B et B A SO B

June 1st, 2023 9
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Sparse matrix : g-Perturbed, or from MatrixMarket

Starting from a C diagonal matrix (C “main” diagonals), we randomly perturb the pattern

We randomly select some non zero elements of the diagonals with a probability g, and we
”send’ the selected elements to a random column of their row

Q=0.05

Fig. 1. C-diagonal Q-perturbed sparse matrix with C=4 and Q=0.05 on the
left, Q=0.5 on the middle and Q=0.9 on the right

Remark : the distance to the diagonal is important for the distance of the communciations
between cores

June 1st, 2023 10



2021 IEEE International Conference on Cluster Computing (CLUSTER)

1 Fugaku node

Sequences of Sparse Matrix-Vector Multiplication ..

—— CSR,%
b
on Fugaku’s A64FX processors ol = oo
1 —— CsR, 0.2
—+— CSR, 0.4
Jérome Gurhem*, Maxence Vandromme*, Miwako Tsujif, Serge G. Petiton*?, Mitsuhisa Sato!
301
Collaboration avec RIKEN-Kobe 3
© 201
101
60 4
0 W—
50 4 ]I. 2 4 é 1‘2 24 48
Cores
" i — elqo
g ELL, 0.01
% 30 40 —+— ELL, 0.05
—— ELL, 0.2
20 | —— ELL, 0.4
301
104 "
01 é 20 1
1 2 a 6 12 24 48
Cores
10
Fig. 4. A(Az + z) + z for COO, CSR, ELL and SCOO with nlpkkt120 as
example o] ——=

Fig. 8. A(Az + z) + = with OpenMP for C-diagonal Q-perturbed matrices
with C = 16

June 1st, 2023 11



1 or 2 Fugaku nodes

Ax, matrix NLPKKT120 (N =3 542 400, NNZ = 96 845 792)

roads COO CSR ELL SCO0
1 2 1 2 1 2 1 2
] 79 100 756 1272 817 [455 160 119 OpenMPs
2 3.8 44 750 1364 724 o 60 119 i X
4 54 40 736 803 1350 59 117 nside eac
6 59 26 1738 00 642 1317 58 114 CMG

semGg b T2 30 24 719 1309 601 1245 32 54
40 1.6 0Y.8 127.9  08.0 1232 272 .
MPI 14.5 |27.4 |78.1 119.1 844 1212 6.8
TABLE 1T
MPI AND MPI+OPENMP PERFORMANCE (IN GFLOP/S) FOR Az WITH
NLPKKT120 MATRIX ON 1 AND 2 NODES FOR COO, CSR, ELL AND

SCOO STORAGE FORMATS WITH DIFFERENT NUMBER OF THREADS PER
MPI PROCESS, KEEPING 48 THREADS TOTAL ON EACH NODE

openMp} 12 31 31 725 1315 699 1294 55 110

MPI 2 nodes

SCOO0 : COO, but elements of a given row are together on the same node

Best result : ELLPACK, 145.5 Gflops, 1 OpenMP per core
CSR, 142.2 Gflops, 1 OpenMp per 4 cores
SCOO0, 13 Gflops, MPI 2 nodes
COO, 27.4 Gflops, MPI 2 nodes

June 1st, 2023
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A(Ax+x), matrix NLPKKT120

s COO CSR ELL SCOO
1 2 1 2 1 2 1 2
1 26 1.1 8.9 104 83 106 38 59
2 28 17 82 92 8.1 9.1 37 29
4 32 31 131 150 139 148 43 72
6 23 19 167 176 160 179 4.6
12 21 19 181 208 172 225 4.6 ) 8.0

px! 36 275 _250 7206 3.6 .
48 1.6 34.1 33.4 33 43
MPI 32 1. 90 90 81 900 36 56

TABLE IIT
MPI AND MPI+OPENMP PERFORMANCE (IN GFLOP/S) FOR
A(Az + z) + = WITH NLPKKT120 MATRIX ON 1 AND 2 NODES FOR COO,
CSR, ELL AND SCOO STORAGE FORMATS WITH DIFFERENT NUMBER OF
THREADS PER MPI PROCESS, KEEPING 48 THREADS ON EACH NODE

Best result : ELLPACK, 36,1 Gflops, 1 OpenMp per node
CSR, 35.8 Gflops, 1 OpenMp per node
SCOO, 8 Gflops, 1 openMP per CMG
COO, 3.4 Gflops, 1 openMP per node

June 1st, 2023
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AX

ELLPACK

When the pattern is
highly irreguar, 1
openMP per CMG is
better

A(Ax+x)

June 1st, 2023

g 0.0 0.4 0.8
threads 2 1 2 1 2
1 1333 2652 122 244 73 145
2 1321 2600 122 244 73 145
4 1310 2614 123 250 74 149
6 1308 2544 124 253 7.6 153
12 1310 2539 129 9.0
1265 2555 86 168 75 141
48 645 2415 33 110 13 55
MPI  140.7 120 241 72 144
TABLE VII

N =8 000 000
C =100

MPI AND MPI+OPENMP PERFORMANCE (IN GFLOP/S) FOR Az WITH
C-DIAGONAL Q-PERTURBED MATRICES ON 1 AND 2 NODES FOR ELL
STORAGE FORMAT WITH DIFFERENT NUMBER OF THREADS PER MPI

e — e e T B s e T e T T e ]

0.0 0.4 0.8
threads 9 1 2 1 ) 1 2
1 325 352 95 153 62 10.7
2 319 368 95 156 62 109
4 354 538 99 185 65 122
6 415 553 103 186 6.7 124
12 513 593 114 8.7
24 71.8  83.3 8.2 q. 7.2 D.
48 50.3 @ 29 103 13 56
MPI 326 : 96 148 63 104
TABLE IX

MPI AND MPI+OPENMP PERFORMANCE (IN GFLOP/S) FOR

A(Az + z) + x WITH C-DIAGONAL Q-PERTURBED MATRICES ON 1 AND 2
NODES FOR ELL STORAGE FORMAT WITH DIFFERENT NUMBER OF

THREADS PER MPI PROCESS, KEEPING 48 THREADS PER NODE

14




Scaling the PageRank Algorithm for Very Large

Graphs on the Fugaku Supercomputer

. Maxence Vandromme?, Jéréme Gurhem?, Miwako Tsuji®, Serge Petiton'?, and
PageRank on Fugaju Mitsuhisa Sato®
I IEEE ICCS 2022
nodes CSR L ELL SCOO I
ode CM{Jpode CM{ lhode CM
1 J1.89 0.91§§1.30 0.91]15.19 2.17
2 2.17 0.76§41.41 0.79§4.24 2.01 N = 4000 000 (random pattern!!!)
4 J1.98 0.694§1.33 0.71)3.28 1.84 The number of non zero elements per
8 ]1.58 0.54]1.02 0.55}12.57 1.47 core is the same, as the size of the
16 11.39 0.47){0.98 0.48412.24 1.28 matrix. The NNZ of each row of the
32 11.39 0.46410.88 0.54}2.25 1.33 matrices increases with respect to the
64 §1.40 0.464J0.93 0.47§12.24 1.32 number of nodes.
128 §1.20 0.43§)1.22 0.40§/1.89 1.10 4X/VIPIpe _
256 1.00 0.36{]1.02 0.35]/1.56 0.95 " chip (1 Per Cic
512 |1.00 0.35JJ1.00 0.35]1.13 0.84 IXMpj p, . vers )ando,oe,,,\,,Po
1024 |1.00 0.37)11.01 0.37}}1.16 0.86 €rchip and g 1o VG

Table 1: Median runtime for e

PageRank, scaling the nnz per row,
from a base of nnz = 50 NNZ per row , on each node : 50

The compiler did’nt success to optimize such computation for the VSE

CSR and ELLPACK better than SCOO When the matrix pattern is really iregular

and/or random, we have to consider
distributed computing inside each node

June 1st, 2023 15



nodes

CSR

ode CMC

L ELL
ode CM(

L SGO0 |

ode CM

1
2
4
8
16
32
64
128
256
512
1024

5.90
3.92
3.14
2.75
2.78
2.77
2.38
1.98
1.99
1.96
1.98

1.28
1.15
0.90
0.78
0.77
0.77
0.67
0.56
0.56
0.56
0.59

2.59
2.46
1.89
1.70
1.69
1.83
2.20
2.00
2.00
1.96
1.97

1.30
1.19
0.92
0.79
0.81
0.81
0.70
0.58
0.56
0.57
0.59

15.59
4.55
4.37
3.77
3.83
3.81
3.26
2.68
2.68
2.26
2.28

3.53
3.24
2.99
2.27
2.27
2.31
1.99
1.63
1.64
1.55
1.58

Table

2. Media

Il ruincime

Torthne

PageRank, scaling the nnz per row,
from a base of nnz = 100

The number of non-zero elements
on each node is larger

NNZ per row , on each node : 100

The ratio 1 MPI per node / 1 MPI per CMG increases, for a random pattern
(i.e. really irregular communications between the CMG)

June 1st, 2023



Fugaku - PageRank - nnz=100 - MPI=node - scaling=nnz

5000 — o
' — ELL

SCOO0
1,000

500

100
50

GFlop/s

1 5 10 50 100 500 1,000

#nodes

Fig. 3: Median performance for the PageRank, scaling the number of nonzero
elements, from a base of nnz = 100, with 1 MPI per node

Fugaku - PageRank - nnz=100 - MPI=socket - scaling=nnz

Extrapolation : close

10,000 ——= CSR
o —Eu to 1 Pflop on Fugaku?
SCOO0
1,000
o™ Compare to 16 Pflops
§ 100 for HPCG (diagonals)
50
10
5
0
1 5 10 50 100 500 1,000
#nodes

Fig.4: Median performance for the PageRank, scaling the number of nonzero
elements, from a base of nnz = 100, with 1 MPI per CMG
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CONDOR (U. of Wisconsin)

2 - Graph of Task programming Parsec (ONRL)

Pegasus (USC)

Other new level on programming : graph of task programming HPX (Louisian U.)

Legion (Stanford)

If the granularity of the tasks is Regent (Stanford)
too small, the scheduling time is TensorElow
too large compared to the

computing time of each task.

June 1st, 2023

and YML (CNRS)

YML: We need both control flows and data flows Q

-> data migration anticipation and data persistence

18



YML (since 2000 at CNRS)
(opensource, Cecil Licence)

Collaborations with Nahid Emad, Miwako Tsuji, Maxime Hugues,

Laurent Choy, Jérdbme Gurhem, Mitsuhisa Sato, et al
experimented on supercomputers, grids and P2P worldwide platforms

Main properties :

* High level graph description language (coordination/control language) — LL(1) grammar
* Independent of Middleware, hardware and libraries

* A backend for each systems or middleware (then platforms or
supercomputers/hypercomputers) : Xtremweb(P2P), OmniRPC, Xtremweb-OmniRPC

* Expertise may be proposed by end-users
* May use existing components / thought eventualy libraries

Deployed in France, Belgium, Ireland, Japan (K, T2K-Tsukuba, FX10-AICS)
China (Hohai, Najing), Tunisia, USA (Hooper-LBNL, TOTAL-Houston).

Experiment on P2P or GRID platforms : Grid (Gird5000) and P2P (100 PCs in Lille,
100 PC in France, and 4 clusters in Japan, launch from a SC INRIA booth

June 1st, 2023 19



Graph (n dimensions)
of components/tasksYML

I~
~
~
~
~
~
~
~
~
S~
~

Generic component noc visualize mesh(...) ;

Begin node end par

()
@)
® Endnode
O Graph node
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Multi-Level Parallelism Integration:
YML-XMP

N dimension graphs available

<TASK 1>

NODE NODE NODE

NODE NODE

for(i=0;i<n;i++){

<TASK 2> <TASK 4>

<TASK 5> <TASK 6> for(j=0;j<n;j++){
tmpli][j]=0.0; XMP is a PGAS
#pragma xmp loop (k) on t(k)
for(k=0;k<n;k++){ Language
<TASK 7> tmpl[i][jl+=(m1[i][k]*m2[Kk][j]);
13
YML provides a workflow programming #pragma xmp reduction (+:tmp)
environment and high level graph description
language called YvetteML Each task is a parallel program over several nodes.

XMP language can be used to descript parallel program easily!

YML/XMP/StarPu expriments on T2K in Japan, French-Japanese project FP3C

June 1st, 2023 21



GJ to solve a linear system
F°I‘(f)f;°“('k)0 S Jerome Gurhem’s PhD thesis
nv =
(@) o) = Inji’z) bk
For j from k+1 to p-1 do
(3) AFY = 1nu® . 4%
For i from 0 to p-1 do

If k£ # i then
k+1 k k k+1
‘ (4) Ag,j )= Ag,j) - Agk) ’ Ai,j )

End if
End for @@@@@ solve Ax =b
End for

For i from 0 to p-1 do
If £ # i then
| ©)
End if
End for
End for

B iny-() S —

_— “\
A-0-2-0 I A-1-1-0 A-1-0-0

@M @7_ ‘1:;1 \r . A-1-2-1

e ()2 A—l-l- A-120
—4&

‘ -
e |
JEEED @EEE)

June 1st, 2023
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Collaboration avec TOTAL-Pau et Houston
Block Linear Systems (Dense matrices)

We may compare with MPI or others but the most interesting to
evaluate YML in these eexperiments is to compare YML-XMP
with XMP alone

Size YML/XMP XMP
blocks cores/task best time
_ o 32768 4 x4 512 276.8 508.5
Gaussian elimination

65536 8 x 8 512 690 2512

o 32768 4 x4 512 285.12 615.868
Gauss-Jordan elimination
65536 &8 x 8 512 792.737  2970.393
L 32768 4 x4 512 332.35 505.412
LU factorization

65536 8 x 8 512 881.032 2306.163

K computer, 8000 nodes

June 1st, 2023 23



Experiments (2) BGJ on K-Computer ’?»

(sec) GJ to invert a dense matrix 65536 X 65536 matrix
6000
5000
4000 e hnat
3000
2000
YML+XMP
1000 512 1024
--1X1 2X2 ==4X4 -e-8X8 -=-16X16
0
64 128 256 512 1024 2048 4096 8192
# of processors for each task
Miwako TSUJI, RIKEN/AICS
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Abstract—We propose an efficient version of the PageRank

1 - M | ] | m|Z| ng the num be r Of Ope ra‘“ons algorithm for adjacency matrices, that reduces the complexity

by a factor two. This method computes the A" xr operation

. . on the transpose matrix A7 without having to explicitly nor-

EfﬁCIent Parallel PageRank Algorlthm fOl’ NCtWOfk malize and transpose the matrix. We implement the method

Analysis nsing standard row-major and column-major matrix storage

formats. We perform experiments with parallel implementations

Maxence Vandromme®, Serge G. Petiton® in OpenMP, on synthetic data as well as on matrices extracted

*Univ. Lille, UMR 9189 - CRIStAL, CNRS from large-scale graphs. The experiments are done on two

Lille, France different Intel processors from recent generations. The column-

ParSoc22, procee din gs of IPDPS22 major storage format version of our method shows good scaling
’

and outperforms the standard PageRank in a majority of cases,
even when not considering the preprocessing burden in the latter.

Based on the optimisation of the number of operations for stochastic matrix by a vector products

TABLE II: Median runtime (in ms) of all three applications on synth-3, for both storage formats and both variants of SpMV
(o = original, n = new) on Ruche

ici SpMV A(Az + ) PageRank
It 1S 1m po rta nt to Stu dy threads | CSR-o CSR-n CSC-o CSCnn | CSRo CSRn CSCo CSCn | CSR-o CSRn CSCo CSCn
1 1 259.9 197.1 302.6 200.8 533.8 405.5 607.8 398.3 1611 1253 1788 1186
the methOdS USI ng 2 131.1 112.6 151.3 100.5 264.3 2253 310.8 199.7 807.7 673.6 905.8 594.7
1 i 4 67.2 56.3 71.9 50.6 135.2 113.1 158.0 100.1 413.7 339.2 461.4 298.8
API and Ilbra Iries 8 35.1 28.5 41.3 25.5 70.1 574 81.2 50.6 215.7 172.4 266.8 151.3
W |t h o) Ut 12 24.2 19.4 28.5 17.2 484 39.1 56.0 34.1 149.3 117.2 172.5 102.3
16 18.7 14.8 223 13.0 37.6 29.7 44.0 25.8 116.1 90.7 1333 71.7
. 20 15.5 12.1 19.1 10.5 31.1 24.6 37.9 20.9 96.2 74.6 1154 63.2
u nderSta nd I ng the 30 14.7 10.2 17.1 7.9 29.7 212 344 155 92.1 65.8 102.7 46.8
40 17.2 95 19.5 6.6 34.8 22.1 39.0 13.0 108.1 67.7 119.3 39.8
methods are not
enoug h. TABLE III: Median runtime (in ms) of all three applications on synth-3, for both storage formats and both variants of SpMV
(o = original, n = new) on Ice Lake
o qe e qs SpMV A(Az + x) PageRank
==> multidisci pI inary threads | CSR-0  CSR-n  CSC-o CSC-n | CSR-0 CSRn CSC-o CSCn | CSRo CSRn CSC-o CSCn
1 138.2 109.9 142.9 119.7 278.3 220.9 284.4 239.7 8574 674.5 900.0 718.7
tea ms 2 752 57.1 79.5 60.6 152.3 114.6 158.1 121.7 484.6 339.5 483.1 366.2
4 38.2 28.3 40.4 304 80.3 57.8 81.6 61.4 254.2 168.3 260.6 186.6
8 19.7 14.3 232 15.2 40.1 30.1 41.9 31.1 126.1 90.0 133.4 92.1
12 134 9.9 18.0 10.2 28.1 20.9 32.7 20.8 84.9 60.8 106.9 62.7
20 114 6.7 11.2 6.2 18.6 13.8 213 12.6 57.2 41.7 66.1 38.9
28 8.5 5.7 9.1 4.7 15.8 11.5 18.7 9.4 47.2 342 53.9 28.9
38 75 5.6 9.2 3.6 14.6 10.9 18.4 7.2 42.0 332 47.3 229
57 74 6.1 9.7 2.7 15.2 12.6 19.7 5.5 51.9 37.8 53.5 17.7
76 10.8 6.7 16.1 3.2 219 14.3 25.1 6.6 41.8 46.7 65.7 22,2
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2 - Unite and Conquer (asynchronous computation to minimize the number of iterations)

— \\ Different first initial guess —
and restart strategies \\
Different m; and q; ) -
INTRINSEQULY FAULT TOLERANT

QR+ iter. Inv. QR+ iter. Inv.
Distributed and parallel

computing
Tcomm a Tcomm b
— Asynchronous communication 7]
v v
i + send > [ send<€||—
- ~

L\

N
L <
) 4 ~” N \ 4

2_ N A
receive receive

— | —
, S

Cd T~

- ~
- _—

—

-

A\ 4

— Different restart strategies —|

\ 4

June 1st, 2023 SIAM Journal on Scientific Computing - Vol. 27, Iss. 1 (2005) - 10.1137/51064827500366082
Multiple Explicitly Restarted Arnoldi Method for Solving Large

Eigenproblems Nahid Emad, Serge Petiton, and Guy Edjlali 27



Residual

MERAM, since 1993

iteration
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U&C Restarded methods
Linear combinaison of
Ritz values and diferent
restart strategies

Guy Edjlali PhD thesis, 1994
France Boillod-Cerneux PhD thesis, 2014

Machine Learning

Ensemble method : diferent
Neural networks in parallel +
optimization

Reiforcement Learning + ensembles for
smart grids (with TOTAL).

Pierrick Pochelu PhD thesis, 2022

1993 : network of one CM200 and one CM5 and a few SUN workstation



Journal of Computational Science
Volume 14, May 2016, Pages 5-14

Experiments on Grid’5000

Unite and conquer approach for high scale
numerical computing 2016

Nahid Emad ?® O X, Serge Petiton * ¢

HERAH{18,38,58} with A: pde4996888 n: 4900808 r: 4 HERAH{18,28,30,48,58} with A: pde4980060 n: 496000 r: 4
I: zn Red; conponent Res: one I: zn Red: component Res: one
8,881 T 8,801 T T T T T T P
le=-8 — e-
ERAN{18} — ! ERAH{18} —
ERAH{38) —— "«f' ERAN{28) ——
ERAN{SB) — | ERAN{38) —
1e-84 HERAH = 1e-04 H ERAN{48)
ERAH{58}
"l ﬂ HERAN
1e-85 le-85 [ ‘ ' '
I
: 3 L
_
E : \ " "
I 1e-86 E le-86 - Uh
g o h W
o o
le-87 % 4 1e-87 V
1le-88 l _ 1e-08
1e-89 L L 1 I I 1e-89
a 58 168 158 2gg ang 300 a 28 48 68 aa 188 128 148 168

Hunber of iterations Nunber of iterations

Convergence of MERAM for matrix 490000 with different number of co-methods

Experiments on several supercomputers : Maspar, IBM SP series,
Hooper (Berkeley), P2P platforms (using YML),...

U&C MIRAM, CuSparse
June 1st, 2023 Alexandre Feder, collaboration avec Nvida Santa Clara 59



ERAM restarting strategies mix

France Boillod-Cerneux PhD

Collaboration with CEA Saclay

1

-5 | Initial Restarting Strategy : DEFAULT

-10 L

11 -

Residual (log10)

12 L

13 L

-14

-15

3

o A

},‘»Af.l‘;-}v;‘.ﬁ e ,ﬁ,aﬁ;‘
ST R

,,,,,,,,,

54 Restarts

Default

LaRes

4 eigenpairs,
m=15, CGSr
Bayer04 Matrix
- N=20545

- nnz=85537

10

-1 Intel i5-2430M

May, 30th, 2023

Def

LaRes(b), Def(18)

ERAM restart

60 70

Li(38)

Res(26)

Res(14), LaRes(24)
LaRes(4), Def(30)
LaRes(5), Def(21)
DEFAULT
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Asynchronous lterative Restarted Methods

Collaboration with He Haiwu and Guy Bergére (U. Lille 1, CNRS)
and Ye Zhang (Hohai Univ. Nanjing, China) , Salim Nahi (Maison de la simulation, Saclay),
and Pierre-Yves Aquilenti (TOTAL Pau and Houston), Takahiro Katagari,5U. Tokyo),

Xinzhe Wu (CNRS, Saclay).

(=

)

GMRES

U@C GMRES-LS/ERAM(UCGLE) method

[ )] @
Arnoldi Lesat
RAM, Square

ERAM on :the future

Li

R/_]

P

gl

Pe

Q&Mﬂrk ( inter-cluster or intra-cluster)

L

Pa 1

Paz

an

[

An Intemational Joumal
Available online at www.sciencedirect.com computers &
....... @ oinmoTe mathematics
with applications
and Math ics with Applicati 51 (2006) 1647-1662 ———————————
www.elsevier.com/locate/camwa

A Hybrid GMRES/LS-Arnoldi Method
to Accelerate the Parallel Solution
of Linear Systems

Hamwu HE, G. BERGERE AND S. PETITON

To solve a linear system, we
asynchronously compute the
eigenvalues to accelerate the
convergence, using a least square
polynomial acceleration.

A Smart Tuning Strategy for Restart Frequency of
GMRES(m) with Hierarchical Cache Sizes

Takahiro Katagiri!, Pierre-Yves Aquilanti?3, Serge Petiton®,

Haiwu He, Guy Bergéere, and Serge Petiton, Computational Math. Appl., 2006
Ye Zhang, Guy Bergere, and Serge Petiton, LNCS, Springer Verlag, 2008

oo o

June 1st, 2023
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It is a fault tolerent method, as U&C MERAM

1 m— SOR No preconditioner = —— UCGLE_FT(E)
m—  |acoDbi —— UCGLE_FT(G) — JCGLE

le-2 e p——
T:“ le-4 =
o
0
o

le-6

le-8 =

Fault Points
1e-10 T T T T T T T

0 250 500 750 1000 1250 1500 1750
GMRES iteration steps

Figure 5.19 — M EG1: convergence comparison of UCGLE method vs conventional GMRES

June 1st, 2023



Smart tunning of hyperparameters (subspace size, number or vectors orthogonalized)

m Restart+Orthog

m Orthog
number of unknown = (119 x 119 x 115), 3Hz, m=10

m Restart

classical

Percentage of
improvements in time for

auto-tuned GMRES over

28 64 32 16 8

-5

Number of computing nodes

Results : Industrial Case
Collaboration with TotalEnergies

May, 30th, 2023 Bull institut 33



On Thianhe 2
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U&C and ensemble methods are well-adapted for distributed and parallel computing
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(b) matBlock

GMRES(Block Jacobi(ILUY)}, Fa = 2B
UCGELE method

GMRES wathout preconditioning

GMRES(Block Jacebi(ILUY), By = 10

1 101

D

1000 2000 3000 4000 5000 G200 Tood
Iteration Steps

(d) MEG2

)

GMRES with preconditionar SOR
GMRES wathout preconditioning

UCGLE method

50 100 150 200
Iteration Steps

They are well-adpated to YML-XMP like programming

June 1st, 2023
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Parallel Jaccard and Related Graph Clustering Techniques

Alexandre Fender Nahid Emad
Nvidia Corp., Maison de la Simulation Maison de la Simulation
LI-PaRAD - University of Paris-Saclay =~ LI-PaRAD - University of Paris-Saclay
afender@nvidia.com nahid.emad @uvsq.fr

Joe Eaton
Nvidia Corporation
featon@nvidia.com

ScalA17, SC17

6 GRAPH CLUSTERING

In graph clustering a vertex set V is often partitioned into p disjoint
sets Sy, such that V.= 81 US3...USp and S; N S; = {0} fori # j
[16, 21]. Notice that instead of the original graph G = (V,E) we
can use the modified graph G = (V(*),E(*)), with vertex v§*) and
edge wﬁ;) weights computed based on PageRank and Jaccard or
related schemes discussed in earlier sections.

6.1 Jaccard Spectral Clustering

Notice that we can define the Laplacian as
L&) = p&) — Ao() (32)

where D®) = diag(A®)e) is the diagonal matrix.
Then, we would minimize the normalized balanced cut

i vol(8(Sk))

77(51,---,5;1) = vol(Sy)

min
StveSp &

= min Tr(UTLWU) (33)
UTDMU=I

where Tr(.) is the trace of a matrix, boundary edges

S=1{(i,j)|icSAj¢S) (34)
and volume
vol(S) = Y. wi) (35)
ieS

) (©0) vy

- i Jij

vol(dS) = Z w;) = Z Wi’ (1+ (U))

(i,j)€d(S) (i,j)€d(S) Wij

by finding its smallest eigenpairs and transforming them into as-
signment of nodes into clusters [22]. Notice that Jaccard weights
correspond to the last term in the above formula, and are related
to the sum of ratios of the intersection and union of nodes on the
boundary of clusters.

May, 30th, 2023

Maxim Naumov
Nvidia Corporation
mnaumov@nvidia.com

Collaboration avec

Serge Petiton Nvidia Santa Clara

Maisc
Universit
serge.p

o o'® . 9 e’
. .\,'\'° - ¢ .
,\'... . [ ] ! Y

Figure 2: Amazon book co-purchasing graph with Jaccard

Bull institut 36



Graph Convolutional Network (GCN)

Let A be the adjacency matrix of a given graph (V, ), with N nodes. Ais a N x N sparse matrix.
Let D,,= 3j-1nAjj be the degree matrix (D a main diagonal N x N matrix).
The un-normalized Laplacian matrix of the graph (V, E) GraphisL=D-A

Let DY/2 (resp. D'Y/2) be the diagonal matrix with the (resp. inverse of the) square root of the elements of D

Ly=DY2L DY2=|-DY2 A DV2js a normalized Laplacian matrix

U

if i equal j and if the degree of the node i=jis not 0
then 1.

Ly = if i is different of j and if the degrees of the node i and the node j are not zero
then -1/ sqrt(degree(node i) degree(node j))

else
0

It exists other normalized Laplacian matrices, such as the Random walk normalized Laplacian matrix :

Lgw = | =P, where P = DA is the transition matrix of a random walker on the graph. This matrix is normalized.

June 1st, 2023
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Sequence of Sparse Dense Dense matrix products, plus softmax and other operators

e ~N A Laplacian matrix
/ Ver \ g A h = number of input channels
y +—>
S
S
o N A C=F
P
E
R
- _/ v AK % - _/
C=F N C=F

H(‘*l)zc(AHMWU) );¢=0,L
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Over'SmOOthing Over-smoothing : high power calculation of A

We have an important over-smoothing when L increase, associated wit the over-smoothing of powers of the
Laplacien matrix.

After L steps of H(¢*1) =g (A H (1) W(¢))

We have H!¢*1) =g (A (o (A H (¢ W(e-1)) wil))
=0 (A (ernn c AH W) wil)

We have to control the smoothing.
Edge and/or node droping to limit the over-smoothing
How to limit this smoothing?

2022 IEEE International Conference on Big Data (Big Data)

DropEdge method : randomly “drop” edges| Enhancing Graph Convolutional Networks by
DropNode method : randomly drop nodes Topology Sampling

Quentin R. Petit Chong Li Serge G. Petiton
Huawei Paris Research Center Distributed and Parallel Software Lab Université de Lille
& Université Paris-Saclay Huawei Paris Research Center Lille, France
Boulogne-Billancourt, France Boulogne-Billancourt, France serge.petiton @univ-lille.fr

We p ro p ose to fi r-St ran k t h en Od es quentin.petit2 @huawei.com ch.l@huawei.com

Kelun Chai Nahid Emad
Huawei Paris Research Center Maison de la Simulation & LI-PaRAD
& Université Paris-Saclay Université Versailles Saint-Quentin
Boulogne-Billancourt, France Saclay, France
kelunchai @ gmail.com nahid.emad @uvsq.fr

Collaboration avec Huawei-Paris
June 1st, 2023 39




Random selection of ranked data.

We first rank the nodes of the graph, using the
PageRank method, then, we order the nodes with

respect to this ranking, and we compute a scan with

add of the resulting vector.

Then, we randomly select a real number between 0
and 1, and we find the node with the closer ranking

to this value.

The probabilty to be randomly selected is higher

if the PR ranking is higher.

TABLE I: Datasets global information

Cora Citeseer Pubmed
NB OF NODES 2707 3327 19717
NB OF EDGES 5429 4732 44 338
EDGES/NODE (MEAN) 2.01 1.42 2.25
MAX NODE DEGREE 168 99 171
MAX VAL PR 0.0492  0.0401 0.00610

June 1st, 2023

Scan with Add according to the vector values sorting on Cora Dataset

1.0

Scan with Add values
= = =
=, (=] 4]

o
b2
1

e
o=
1

e

—

— Scan with Add, unsorted vector
Scan with Add, sorted vector

Fig. 2: Scan with Add vector values for the Cora dataset. The
orange curve represents the values when the final score values
are sorted in descending order before applying the Scan with

Add.

J

00 1000

1500 2000 2500

Index in the vector




Topological IITITTTITITT]  Score
i data fusion
Criginal graph extraction

Sequence of Matrix-vector products
Map/Reduce

Fxtracted data RankedDro p
EEEEEEEEEEEEN
/z i \ Final score

\ PageRank /__.? EENEEEEEEEEEN QAdd

Scan With

7
A *‘_oo:;\ ®

Edge selection Node selection 5

5

Selection probability '

o

Dropped Subgraph

TABLE II: Accuracy comparison for semi-supervised learning

methods for GCN architecure

DATASET LAYERS ORIGINAL DE RD
2 81.10 82.80 82.90
CORA 4 78.50 78.80 82.00
8 31.10 53.10 63.90
2 70.80 72.30 73.20
CITESEER 4 61.20 68.80 71.30
8 30.20 33.20 45.50
2 79.00 79.60 79.90
PUBMED 4 78.30 77.70 79.40
8 61.20 54.50 77.10

June 1st, 2023
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Transformer method

Collaboration with Huawei-Paris

Result

Encoder v - Decoder

Encoder 3 Decoder 3
Encoder 2 Decoder 2
Encoder 1 I Decoder 1
X
X 1
X
2
3 Output Positional
}\ Embedding encoding
Output Positional encoding

Embedding

Input: sequence of n words

June 1st, 2023

BERT, GPT,..

Attention :

A

Sequence of dense by dense
rectangular matrix products

Brain scale experiment :
BaGualLu (China, 1 exascale, mixed

arithmetic, Sunway — processor, with a
network on chip)
Proceedings of PPoPP 22 Dense case

42



Attention for very large sequence

Dense by Dense rectangular matrix products (32-16 bits)

If the sequence is large ==> very large dense matrices

Then, we "sparsify” the matrices

So called BigBird matrix

Normalisation

To stabilize
the gradient :

S;vision by t Global tokens
e square roo B
of d Window tokens

\ _ Random tokens
4 4 4 Sparse non symetrical very
Q=XWe K=XWK V=XWY

large matrix

The initial W are with randome values

16 or 32 bit arithmetic!

Sequence of such computation

Goal : a distributed and parallel transformer algorithm for the “BigBird” transformer method on large
cluster-supercomputers or clouds, using mixed arithmetics (and YML-PGAS-like programmig paradigms).

Having a computational science approach for this machine learning method using very large data (matrix-
linear algebra, sparse data structure,...)

June 1st, 2023 43
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1 - Generator of non-Hermitian matrices, from given spectrum
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Example
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C N )
Files

Select files for display your graph

SMG2S - Home Page

Original file Final file
Select Select 0.10
Display & Save
Scales are automatically managed.
Make with custom scale 0.05 1 .
xmin : Xxmax : .
Ymin : ymax : ‘ .
Display New window 0.00
To save the chart with the quality selected . II
Save . . .
-0.05 -
=0.10 -+
T T
-0.10 =0.05

We are able to give the accuracies
of the eigenvalues of the generated

0.00 0.05 0.10

Quit

matrix compare to the given ones

June 1st, 2023
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SMG2S | - Github Organisation for hosting all
. the generators; SMG2S and BTIDG2
https://github.com/SMG2S

(W Overview [J] Repositories 7 (3 Projects ) Packages AR People 1

Pinned People
-~
] sMG2S | Public (] BTIDG2 | Public »
Scalable Matrix Generator with Given Spectrum Brain Topology Inspired Distributed Graph Generator
@c++ W5 T2 @c

Top languages

@®C++ @C @ Julia @TeX @HTML

] smg2s.jl ( Public ] DEMAGIS [ Public
A julia implementation of SMG2S (Sparse Matrix Generator with Given

Spectrum)

@ Julia [ Yo

Website: https://smgZ2s.github.io

] Repositories

Documentation:
https://smg2s.github.io/files/smg2s-manual.pdf

BTIDG2 Public HOME  INSTALLATION~  TUTORIALS  VERIFICATION  INTERFACE ~CONTACTUS  FAQ DOWNLOAD

Q Find a repository...

Brain Topology Inspired Distributed Graph Generator

Projet MYX - Maison de la Simulation - France

Scalable Matrix Generator with Given Spectrum

@c o HMmmT ¥o (o %0 Updated last week

SMG2S | Public What is SMG2S ?

Scalable Matrix Generator with Given Spectrum

@c++ Y5 HMT ¥ 2 (o §%0 UpdatedonJan1

& Purpose Qg Methologies

Sngs.jI Public Iterative linear algebra methods are important for the SMG2S can generate the non-Hermitian matrices with
o ) . ) . applications in various fields. The analysis of the iterative user-custormized eigenvalues. The details of methologies
A julia implementation of SMG2S (Sparse Matrix Generator with Given Spectrum) method complex, and it is necessary o can be found [1]

ence to solve extremely large non-

and linear problems on parallel 48

JUIIL 10y cvey . o
and/or distributed machines. This convergence depends

on the properties of spectra. Thus, we propse SMG2S to

generate large matrices with known spectra to benchmark


https://github.com/SMG2S

Spectrum with several clusters
eigenl : 1 cluster
eigen2 : 2 clusters
eigen3 : 3 clusters
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(d) Spectral Distribution IV: matrix size = 2000, mg = 20, d = 10. UCGLE(eigeny ) has

3 x speedup, and UCGLE(eigeny) has 2 X speedup.
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Xinzhe Wu @, Serge G. Petiton, Yutong Lu:
A parallel generator of non-Hermitian matrices computed from given spectra. Concurr.
Comput. Pract. Exp. 32(20) (2020)

Ritz-Eigenvalues computed by the

Given and “generated” spectrum

Thianhe 2 ERAM method (into the subspace)
1.0
14 —— GMRES{mg = 20) h = Given Eigenvalues
—— GMRES(mg = 80) x  Approximated Eigenvaluds
4 U VR
. le-2 —— UCGLE(mg = 20) :?E L
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GMRES iteration steps Real Axis

(@) Spectral Distribution I: matrix size = 2000, d = 10. UCGLE(mg = 20) has 3 X
speedup, and UCGLE(mg = 20) has 1.4 X speedup.

The generator allows to evaluate several behavior of the method with respect to
the spectra
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2 — Distributed and Parallel Generator of brain-scale graph-matrices

As we are speaking about “brain scale”, we generate a graph as close as possible from
the brain structure (to be updated with data from several researches — Neurospin/CEA)

Graphs, insipered form the topolgy of the humain brain

Aprox. 1011 Neurons,

Up to 10 000 (different) conections,
Several parts (left, rigth, entiric,...),
Several feature per neuron.

It is also a possible to
generate such sparse
matrices for other kind
of experiments

Graphs (sparse matrices) : several densities of nodes-neurons on each part, and
several densities of connection from one part to another one (to be set in the future

from data coming from RMI brain topology researches).

If we add some features to each neuron, we have a data set which may be adapted for

Graph Convolutional Network analysis, and others approaches
Size of the data set : 101! x 10% + 101! x number of features

It would be very expensive to upload the data (I/0), to experiment
with several hypothesis : we have to generate the data directly in
Parallel without 1/0, using sparse adjaceny non-symetric matrices)
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Brain

Parts of the brain

- part name

- % of connection to the opposite side
- % of connection to other parts

- number of neuron types in each part

- total number of neurons

- Neurons
- Neuron name

- number of neurons for each type of neuron

- number of connections for these neurons

+ features
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Very sparse and large
non symetrical matrices

The connection inside each
part, and betwwen

parts are parmatrized and
randomly set, for the moment,
waiting more data.

|
|
I
| Internal Connections
: connectipns from part 3
| - nart |1 allat-1a E 1 tn Nnart 1
| lIIrJMI'L-L L AN L .
|
|
|
|
Connectjons Internal Clnnections
frompajt 1 ! confections i ffom part 3
to part| 2 ' in|part 2 to part 2
' |
Connectjons Internal |
. |
from part 1 cpnnections |
to part| 3 In part 3 |

+ dense rectangular matrix for the features (n * number features)
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¢ License
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USER DOCUMENTATION
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o Dependencies
o Build
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e API

o Sparse Matrix

o Brain Structure

o Hard-coded Brain

o Brain Matrix Generation

Indices and tables
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* Module Index
* Search Page

View page source

BTIDG2 github repository:
https://github.com/SMG2S/BTIDG?2

BTIDG2 website:
https://smg2s.github.io/BTIDG2/

License
BTIDG2 is licensed under the MIT License.

Copyright (c) 2022 SMG2S

Next © >4


https://github.com/SMG2S/BTIDG2
https://smg2s.github.io/BTIDG2/

Expriments on GRID5000 (France), JEREDA (Julich), and Fugaku (Kobe)

Using only 256 cores , to generate not too large sparse matrices

Hardware Configuration of the JURECA DC Module (Phase 2: as of
LuxembnurgJ May 2021)

* 480 standard compute nodes

o 2x AMD EPYC 7742, 2x 64 cores, 2.25 GHz

o 512 (16x 32) GB DDR4, 3200 MHz

o InfiniBand HDR100 (NVIDIA Mellanox Connect-X6)
o diskless

* 96 large-memory compute nodes

o 2x AMD EPYC 7742, 2x 64 cores, 2.25 GHz ATOS B U LL

o 1024 (16x 64) GB DDR4, 3200 MHz
o InfiniBand HDR100 (NVIDIA Mellanox Connect-X6)
o diskless

* 192 accelerated compute nodes

o 2x AMD EPYC 7742, 2x 64 cores, 2.25 GHz

o 512 (16x 32) GB DDR4, 3200 MHz

o 4x NVIDIA A100 GPU, 4x 40 GB HBM2e

o 2x InfiniBand HDR (NVIDIA Mellanox Connect-X6)

Last update: 2022-02-03 7 diskless
Block CSR
We expriment with respect to several paramters : NNZ = 3,5 % of N2
e The matrix size Densities
e The number of core * 0.5% inside each parts

* 5% between parts

e Grid size and others pameters for the graph-matrices
Diferent numbers of blocks
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JEREDA DC, Julich

Process Grid tests

We applied the following tests to matrices whose dimension vary from 30k to 80k, while keeping
the same number of allocated resources (256 cores)

80

70

Minimum generation tine (seconds)
g

20

10

Minimum Generation time depending on the grid structure

Generation

~— 32768
65536

- 131072
262144
524288
786432

Weak scaling

1282 64%4 328
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GRID5000

(Generation time :

60,0
50,0
il 32768
g —a— 65536
s - 40,0 131072
2 E i 262144
5§ 30,0- —>— 524288
I - S— . . > > r— > 786432
20,0
10,0 -
i —dr o & e h—— —A
0,0 W
128*2 64*4 32*8 16*16 8*32 4*64 2*128

Grid sizes
(number of processes on rows * number of processes on columns)

Minimum generation time depending on the grid structure
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GRID5000

140,0
120,0
~8— 32768
g 1000 =t 65536
S o 131072
g & 80,0 e 262144
E g —>— 524288
£~ 60,0 786432
-
40,0 -
P —p e —p——
20,0
128+2 64*4 32*8 16*16 8432 4*64 2*128
Grid sizes

(number of processes on rows * number of processes on columns)

Minimum total time (generation and pagerank) depending on the grid structure

Pagerank : seqence of sparse matrix-vector products + reduction_with_add
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First experiments done by Maxence Vandromme, part of a collaboration with Mitsuhisa Sato a
and Miwako T

Fugaku - PageRank - Brain generator v1

s = MPI on
node
(510
— AP ON
A0 CMG
5 20
&
L
)
10
8
(&
0

1 10 100
# compute nodes

June 1st, 2023 59



o s wWNhE

Outline

Introduction

Programming Paradigms

Methods and Algorithms (Unite&Conquer, PageRank)

HPC and Machine Learning (GCN, Transformer,..)

Generators of Data Sets and matrices for brain-scale applicatons
Conclusion
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Exascale machine are emerging but the convergence of computational science, big data and
machine leraning-Al to develop new science, with often strong societal impacts, generates a
complex unstable ecosystem, especially for large size problems.

Linear algebra (matrix computation, statistic, eigenvalue, projection, optimisation, ...) computing
would still be important, but would target new applications and new scientific communauties.

Al for science versus science for Al : or a new science

If we want to efficiently use the faster supercomputers (including new one developped for Al) for
very large applications, we have to develop new multidisciplinary teams to create shared
programming paradigms and new scientific developments (it already exists in some labs)

HPC challenge and new computing frontiers

e Arithmetic : mixed, new normalisations? Convergence evaluation using mixed arithmetic.

* New methods : optimisation of operations, of iterations-epochs (unite&conquer or Neural-
Network ensembles), minimization of communications,

* Hierarchical architecture : cluster-cloud-distributed + parallelism + NOC chips, (accelerated) set
of cores,

*  Progamming paradigms : graph of task, PGAS-data parallelism, vectorial

* (Non-Hermitian) Sparse linear algebra : sequence of matrix-vector products, sequence of
(dynamic) sparse matrix products, eigenvalues

* New applications : “brain scale” bigbird transformer, Al, human brain, ...

* Generation of data to expriments, optimisation of I/O and communications
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HPC challenges for new extreme scale applications

Exascale machines are now available, based on several different arithmetic (from 64-bits to 16-8 bits arithmetic, including A 4_page re pO rt wou |d

mixed versions and some no longer IEEE standard) and using different architectures (with network-on-chip processors

be available by the end
models and data parallelism without shared memories. Brain-scale applications, from machine leamning and Al for of June, and a larger
document would be
completed by the end of
the summer.

and/or with accelerators). Some execution and programming paradigms are being rehabilitated, such as data flow

example, manipulate many huge graphs that lead to very sparse non-symmetric linear algebra problems, resulting in
performance closer to the HPCG benchmark than to the LINPACK one.

End-users and scientists have to face a lot of challenge associated to these evolutions and the increasing size of the data.
The convergence of Data science (big Data) and the computational science to develop new applications generates

important challenges.

This two-day workshop aims to bring together senior scientists in the field of HPC and some major applications
associated with it, to brainstorm on those challenges and propose potential research collaborations. The number of
invited participants is expected to be less than 35 (from Asia, USA and Europe mainly). We plan to organize panels,

combined with some talks.

COORDINATION SCIENTIFIQUE

CHRISTOPHE CALVIN EWA DEELMAN KENGO NAKAJIMA SERGE PETITON

https://www.association-aristote.fr/evenements/hpc-challenges-for-new-extreme-scale-applications/
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